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Abstract: Magnetic refrigeration is a fascinating superior choice technology as compared with
traditional refrigeration that relies on a unique property of particular materials, known as the
magnetocaloric effect (MCE). This paper provides a thorough understanding of different magnetic
refrigeration technologies using a variety of models to evaluate the coefficient of performance (COP)
and specific cooling capacity outputs. Accordingly, magnetic refrigeration models are divided
into four categories: rotating, reciprocating, C-shaped magnetic refrigeration, and active magnetic
regenerator. The working principles of these models were described, and their outputs were extracted
and compared. Furthermore, the influence of the magnetocaloric effect, the magnetization area, and
the thermodynamic processes and cycles on the efficiency of magnetic refrigeration was investigated
and discussed to achieve a maximum cooling capacity. The classes of magnetocaloric magnetic
materials were summarized from previous studies and their potential magnetic characteristics
are emphasized. The essential characteristics of magnetic refrigeration systems are highlighted
to determine the significant advantages, difficulties, drawbacks, and feasibility analyses of these
systems. Moreover, a cost analysis was provided in order to judge the feasibility of these systems for
commercial use.

Keywords: magnetic refrigeration; cooling; refrigeration technologies; COP; cooling; magnetocaloric
effect (MCE)

1. Introduction

Some magnetic materials exhibit either an increase or drop in their temperatures
when they are exposed to a certain magnetic field. This phenomenon is referred to as
the magnetocaloric effect (MCE) or adiabatic temperature change [1]. For such a thermal
response, a magnetocaloric material maximizes its temperature when it reaches the mag-
netic ordering temperature [2]. The magnetocaloric material is strongly limited by the
temperature span in which the specific entropy density changes in response to the magnetic
field [3]. To achieve a greater temperature span, the MCE should be magnified by handling
the magnetic field strength (B), magnetic entropy transition (∆Sm), bulk magnetization,
variation of the magnetic field (∆B), the Curie temperature (TC) of a magnetic material,
the magnetic phase transition properties, and crystallographic transformation [4]. In 1881,
Warburg [5] discovered the MCE phenomenon in pure iron. Napoletano et al. [6] reported
that when a magnetic field reaches up to 9 Tesla, the temperature change occurs in the 3 to
300 K range due to the MCE effect. Debye [7] and Giauque [8] explained the occurrence of
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the MCE phenomenon and proposed methods using adiabatic demagnetization cooling to
reach an ultra-low temperature scale. Recently, MCE-based magnetic refrigeration has been
established in the room temperature range. The magnitude of the MCE of the magnetic
material is critical for cooling power, whether at room temperature or even lower. The
development of this technology basically depends on improved material selection, the
magnet type, and optimal design of cooling devices [9].

