
energies

Article

Biogas Production from Coffee Pulp and Chicken Feathers
Using Liquid- and Solid-State Anaerobic Digestions

Siswo Sumardiono * , Bakti Jos, Agata Advensia Eksa Dewanti, Isa Mahendra and Heri Cahyono

����������
�������

Citation: Sumardiono, S.; Jos, B.;

Dewanti, A.A.E.; Mahendra, I.;

Cahyono, H. Biogas Production from

Coffee Pulp and Chicken Feathers

Using Liquid- and Solid-State

Anaerobic Digestions. Energies 2021,

14, 4664. https://doi.org/10.3390/

en14154664

Academic Editor: Frede Blaabjerg

Received: 29 June 2021

Accepted: 28 July 2021

Published: 1 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro,
Semarang 50239, Indonesia; baktijos10@gmail.com (B.J.); agataadven@gmail.com (A.A.E.D.);
isamahendra6996@gmail.com (I.M.); hericahyono@che.undip.ac.id (H.C.)
* Correspondence: siswo.sumardiono@che.undip.ac.id; Tel.: +62-(24)-7460058

Abstract: Agricultural waste, particularly lignocellulose, has been used in the second generation of
biogas. Coffee pulp and chicken feathers can be developed as biogas raw materials because of their
suitability as a biogas substrate. This study investigates the effect of the percentage of total solids
(TS), carbon to nitrogen ratio (C/N, g/g), and delignification pretreatment on biogas production from
coffee pulp and chicken feathers, and aims to compose kinetics using the modified Gompertz model.
The results show that adjusting the percentage of TS at low-level speeds up the degradation process,
which increases chemical oxygen demand (COD) reduction and biogas production. COD reduction
and biogas production increase optimally at the 25 (g/g) C/N ratio. Pretreatment delignification
aids microorganisms in substrate decomposition, resulting in faster COD reduction and biogas
conversion. The 25% TS and 25 (g/g) C/N ratio with the delignification process achieved the best
biogas production, with biogas production of 10,438.04 mL. The Gompertz method shows that the
difference in TS percentage can influence biogas production. Moreover, the method shows that biogas
production is higher with the delignification process than without it.

Keywords: biogas production; chicken feathers; coffee pulp; liquid-state anaerobic digestion; solid-
state anaerobic digestion

1. Introduction

Energy sustainability is one of the significant issues in this era. Based on the British
Petroleum (BP) Statistical Review of World Energy, global energy needs are linear with
the number of births, which means that energy consumption increases every year because
of the world population growth [1]. Global energy development is in the process of
transitioning into renewable energy [2]. Renewable energy is produced from biomass,
water, photovoltaic solar, and geothermal sources [3], including biogas. Biogas mainly
contains methane and carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and oxygen in
minor quantities [4]. Biogas is produced from farm waste, such as cow manure [5], cabbage
waste, chicken feces [6]. Another potential waste raw material for biogas production is
food industry waste [7].

Coffee is one of the largest commodities in world trade after crude oil. Coffee pulp
waste has a good fiber and protein content of 17% and 10.4%, respectively, and is processed
for another purpose [8]. Chicken feathers are another potential protein source because
they contain 85–95% of protein [9]. Ruminants cannot digest undegradable protein of
53.6–87.9% from chicken feathers. Anaerobic digestion is a biochemical decomposition
process using anaerobic microorganisms in an anaerobic condition, which means no oxygen
is needed. Anaerobic digestion is divided into two major types: liquid-state anaerobic
digestion (LS-AD) and solid-state anaerobic digestion (SS-AD). Both methods demonstrate
a good result in biogas formation. In previous research by Manan and Webb, the water
content in SS-AD was in the range of 12–70%, whereas LS-AD is different and needs more
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water content. Further, LS-AD can be an excellent alternative to the biogas production
process, providing almost the same quality [10].

Some variables that can impact the biogas production rate are feedstock to inoculum
ratio (F/I), pH, C/N ratio, pretreatment, and temperature. The ratio of feedstock to
inoculum determines the biogas production rate [11]. The optimum pH range for producing
biogas is 6–7, at which microorganisms can produce biogas better than without prior
feedstock pH adjustment. C/N ratios also affect biogas production. The optimum ratio of
C/N in biogas is 25–30 (g/g) [12]. Temperatures in the range of 32–37 ◦C would be ideal
for the starter. This range of microorganism activity for substrate digestion is optimum [13].
Lignin is a complex compound found in biomass that is difficult for microorganisms to
degrade anaerobically [14]. Thus, microorganisms require considerable time to convert
this substrate into biogas [15]. According to previous research, the delignification or
modification helps to break down lignin or substrate by acid or base, allowing the substrate
to decompose easily [16,17]; however, if the amount of acid or base concentration is small,
the results will not differ significantly [18,19].

Several previous studies have combined two substrates (co-digestion) to obtain a C/N
ratio expected to increase biogas production [4,12]. This study offers something new by
combining coffee pulp with chicken feather,. Simultaneous pretreatment for both substrates
is a technical breakthrough that increases the efficiency of pretreatment time compared to
when treated separately. The high nitrogen content of chicken feathers helps the substrate
to achieve the required C/N ratio so that the two raw materials (coffee pulp and chicken
feather) are synergistic.

This study aims to examine the effect of total solid (TS) percentage, C/N ratio, and
delignification pretreatment on the formation of biogas from coffee pulp and chicken
feathers, and to fit the model with the modified Gompertz method.

2. Materials and Methods
2.1. Materials and Tools

The main materials used in this study were cow manure from the Laboratory of
Animal Science Faculty, Universitas Diponegoro; chicken feathers from Muryadi chicken
slaughtering house, Banyumanik Semarang City; and coffee pulps from Posong coffee
plantation, Temanggung. Other chemicals used for the analysis were KMnO4, H2SO4,
urea, NaOH, aquadest, and oxalic acid (pro-analysis grade) provided by Merck KGaA,
Darmstadt, Germany.

Tools needed in this research were digester 1 L (digester fabricated in the internal
workshop of the chemical engineering department of Universitas Diponegoro), stirrer,
beaker glass, Erlenmeyer flask, pipe, measure glass, pipette, water displacement apparatus,
pH meter, heater, burette, and stative. The scheme of this research is shown in Figure 1,
consisting of 5 stages, namely mixing, pretreatment, neutralization, fermentation, and
performance analysis.
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2.2. Raw Material Preparation

Chicken feathers and coffee pulps were cut into small pieces (±1 mm). For delignifica-
tion process, NaOH solution 5% TS (g/g) was added to chicken feathers and coffee pulps
(both have a ratio of 1:2) then soaked for 1 day. The NaOH solution got separated from
chicken feathers and coffee pulps after a day. Both solids (treated chicken feathers and
coffee pulps) were rinsed with clean water after previously drained, followed by drying
at room temperature (±30 ◦C) for 3 h. After that, 600 mL water was added to solid, the
substrate solution was neutralized to pH ±7 using H2SO4, and urea was added to each of
the substrate solution as a micronutrient to achieve the desired C/N ratio on digester. Then,
rumen was added to the solid by a ratio of 1:2, and then tightly closed the digester for the
fermentation process at room temperature (±30 ◦C). Table 1 shows the variable design.

Table 1. Variable design.

No.
%Total Solid (TS) * Solid Chemical Pretreatment Ratio C/N

(g/g)

10% ** 15% 20% 25% Coffee
Pulp

Chicken
Feather

Cow
Feces Delignification Non-

Delignification NaOH *** 25 30 Urea

1 60 g 26.66 g 13.33 g 20 g v v 21.68 g
2 60 g 26.66 g 13.33 g 20 g v v 7.88 g
3 60 g 26.66 g 13.33 g 20 g 0.150 N 3.00 g v 21.68 g
4 60 g 26.66 g 13.33 g 20 g 0.150 N 3.00 g v 7.88 g
5 90 g 40.00 g 20.00 g 30 g v v 32.52 g
6 90 g 40.00 g 20.00 g 30 g v v 11.82 g
7 90 g 40.00 g 20.00 g 30 g 0.225 N 4.50 g v 32.52 g
8 90 g 40.00 g 20.00 g 30 g 0.225 N 4.50 g v 11.82 g
9 120 g 53.33 g 26.66 g 40 g v v 43.36 g
10 120 g 53.33 g 26.66 g 40 g v v 15.77 g
11 120 g 53.33 g 26.66 g 40 g 0.300 N 6.00 g v 43.36 g
12 120 g 53.33 g 26.66 g 40 g 0.300 N 6.00 g v 15.77 g
13 150 g 66.66 g 33.33 g 50 g v v 54.20 g
14 150 g 66.66 g 33.33 g 50 g v v 19.71 g
15 150 g 66.66 g 33.33 g 50 g 0.375 N 7.50 g v 54.20 g
16 150 g 66.66 g 33.33 g 50 g 0.375 N 7.50 g v 19.71 g

* Total solid: The total mixture consists of coffee pulps, chicken feathers and cow feces, ** %TS: g dry solid/600 mL water, *** NaOH: 5% TS
(g/500 mL water).