Magnetic refrigeration technology has many advantages, which can be summarized as
follows: (i) Due to the use of magnetic materials as refrigerants, an environmentally friendly
refrigeration technology, which produces no ozone-depleting gases or greenhouse gas
pollution, is utilized [10]. (ii) Magnetic materials have a higher magnetic entropy density
than gas refrigerants [11]. (iii) MCE may be supplied by electromagnets, superconductors,
or permanent magnets, which do not need high rotational speeds, mechanical vibrations,
noise, low stability, or short life spans to be functionally operated [12]. (iv) The efficiency
of magnetic refrigeration systems can be 30–60% of the Carnot cycle [13], unlike 5–10% for
conventional refrigeration technologies. Some findings in a 5 T magnetic field area can
generate up to 600 W of cooling power and 60% of Carnot efficiency, with a COP of around
15. However, at a maximum temperature range of 38 K, the cooling capacity drops down to
about 100 W. In a 1.5 T magnetic field area, MCE systems provide around 200 W of cooling
capacity [14]. According to Aprea et al. [15], the COP of the active magnetic regenerative
refrigeration (AMRR) cycle is better than traditional refrigeration at low mass flow rates.
However, it improves at large mass flow rates with the flat plate regenerator. (v) It has
good reliability; due to the absence of cooling gases, the MCE system reduces concerns of
releasing emissions into the atmosphere. (vi) It is a maintenance-free technology. According
to Gschneidner and Pecharsky [16], a magnetic refrigerator ran for over than 1500 h and
18 months with no significant repairs or breakdowns. (vii) It has a simple machine design,
such as a rotary porous heat exchanger refrigerator. (viii) Finally, it can be operated below
atmospheric pressure in some applications, such as refrigeration and the air conditioning
systems of automobiles. On the other hand, the main key drawbacks can be summarized
by the following points [3,16–19]: (i) As compared with traditional refrigeration, the initial
cost of magnetic refrigeration systems is high. (ii) Since magnetocaloric materials are
made up of rare earth elements, their availability is an issue in the magnetic refrigeration
industry. (iii) For rectilinear and rotary magnetic refrigeration systems, new materials
must be designed to enhance the availability of the necessary materials. (iv) Permanent
magnets have small magnetic fields, whereas electromagnets and superconducting magnets
have potentially stronger magnetic fields. However, they are prohibitively expensive. (v)
Temperature variations are constrained in MCE systems, but multi-stage machines are
notorious for losing productivity due to heat transfer between stages. (vi) As gaps form
between the magnets and the magnetocaloric material, magnetic refrigeration systems must
be moved with caution to prevent magnetic field reduction. (vii) Finally, Monfared et al. [20]
reported that magnetic refrigerators have high environmental impacts, because using rare
earth materials in the magnet-making industry that influences the lifecycle assessment
(LCA). There are several difficulties and challenges, which limit the use of magnetic
refrigeration in some applications [10,21]. Among these challenges: (i) there is a need
for a magnetic material that possesses large MCE; (ii) a strong magnetic field is required,
and finally (iii) excellent regeneration and heat transfer behaviors are essential. Several
researchers [22–30] have investigated the main features of magnetic refrigeration cycles,
the perspectives of different models, and magnetic material selection to achieve the highest
efficiency. Comparing magnetic refrigeration technology with other environmentally
friendly cooling technologies, Table 1 highlights the main attributes of different emerging
refrigeration technologies, such as solar adsorption, magnetic refrigeration, and acoustic
refrigeration, to identify the primary benefits, obstacles, drawbacks, and performance
analyses.
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Table 1. Main attributes and applications for different emerging refrigeration technologies [22–30].

Solar Adsorption Magnetic Refrigeration Acoustic Refrigeration

Principles
To generate cooling, use
low-temperature heat that is powered
by solar energy.

To achieve a cooling effect, some materials
have a unique property called the
magnetocaloric effect (MCE).

Acoustic or sound waves are used to
generate cooling.

Advantages

- Environmentally friendly
- Fewer moving parts
- Low-temperature heat-driven

(e.g., 55–90) ◦C
- No vibrations
- No crystallization problems
- Fewer corrosion issues

- Environmentally friendly
- Compact: the magnetic entropy

density of magnetic material is
greater than that of refrigerant gas

- No compressors needed
- Magnetic refrigeration efficiency can

be 30–60% of Carnot cycle efficiency
- Reliability: since there is no gas, it is

completely maintenance-free

- There are no harmful effects on
the climate

- No moving components
- Long life expectancy
- Simple and reliable
- Low fabrication costs
- There is no phase transition,

using air or a noble gas as a
working medium, which allows
for more diverse applications

- Uses basic materials that do not
have any special specifications

- Instead of a mechanical
compressor, a thermoacoustic
prime mover is used

Disadvantages Adsorption chillers have a low COP
and high manufacturing expenses

- High initial cost
- Uses rare earth magnetocaloric

materials (MCM)
- Materials for rectilinear and

rotational magnetic cooling at
higher frequencies must be
developed

- The field strength of permanent
magnets is restricted

- Electromagnets and
superconducting magnets are
prohibitively costly

- Temperature fluctuations are kept to
a minimum

- To avoid magnetic field decreases,
moving machines require a high
level of accuracy; according to the
magnetic refrigerator’s lifecycle
assessment (LCA)

- The rare metals used in the magnet
material have a greater
environmental impact

In comparison with traditional
refrigerator technologies, it has a
lower thermal efficiency

Obstacles
The adsorption chiller’s low efficiency
of COP and specific cooling power
(SCP) prevent its commercialization

- Magnetic material with a high MCE
is required.

- A strong magnetic field is necessary.
- Excellent regeneration and heat

transfer characteristics are required.

- There are not enough vendors
to make the specialized
components

- A lack of interest and
investment from industrial
sectors due to their focus on
developing CFC-free
alternatives

Applications
Food processing, cold storage, retail,
and refrigerated transport

- Domestic refrigeration systems,
central air conditioning systems,
refrigeration in spacecraft, medical
refrigeration, cooling during
transportation, food cooling
industry and storage, and
electronics cooling

Domestic and commercial
refrigerators, freezers, natural gas
liquefaction, chip cooling, and cooling
of electronic devices

COP 0.4–0.7 1.8 at room temperature Up to 1.0

2. Working Principle and the Magnetocaloric Phenomenon

The magnetocaloric phenomenon is a magneto-thermodynamic effect that takes place
when a suitable substance is exposed to a shifting magnetic field and causes a reversible
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change in temperature [1,22]. Equation (1) can be used to calculate the magnetocaloric
effect:

∆Tad = −
∫ H1

Ho

(
T

C(T, H)

)
H

(
∂M(T, H)

∂T

)
H

dH (1)

where ∆Tad is the adiabatic temperature difference, T is the temperature, H is the magnetic
field used, C is the operating heat capacity of the magnet (refrigerant), and M is the
refrigerant’s magnetization. The magnetocaloric effect can be enhanced by using the above
equation as follows: (i) generating a strong magnetic field, (ii) using a magnetic material
with a small heat capacity, and (iii) in a constant magnetic field, using a magnetic material
with a significant change in magnetization versus temperature.

Magnetic material is used to complete the cooling and/or refrigeration cycles in a
magnetic refrigerator. In general, a magnetic refrigeration cycle consists of two processes:
magnetization and demagnetization, in which heat is emitted and absorbed, respectively.
The magnetic Carnot cycle, the magnetic Stirling cycle, the magnetic Ericsson cycle, and
the magnetic Brayton cycle are the four basic magnetic refrigeration cycles covered in
this work. The magnetic Ericsson and Brayton cycles are suitable for room temperature
magnetic refrigeration, since they use a regenerator to achieve a wide temperature range
and are simple to run [9,31–39].

2.1. Magnetic Carnot Refrigeration Cycle

There are four processes in the Carnot cycle: two isentropic/adiabatic processes and
two isothermal processes. The fundamental processes of the magnetic Carnot cycle are il-
lustrated in Figure 1a. The temperature–entropy (T-S) diagram, shown in Figure 1b, depicts
the magnetic Carnot cycle rectangle between the two high and low constant lines. The first
step is adiabatic magnetization (A–B), which occurs when a magnetic field (+H) is applied
to a magnetocaloric material after it is placed in an insulated area, causing the magnetic
dipoles to align. The overall entropy remains constant during this process. Because the
magnetic field reduces the spin entropy of the magnetic material, the lattice entropy must
rise to maintain a constant total entropy value [40], resulting in an adiabatic temperature
rise (T + ∆Tad) from TC to TH. The second step is isothermal magnetization (B–C): the
induced magnetic field intensity is enhanced isothermally to achieve total magnetization.
The heat produced is extracted (−Q) by a fluid or gas before the magnetocaloric material
and the coolant are separated (H = 0). After that, the adiabatic demagnetization mechanism
(C–D) takes place by reducing the magnetic field under adiabatic temperature conditions to
lower the temperature from TH to TC, causing the magnetic dipoles to become disordered.
Finally, the isothermal demagnetization mechanism (D–A) completes the loop by fully
demagnetizing the substance. The magnetic field is kept stable during this process to
preserve the sample from heating up again. The heat from the fluid is absorbed (+Q)
by the magnetic refrigerant. The cycle starts all over again until the refrigerant and the
refrigerated environment reach thermal equilibrium.

The area (ABCD) represents the work done in the system and can be determined using
Equation (2):

w = −
C∮

B

TdS−
A∮

D

TdS = TH(SB − SC)− TC(SA − SD) (2)

The cooling load is the amount of heat absorbed during the process DA, and it can be
computed by Equation (3) as follows:

qc =

A∫
D

TdS = TC(SA − SD) (3)
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The COP can be evaluated by Equation (4):

COP =
qc

w
=

TC(SA − SD)

TH(SB − SC)− TC(SA − SD)
(4)

Because of the isentropic processes of BC and DA, Equation (5) can be reduced further,
yielding the well-known Carnot cycle COP.