2.3. Nitrogen Content

Initial nitrogen content was tested by the Kjeldahl method [20,21]. One g of the
smoothed and oven-dried sample was weighed and then put into a Kjeldahl flask. Next,
14 g of anhydride Na2SO4, 1.6 g of CuSO4·5H2O, and 25 mL of concentrated H2SO4 were
added, and digested until the solution became clear. The flask was cooled and enough
distilled water was added before being put into the distillation flask. Then, 4 g of Zn
powder and 100 mL of 5 N NaOH were added, and distillation occurred for 30–45 min.
The distillate formed was flowed into an Erlenmeyer containing 150 mL of saturated boric
acid which was dripped with MO 3 drops. The volume of distillate and boric acid in
Erlenmeyer (V solution) was measured and the volume of distillate (V2), as much as 10 mL,
was taken before it was titrated with 0.02 N HCl titrant to obtain V1. The nitrogen content
is determined by the following Equation (1):

% nitrogen =
(V1·N)HCl × AR nitrogen × V solution

V2× g dry sample × 1000
× 100% (1)

2.4. Carbon Content

The initial carbon content was determined by the Walkely and Black method [22]
weighing 1 g in a 100 mL Erlenmeyer. Then, 10 mL of K2Cr2O7 1 N was added to the
sample. Next, 20 mL of concentrated H2SO4 was added, and the sample was let to stand
for 30 min while occasionally shaken. The solution was then added with 100 mL of distilled
water, 5 mL of H3PO4, and 1 mL of diphenylamine indicator. The sample was titrated with
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1 N FeSO4 solution until the color changed to green. Organic C content is calculated by
Equation (2):

C− organic =
(V·N)K2Cr2O7 × (V·N)FeSO4 × 0.33

g dry sample × 0.77
× 100% (2)

2.5. Biogas Production Process

Biogas production and chemical oxygen demand (COD) of each digester were then
determined every two days for 90 days. A liter measure glass was filled with water for
biogas production. After inserting the digester’s pipe into the flip-down measure glass,
the digester’s valves were opened, and the water scale reduction due to this process was
calculated. The difference between calculations before and after biogas represented the
volume of biogas produced. The PerkinElmer Auto system XL Gas chromatography was
used to determine the methane content in the biogas produced.

2.6. COD Analysis

COD analysis with permanganometry was carried out (based on SNI Method 06-4571-
1998) and the first standardization of KMnO4 by taking 10 mL of 0.01 N H2C2O4 solution
5 mL of 4 N H2SO4 solution into an Erlenmeyer flask. The Erlenmeyer flask containing the
solution was heated to 70–80 ◦C. The mixture was titrated with KMnO4 until the titration
endpoint occurred (wine red color becomes unchanged). As for COD analysis, 1 mL sample
was taken from the digester to be analyzed and then diluted to 10 mL on the Erlenmeyer
flask. Next, 5 mL of 4 N H2SO4 and the standardized KMnO4 solution were added, and
then the mixture was heated for about 10 min. Then, 5 mL H2C2O4 0.01 N was added
and then heated to 70–80 ◦C. The solution is titrated using standardized KMnO4 until the
titration endpoint occurs. COD is calculated by Equation (3):

COD Mn (ppm) = {(a + b)N KMnO4 − (N· V) Na2C2O4}} × 8000 (3)

where, a: volume of KMnO4 (standardized); b: volume of KMnO4 (COD analysis)

2.7. Kinetics of Biogas Production Using The Gompertz Model

The Gompertz equation is commonly used as an approximation model for biogas
production in batch systems. By assuming the biogas production rate in batch conditions
correspond to the specific growth rate of methanogenic bacteria in the biodigester, the
biogas production rate can be predicted [23].

y (t) = ym·exp
{
−exp

[
U·e
ym

(λ − t) + 1
]}

(4)

where,

y(t): The cumulative biogas yield at a digestion time t days (mL/g·TS)
ym: The biogas production potential (mL/g·TS·day)
U: The maximum biogas production rate (mL/g·TS·day)
λ: Lag phase period or minimum time to produce biogas (days)
t: Cumulative time for biogas production (days)
e: Mathematical constant (2.718282)

The kinetic constant of ym, λ, and U was determined using non-linear regression with
the help of polymath software.