COP =
TC

TH − TC
(5)

Numazawa et al. [41] tested a magnetic refrigeration system operated according to the
Carnot cycle. The experimental results showed that when Dy3Al5O12 refrigerant was used,
the magnetic refrigeration generated 550 mW at 4.5 K and 100 mW at 1.8 K. Moreover,
the lowest temperature achieved was 1.36 K when the system operated without a cooling
load. The efficiencies of the Carnot cycle were 30% at 2.0 K and 38% at 4.4 K. Kamiya
et al. [42] developed a magnetic refrigeration system using hydrogen liquefaction based
on the Carnot cycle with appropriate heat switches. Liquified hydrogen was obtained
successfully using this approach at a temperature slightly above its boiling point. The
condensation was nearly 90% of the Carnot efficiency, with the highest cooling capacity of
14.6 W. Matsumot et al. [43] reported similar efficiency using a Carnot magnetic refrigerator
in the liquefaction stage. Garlatti et al. [44] proposed molecular nano-magnets for use in
Carnot refrigeration cycles for extremely low-temperature magnetic refrigeration. The
strongest molecules used for magnetic refrigeration were those made of high ferromagnetics
coupled with magnetic ions at T ' 10 K. Due to the reversed Carnot theorem, Dilmieva
et al. [45] predicted that the COP of magnetic refrigeration in a strong magnetic field of
12 T would drop dramatically down to 15 as compared with around 92 in a low magnetic
field of 2 T at near Curie temperature of gadolinium. Hirayama et al. [46] experimentally
investigated AMRR in a laboratory environment. According to the experimental findings,
the actual cooling capacity at 1.8 K was 12 mW, and the Carnot performance was 25% with
no load temperature. According to Jeong [47], the Carnot performance of Stirling magnetic
refrigerators was about 20%, depending on the scale and temperature range.
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2.2. Magnetic Brayton Refrigeration Cycle

The magnetic Brayton cycle is composed of two adiabatic processes and two isofield
processes, as shown in Figure 2a [48,49]. In this cycle, two heat temperature sources—high
temperature (TH) and cold temperature (TC)—as well as two constant magnetic fields
(H0 and H1) were used. The fundamental stages of the Brayton cycle are as follows: The
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first is the adiabatic magnetization process (A–B). During the isentropic process, magnetic
material is transferred from magnetic field H0 to H1, increasing the temperature of the
magnetocaloric material. The second phase is isofield cooling (B–C) in which heat is
rejected from the material by a continuous magnetic field of H0, accompanied by adiabatic
demagnetization (C–D), in which the magnetic material cools down and no heat flows in
or out of the magnetic refrigerant. The final step is the isofield heating process at H0 (D–A).
The heat is absorbed by the magnetic refrigerant, which causes an external device to cool.
The absorbed heat (qc), rejected heat (qr), work (w), and COP can be determined as:

qc =

A∫
D

TdS (6)

qr =

C∫
B

TdS (7)

w = −qr − qc = −
C∫

B

TdS−
A∫

D

TdS (8)

COP =
qc

w
=

∫ A
D TdS

−
∫ C

B TdS−
∫ A

D TdS
(9)Energies 2021, 14, 4662 8 of 26 
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Liu and Yu [50,51] presented a 2D porous media model of a reciprocating permanent
magnet regenerator at room temperature. They also developed an analytical model based
on the Brayton cycle for permanent regenerative magnetic operations. The mathemat-
ical outcomes for ferromagnetic material and analytical solutions for the paramagnetic
material were contrasted. Diguet et al. [52] used Gd, Gd0.74Tb0.26, and (Gd3.5Tb1.5)Si4 as
working substances to investigate the efficiency of a magnetic refrigeration system driven
by the Brayton cycle experimentally. In comparison with Gd and (Gd3.5Tb1.5)Si4, the re-
sults revealed that Gd0.74Tb0.26 has the greatest cooling ability. Yang et al. [53] studied
the properties of an irreversible regenerative magnetic operation based on the Brayton
refrigeration cycle. They [53] found that the higher the regeneration operation, the higher
the refrigeration load and the lower the COP. In adiabatic operations, irreversibility lowers
both the COP and the refrigeration load. Xia et al. [54] stated that the smaller the adiabatic
irreversibility variables, the lower the overall dimensionless cooling load and COP. In the
20 to 77 K temperature range, Matsumoto et al. [55] generated a numerical model for an
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AMMR based on the Brayton operating period. Multi-layer and multi-stage models were
used to increase the AMRR model’s efficiency.

2.3. Magnetic Ericsson Refrigeration Cycle

The Ericsson cycle comprises two isothermal and two isofield processes, as depicted
in Figure 2b. The Ericsson cycle resembles the Brayton cycle in appearance. The main
distinction is that magnetization and demagnetization occur isothermally rather than
adiabatically. The Ericsson cycle requires a heat regeneration process. The basic operations
of this cycle are: The isothermal magnetization process (A–B), in which the magnetic
field increases from H0 to H1 at a constant hot working temperature TH, which increases
the upper fluid temperature due to heat transfer from the magnetic refrigerant to the
regenerator. Isofield heat rejection (B–C) is the second step. The magnetic field H1 remains
constant and heat from the magnetic refrigerant is passed to the regenerator fluid. In
isothermal demagnetization (C–D), at a constant operating temperature TC, the magnetic
field drops from H1 to H0, in which the temperature of the fluid is reduced due to the
magnetic refrigerant absorbing heat from the lower generator’s fluid. The final stage
is isofield heat absorption (D–A). A constant magnetic field of H0 exists and the heat is
absorbed by the regenerator fluid. The absorbed heat (qc), rejected heat (qr), work (w), and
COP can be evaluated as:

qc =

D∫
C

TdS = TC(SD − SC) (10)

qr =

B∫
A

TdS = TH(SB − SA) (11)

w =−qr − qc = TH(SA − SB)− TC(SD − SC) (12)

COP =
qc

w
=

Tcold(SD − SC)

TH(SA − SB)− TC(SD − SC)
(13)

Diguet et al. [56] assessed the efficiency of a magnetic refrigeration system, operated
according to the Ericsson cycle, using a GdxDy1−x alloy as a working substance. The
results showed that the material with the lowest x composition exhibited low net cooling
amounts and high COP. Furthermore, the efficiency of a regenerative Ericsson refrigeration
cycle that used a magnetic composite as the working material was investigated by the
same authors [56]. They found that the composite materials had better thermodynamic
characteristics than metallic compounds and the COP of the composite was close to the
Carnot COP [57]. Kitanovski et al. [58] reported that the Ericsson cycle could be operated
with high performance. However, the optimum cooling capacity may be achieved for
the Brayton cycle. The Carnot cycle was less effective than the other two cycles. The
performance of regenerative magnetic refrigeration operated by the Brayton and Ericsson
refrigeration cycles using Gd and Gd0.87Dy0.13 as the operating substances was investigated
by Diguet et al. [59]. The regenerative losses could be reduced, and the best starting and
final magnetic field values were chosen. The Gd0.87Dy0.13 presented better thermodynamic
properties than Gd at low temperatures. The regenerative Ericsson refrigeration cycle
was investigated by Xu et al. [60] using GdxHo1−x alloys with different x values. In a 2 T
magnetic field, the findings showed a large temperature range of 28 K, a strong net cooling
quantity of 1.008 kJ/kg, and a large COP of 9.01. Plaznik et al. [61] stated that the Ericsson
and/or the combined Brayton–Ericsson cycles with an active magnetic regenerator were
more efficient than the standard Brayton cycle, depending on the selected cooling device.
This was attributed to the low-pressure drop and the low volume of magnetic work.
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3. Magnetic Refrigeration Performance

A magnetic regenerator’s output is largely determined by its design, which has a
direct effect on its operation [21,28]. The energetic equivalent heat flows can be used to
calculate the minimum quantity of work input as follows:

ExQ = Q
(

To

T
− 1
)

(14)

where Q is the heat transfer rate at a given temperature (T) from a reservoir, To is the
ambient temperature, and ExQ is the exergy transfer rate. This equation was used in a
reversible refrigerator with two temperature reservoirs (TH and TC).

The exergetic cooling power derived when the ambient temperature is the same as the
temperature of the hot reservoir, and it can be determined by:

ExQ = Qc
(

TH
TC
− 1
)

(15)

The efficiency (ï) is given by:

ï =
ExQ

W
= COP

(
TH
TC
− 1
)

(16)

The specific cooling power is used to compare the efficiency of various magnetic
regenerator designs.

As the effective cooling capacity is recorded as a function of the applied magnetic
field, B◦, and the total volume of refrigerant used, VMCM, the major variations among
active magnetic regenerator devices can be depicted. In general, the no-load temperature
span and the cooling capacity increase as the magnetic field strength or refrigerant volume
increases.