2.8. Statistical Analysis

All data in this study were carried out in triplicate for each condition. Statistical
significance was accepted when the p-value was lower than 0.05, which was performed
using Microsoft Excel 2016 software.
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3. Results and Discussion
3.1. Effect of Different TS Percentages on COD Reduction and Biogas Production
3.1.1. COD Reduction

Figures 2 and 3 show that the COD decreased every two days for each run. In the initial
stage, the COD concentration decreased significantly around the 6th day; this decrease then
declined over the following days. Decreased COD levels during biogas production reveal a
difference in microorganism activity when degrading organic matter and converting it into
biogas [24,25]. The decrease in COD indicates the degradation of dissolved organic matter
in the liquid phase. Degradation of organic matter indicates that there is a molecular change
in the substrate [26,27]. Microorganisms break down long chains of complex carbohydrates,
proteins, and lipids into shorter parts, monomers, oligomers into glucose, glycerol, purines,
and pyrimidines [28]. These monomers will then become substrates for further biogas
formation reactions, acidogenesis, acetogenesis, and methanogenesis [29].
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According to research conducted by Saragih et al., the solubility decreased as the
percentage of TS increased, which affected the solid substrate’s mass transfer, such that the
higher the solubility, the better the microbes’ ability to degrade the COD [30]. Reduced
COD levels in anaerobic digestion indicate that materials other than acids can be degraded
because organic acids in the liquid phase increase COD [31]. The substrate residence
time also decreases the COD: the longer the substrate residence time, the lower the COD.
This is caused by the long time required by microorganisms to degrade organic particles,
and, as such, the lower the TS percentage, the faster the organic matter degradation
process [24]. Insoluble solids in a digester cause volatile fatty acid accumulation, inhibiting
methanogenesis and interfering with anaerobic digestion [25]. Budiyono et al. and Rennuit
et al. explained that biogas production is negatively correlated to COD, implying that a
lower COD value causes biogas production to increase [31,32]. Gao et al. demonstrated
the same phenomenon, stating that an increase in COD reduction shows that more organic
materials are being degraded to organic acids, converting to methane [33].

3.1.2. Biogas Production

Figures 4 and 5 show that the biogas production fluctuated rather than remaining
constant. The total biogas accumulation volume produced did not differ significantly in the
initial stages, with the slight difference attributable to bacteria entering the lag phase. The
lag phase occurs when bacteria adapt to a new environment, occurring at the beginning of a
fermentation process of varying duration [34]. An earlier study by Jha et al. showed that the
production volume could not distinguish the content of a substrate and liquid mixture [35],
especially if a substrate is a complex [36] and difficult to break down; therefore, observing
the results of the biogas accumulation is difficult [37].
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volume accumulation.

According to Jha et al., adding water to biogas production has no significant impact on
the production rate because the biogas production in both liquid- and solid-state conditions
successfully produces other gases, such as CO2 and hydrogen mixed with CH4. Therefore,
the impact of adding water to methane production cannot be ascertained [35,38,39]. Biogas
production with a certain C/N ratio shows that the liquid state is more optimal than
the solid-state if the substrate and digester volume are twice as large as the solid-state
volume [31,40].
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3.2. Effect of Different C/N Ratios on COD Reduction and Biogas Production
3.2.1. COD Reduction

The COD concentrations were lower in the C/N 25 (g/g) and solid-state compositions,
as shown in Figures 6 and 7. COD reduction decreased as the C/N ratios increased. Micro-
bial growth slows down at high C/N ratios, owing to nutrient limitation (nitrogen) [41].
Dioha & Ikeme, Wang et al., and Xu et al. showed that the optimal C/N co-digestion ratio
for a substrate mixture in a batch digester could be achieved in the range of 20–35 (g/g) if
excess carbon source substrate or nitrogen deficiency inhibited COD reduction [42–44].