The specific exergetic cooling power (µ) is calculated as follows:

µ =
ExQ

B◦ ×VMCM
(17)

where VMCM is the total refrigerant volume in the equipment and B◦ is the magnetic field
applied. Since the temperature spans and cooling capacities are too limited, and hence
costs are too big, new magnet refrigeration prototypes are not compatible with traditional
refrigeration technology. MR efficiency can be improved in various ways [62–64]. These are:
(i) seeking for refrigerants with a higher MCE; (ii) improving permanent magnet materials;
(iii) constructing instruments that can run at higher frequencies, because larger cooling
powers are associated with higher frequencies, and therefore, improved regenerator matrix
geometries will be needed to minimize the pressure drop while sustaining porosity and
heat transfer with minimal axial and eddy current losses; (iv) using various alloys or
layers of different materials instead of one particular substance to optimize the properties
in conjunction with a regenerator; and, finally, (v) enhancing control strategies to better
adapt the operating parameters to the power demand without sacrificing performance.
Bjørk et al. [65] and Engelbrecht et al. [66] proposed the following techniques to maximize
a magnet’s efficiency for a given flux density: (i) using as few magnets as possible; (ii)
the magnetocaloric volume should be maximized; (iii) in the area filled by the magnetic
refrigerant, the magnetic field should be uniform, and the effective space in the magnetic
field should be used; (iv) making use of the magnet at all stages; (v) to achieve the desired
temperature span and cooling power, the flux density in the low flux density area should
be as low as possible; (vi) reducing leakage to the surroundings; (vii) reducing the magnetic
field power requirements; (viii) shielding other electric and mechanical instruments from
the intense magnetic field; and, finally, (ix) increasing the magnetic refrigerant space to
magnetic field space ratio as much as possible. Silva et al. [67] numerically investigated the
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effect of some crucial parameters, such as thermal conductivity, the maximum adiabatic
temperature variation, and heat capacity, on the efficiency of magnetic refrigerators. The
authors found that the temperature span could be improved by increasing the heat capacity
and maximizing the adiabatic temperature difference, the square root of density, and the
reciprocal of thermal conductivity.

4. Magnetocaloric Materials

Several researchers [68–74] have provided detailed reviews of the classes and prop-
erties of magnetocaloric materials. The details of previous literature data will not be
mentioned in this work in order to preserve the manuscript length. However, the main
highlights from related works will be mentioned in this section. For additional informa-
tion, the readers are recommended to consult the original works cited in this section. In
the work of Gschneidner and Pecharsky [68], the 4f lanthanide metals’ magnetocaloric
characteristics, 3D transition metals, and mixed lanthanide—3D transition metal materials
(including their alloys and compounds) were reported. Furthermore, the MCE properties
of giant Gd5(SixGe1−x)4 phases were discussed by [68,69]. According to Zarkevich and
Zverev [69], the known magnetocaloric materials are composed of a finite set of elements
including Cr, Dy, Mn, Gd, Fe, Ho, Ni, Eu, Tb, Sm, Er, and Tm. Ram et al. [70] executed
a comparative evaluation focusing on the magnetocaloric properties of certain materials,
such as glass ceramics, ferromagnetic perovskites, spinel ferrites, and oxide-based compos-
ites. The characteristics of magnetocaloric materials with a Curie temperature close to room
temperature, used for high-performance refrigeration devices, have been investigated by
Smith et al. [71]. Phan and Yu [72] provided a thorough understanding of ferromagnetic
perovskite manganites that are a new class of magnetocaloric compounds (R1-xMxMnO3,
where R = Pr, Nd, and La and M = Sr, Ca, Ba, etc.). The magnetocaloric materials can be
classified based on the type of magnetic order as paramagnets (non-magnets) and ferro-
magnets [69,71]. The paramagnetic state exhibits no net magnetization because the atomic
magnetic moments (Ma) are zero [73]. However, the ferromagnetic state is characterized
by the existence of spontaneous magnetization regions within the material, i.e., the net
magnetization (M) is not zero [75]. The ferromagnetic materials are categorized based on
the order of the transition as follows: (i) second-order materials have a classic second-order
ferromagnetic to paramagnetic transformation at a certain temperature (Tc), under which
the magnetization goes to zero gradually as the temperature approaches Tc; and (ii) the
magnetization of first-order materials switches abruptly at a certain temperature, releasing
latent heat in the process [68,69,71]. The selection criterion of a magnetocaloric material as
a refrigerant can be defined as follows, taking into account the magnetocaloric quality of
existing materials [72]:

• Materials with a high adiabatic temperature and a large magnetic entropy change.
• Materials with a high magnetic entropy density, as well as ferromagnets with high

effective magnetron numbers, are preferred.
• Materials with a low lattice entropy (i.e., Debye’s high temperature), which may be

excellent candidates for use as magnetic refrigerants at room temperature.
• Materials of a Curie temperature in the 10–80 K temperature range or >250 K. In the

entire temperature spectrum of the cycle, a major magnetic entropy change can be
achieved.

• Near-zero magnetic hysteresis materials, which regulate the magnetic refrigerant
material’s working performance.

• Materials with a limited thermal hysteresis are used to control the ability of a magnetic
refrigerant material’s MCE to be reversed.

• Materials with high thermal conductivity and low specific heat, which are essential
for effective temperature change and fast heat transfer.

• High-electric-resistance materials.
• Materials with a high chemical stability.

The cost is an additional measure that controls a material’s selection as a refrigerant.
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5. Magnetic Refrigeration Design

A comprehensive review of different magnetic refrigeration designs is presented in
this section.

5.1. Rotary Magnetic Refrigeration Design

A magnetic refrigerator with rotary permanent magnets named 8-Mag was inves-
tigated experimentally by Aprea et al. [76], as depicted in Figure 3. It used 1.20 kg of
gadolinium and worked at 296 K. It was made up of a Halbach array with average and
peak flux densities of 1.10 T and 1.25 T, respectively. Gadolinium spheres with a total
refrigerant mass of 1.20 kg were used in eight radially positioned regenerators. The ex-
perimental findings revealed that at 296 K, a maximum temperature span of 11.9 ◦C was
achieved under zero-load tests, a 6.0 L min−1 volumetric flow rate, and a 0.93 Hz cycle
frequency (ƒ). However, a maximum COP of 2.5 was obtained under a thermal load of
200 W, a 5.0 L min−1 volumetric flow rate, and a 0.38 Hz cycle frequency. A rotary magnetic
refrigerator consisting of a stationary magnet device and a rotating AMRR was built by
Tusˇek et al. [77], as displayed in Figure 4. The system can be described as follows: (i)
The drum rotates externally positioned stationary permanent magnets and an internally
positioned stationary soft iron core. (ii) A magnetic circuit with magnetocaloric material
in both the inner and outer circuits is sandwiched between two frames made up of four
permanent NdFeB magnets with high flux intensities, four low flux density regions of
low-carbon steel (grade 1010), and two magnetic circuits that allow the AMRRs to rotate.
(iii) In the rotary drum, 34 AMRRs are used, each of which has a 10 mm × 10 mm × 50 mm
Gd plate with a total mass of 600 g. (iv) The magnetic field amplitude varies from 0.05 T to
0.98 T, with a peak remanence of 1.27 T at four times the volume of the high flux density
regions (48 × 10 × 55 mm3), and works at a frequency of 4 Hz upwards. Engelbrecht
et al. [78] used a concentric Halbach cylinder magnet arrangement to model and install a
rotary AMRR with a 2.8 kg of Gd, as displayed in Figure 5. After working at a temperature
range of around 0 K, they were able to achieve a cooling capacity of about 1 kW. Bohigas
et al. [79] proposed an eight-rectangular rotating magnetic refrigeration pattern in which
the magnets remain immovable as the magnetocaloric material rotates in and out of the
high flux density field. Four rectangular magnets are mounted on the inside of the spinning
disk and four are placed on the outside of the wheel, as shown in Figure 6. A value of 0.5 T
is produced in this design. Lozano et al. [80] experimentally investigated the rotary active
magnetic refrigerator depicted in Figure 7. The magnetic refrigeration device is made
up of 24 regenerators loaded with Gd spheres that rotate inside a four-pole permanent
magnet with a 1.24 T magnetic field. At an operating frequency of 1.5 Hz and a volumetric
flow rate of 400 L/h, they revealed that a cooling power of 200 W was provided at a
temperature span of 16.8 K with a 0.69 COP and a 5% overall second-law performance. At a
cooling capacity of 400 W and a temperature range of 1.5 K, the maximum COP of 1.62 was
achieved. Tura and Rowe [81] suggested rotary magnetic refrigeration, in which a magnet
rotates to change the flux density while the magnetocaloric material remains stationary. As
presented in Figure 8 [82], the magnet is made up of two independent magnets, each of
which is made up of two concentric Halbach cylinders. The characteristics of this design
can be summarized as follows: (i) permanent magnets of NbFeB were used with a gross
volume of 1.03 L to produce the magnetic flux in the range of 0.1–1.4 T; (ii) the operating
frequency was around 4 Hz with the Pfield parameter of 0.5; and (iii) it was possible to reach
a maximal temperature span of 13.2 K. The impact of working at a higher frequency on
the output of a spinning active magnetic refrigerator with 2.8 kg Gd regenerator-filled
spheres was investigated by Lozano et al. [83]. The findings showed that at 2.25 Hz, the
maximum temperature period of 18.9 K with 200 W of cooling power was reached at
operating frequencies up to 10 Hz and volumetric flow rates up to 600 L/h. A Y-shaped
rotating magnet design was suggested by Zimm et al. [84], as displayed in Figure 9. The
high flux density area spanned a 60◦ angle on both sides of the design. With a total volume
of 4.70 L, this configuration consists of a wheel with six-bed Gd powder regenerators. The
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mean flux density was 1.5 T and the strong flux density field had a volume of 0.15 L. The
operating frequency was between 0.16 and 2 Hz, the temperature difference between the
cold and hot sources was from 4 to 20 ◦C, and the cooling capacity ranged from 50 to
100 W. Kirol et al. [85] designed a rotary magnetic refrigerator based on Ericsson’s cycle.
Permanent magnets of the NdFeB kind were used to generate a maximum magnetic field
of 0.9 T in the air gap at a maximum span temperature of 11 K. As the magnetocaloric
material, the rotor was made up of a 270 g flat gadolinium disk. Okamura et al. [86]
proposed a duct rotating the magnetic refrigerator, as displayed in Figure 10, between
the inner and outer structures. The magnetocaloric substance is mounted in four ducts.
The following are the key characteristics of this design: (i) A magnet of 3.38 L with a flux
density area of 0.80 L had a mean flux density of 1.0 T. (ii) The actual Pfield parameter was
found to be 0.66. (iii) The outer design diameter was 27 cm and the length was 40 cm.
There were four blocks in the bed regenerator, each made from a different GdDy alloy. (iv)
Permanent magnets were rotated to create a magnetic field with a maximum field of 0.77 T
and a cooling power of about 60 W. A six-layer rotary magnetic refrigerator using LaFeSiH
particles was built by Jacobs et al. [87]. This prototype generated 3042 W of cooling power
at 0 ◦C and 2502 W with a COP of about 2 at temperatures ranging from 32 to 44 ◦C. The
8-Mag magnetic refrigerator with a rotating permanent magnet (RPMMR) was developed
by Aprea et al. [88]. Gadolinium was chosen as the magnetic refrigerant and arranged in a
Halbach series. It was possible to obtain a maximum magnetic flux density of 1.25 T and
an average flux density of 1.10 T. The overall mass of the gadolinium used was 1.20 kg, and
eight regenerators were used. Under no thermal load, a maximum temperature span of
11.3 ◦C could be achieved. At 163 W and TH = 22 ◦C operating conditions of heat load, a
maximum COP of 1.8 was achieved by this design.
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5.2. Reciprocating Magnetic Refrigeration Design