Energies 2021, 14, x FOR PEER REVIEW 8 of 16 
 

 

3.2. Effect of Different C/N Ratios on COD Reduction and Biogas Production 
3.2.1. COD Reduction 

The COD concentrations were lower in the C/N 25 (g/g) and solid-state compositions, 
as shown in Figures 6 and 7. COD reduction decreased as the C/N ratios increased. Mi-
crobial growth slows down at high C/N ratios, owing to nutrient limitation (nitrogen) [41]. 
Dioha & Ikeme, Wang et al., and Xu et al. showed that the optimal C/N co-digestion ratio 
for a substrate mixture in a batch digester could be achieved in the range of 20–35 (g/g) if 
excess carbon source substrate or nitrogen deficiency inhibited COD reduction [42–44]. 

 
Figure 6. Effect of different C/N ratios on the chemical oxygen demand (COD) reduction of 20% 
total solids (TS) biogas with delignification. 

 
Figure 7. Effect of different C/N ratios on the chemical oxygen demand (COD) reduction of 20% 
total solids (TS) biogas non-delignification. 

  

Figure 6. Effect of different C/N ratios on the chemical oxygen demand (COD) reduction of 20%
total solids (TS) biogas with delignification.



Energies 2021, 14, 4664 8 of 15

Energies 2021, 14, x FOR PEER REVIEW 8 of 16 
 

 

3.2. Effect of Different C/N Ratios on COD Reduction and Biogas Production 
3.2.1. COD Reduction 

The COD concentrations were lower in the C/N 25 (g/g) and solid-state compositions, 
as shown in Figures 6 and 7. COD reduction decreased as the C/N ratios increased. Mi-
crobial growth slows down at high C/N ratios, owing to nutrient limitation (nitrogen) [41]. 
Dioha & Ikeme, Wang et al., and Xu et al. showed that the optimal C/N co-digestion ratio 
for a substrate mixture in a batch digester could be achieved in the range of 20–35 (g/g) if 
excess carbon source substrate or nitrogen deficiency inhibited COD reduction [42–44]. 

 
Figure 6. Effect of different C/N ratios on the chemical oxygen demand (COD) reduction of 20% 
total solids (TS) biogas with delignification. 

 
Figure 7. Effect of different C/N ratios on the chemical oxygen demand (COD) reduction of 20% 
total solids (TS) biogas non-delignification. 
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3.2.2. Biogas Production

Figures 8 and 9 show that C/N 25 (g/g) produced more volume in both liquid
and solid states than C/N 30 (g/g). Based on previous research, the determination of
neither C/N 25 or C/N 30 (g/g) showed results in the form of significant differences
because a condition with C/N 25 (g/g) and C/N 30 (g/g) existed where biogas-producing
microorganisms worked optimally [42,45]. This phenomenon could also be seen in the
decrease in COD quantum, which did not show a significant difference for C/N 25 (g/g)
and C/N 30 (g/g) [46].
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3.3. Effect of Pretreatment or Delignification on COD Reduction and Biogas Production
3.3.1. COD Reduction

As shown in Figure 10, the liquid- and solid-state variable research reveal the same
phenomenon as the delignification process results by producing better results than the
non-delignification process.
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According to previous research, the delignification of NaOH helps to break down
lignin, allowing the substrate to decompose easily [16,47]. The presence of insoluble lignin,
which makes cellulose and hemicellulose difficult to digest, complicates the anaerobic
conversion of lignocellulose to methane [48]. The purpose of pretreatment is to alter
the material’s structure and composition to eliminate the bottleneck of the hydrolysis
process and increase the rate of the hydrolysis enzyme and biogas yield [49]. Hydrolysis
byproducts in the pretreatment stage can be toxic to enzymes and anaerobic consortia. This
condition inhibits or reduces biogas production, as demonstrated in some research results,
showing that COD reduction is greater in the non-delignification process [50].
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3.3.2. Biogas Production

Figure 11 describes the rate of biogas production and Figure 12 illustrates the ac-
cumulation of biogas production, both of which reinforce the idea that pretreatment
(delignification) has a positif effect on biogas production.
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The addition of NaOH to the delignification process will speed up the decomposition
of the substrate by microorganisms, thereby speeding up the substrate’s conversion to
biogas [51]. Therefore, adding a sufficient amount of NaOH has a significant impact on
biogas production rate [52].

3.4. Kinetics of Biogas Production Using The Gompertz Model

The Gompertz method simulations in Table 2 and Figure 13 show that the substrate
with a content of 25% TS, 25 (g/g) C/N ratios, and delignification pretreatment produces
the maximum biogas. The variables that influence this study implement the delignification
and non-delignification processes in addition to being compared using TS percentage. With
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the same variable, the 25% TS, 25 (g/g) C/N ratios, and the delignification process all
produce a better biogas production rate, which highlights the potential biogas that can be
produced (A), i.e., 13,498.64 mL, and the rate of biogas production (U) is 419.38 mL/days;
the biogas first gets produced (λ) in 23.09 days, with a resulting R2 value of 0.9961. R2

indicates how well the model fits the experimental data. In this observation, the value of
R2, which is close to 1, indicates that the model is close to the experimental results [53].

Table 2. Comparison of kinetic modification using the Gompertz method.

Variable A (mL) U (mL/day) λ (day) R2

10% TS,
C/N 25 (g/g), and

Non-Delignification
7823.54 300.22 17.83 0.9689

10% TS,
C/N 30 (g/g), and

Non-Delignification
6608.13 236.07 19.03 0.9557

10% TS,
C/N 25 (g/g), and

Delignification
6448.21 260.38 16.82 0.9449

10% TS,
C/N 30 (g/g), and

Delignification
8575.42 320.17 18.27 0.9875

15% TS,
C/N 25 (g/g), and

Non-Delignification
7647.23 294.75 17.70 0.9559

15% TS,
C/N 30 (g/g), and

Non-Delignification
6696.53 237.59 19.54 0.9597

15% TS,
C/N 25 (g/g), and

Delignification
7238.49 311.40 20.50 0.9486

15% TS,
C/N 30 (g/g), and

Delignification
8967.90 313.33 19.48 0.9674

20% TS,
C/N 25 (g/g), and

Non-Delignification
7233.81 256.85 18.97 0.9640

20% TS,
C/N 30 (g/g), and

Non-Delignification
6422.22 216.06 19.94 0.9743

20% TS,
C/N 25 (g/g), and

Delignification
11,161.23 367.71 23.28 0.9941

20% TS,
C/N 30 (g/g), and

Delignification
6544.53 272.04 19.84 0.9622

25% TS,
C/N 25 (g/g), and

Non-Delignification
9640.50 351.11 20.38 0.9909

25% TS,
C/N 30 (g/g), and

Non-Delignification
10,610.15 296.07 24.33 0.9949

25% TS,
C/N 25 (g/g), and

Delignification
13,498.64 419.38 23.09 0.9961

25% TS,
C/N 30 (g/g), and

Delignification
9412.47 281.06 22.74 0.9668

TS, total solid; A, potential biogas production; U, maximum biogas production rate; λ, minimum time for biogas
production; R2, the correlation coefficient.
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This study’s modified Gompertz method can determine the estimated flow rate of
biogas production [54,55]. Actual and predicted volumes were similar when viewed
through the comparison graphs. This trend shows that the Gompertz method can be
used in this study because the results were not significantly different from this study’s
results. Furthermore, this method can determine whether research results are relevant data.
The Gompertz method shows that the difference in TS percentage can influence biogas
production. Moreover, the method shows that the biogas production is higher with the
delignification process than without it. Besides U, the biogas production rate, the value
of λ needs to be examined to determine the minimum time required for proper biogas
production [56,57].

4. Conclusions

The lower the percentage of TS, the faster the organic matter degrades, the higher
the COD reduction, and the faster the biogas production. COD reduction and biogas
production increased optimally at 25 (g/g) C/N ratios in this study. Because of the
limited nutrient content, microbial growth will be slowed at a higher C/N ratio (nitrogen).
The influence of pretreatment delignification has facilitated microorganisms on substrate
decomposition to alter the material’s structure and composition, and increased the rate
of hydrolysis enzymes, allowing for faster COD reduction and substrate conversion into
biogas. The 25% TS and 25 (g/g) C/N ratio with the delignification process achieved the
best biogas production, with biogas production of 10,438.04 mL. According to the Gompertz
method, the 25% TS and 25 (g/g) C/N ratios with the delignification process yield the
best biogas production rate with 13,498.64-mL potential biogas that can be produced (A), a
419.38-mL/day biogas production rate (U), 23.09 days as the minimum time required to
produce biogas (λ), and a resulting R2 value of 0.9961.
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