The majority of reciprocating designs use a superconducting magnet and run at a low
frequency. The revolving designs, on the other hand, provide a higher operating frequency
and permanent magnets [65]. Gómez et al. [89] designed a permanent reciprocating
magnetic refrigeration system, as depicted in Figure 11. In a magnetic field of 1 T, 180 g of
Gd was used as a magnetocaloric refrigerant, resulting in a maximal temperature range
of 3.5 K under no thermal load. Experimentally, the maximum cooling power of 3W was
achieved over a temperature range close to 0 K. A reciprocating magnetic regeneration
with a magnetic field source, provided by 16 blocks of a permanent Halbach magnet, was
proposed by Engelbrecht et al. [90]. This design can be described as follows: (i) The cylinder
has a 21 mm inner radius, a 60 mm outer radius, and a 50 mm length. (ii) With a magnet
volume of 0.50 L, the magnetic flux density is around 1.03 T. (iii) The remanence of the
Halbach cylinder’s magnets is 1.4 T. (iv) The Pfield parameter for the proposed configuration
is 0.5. Zheng et al. [91] designed a reciprocating magnetic refrigeration system with two-bed
permanent NdFeB magnets at room temperature, as presented in Figure 12. The magnetic
operating material was gadolinium particles, and the active magnetic refrigeration bed
was made of a stainless steel 304 container. The magnetic flux was optimized by changing
the geometry of the magnetic structure using finite element method magnetic (FEMM)
simulation. Based on the FEMM analysis, the mean magnetic flux density was 0.75 T and
the magnet had a volume of 0.5 L, while the high flux density field had a volume of 0.09 L.
Pfield was estimated to be 0.60. The optimum structure demonstrated that the weight of
the permanent NdFeB magnet could be decreased by about 40%. Kim and Jeong [92]
suggested another reciprocating magnetic refrigeration device, as displayed in Figure 13.
The description of this design is summarized as follows. (i) Gd was chosen as the magnetic
refrigerant and it consisted of 16 segmented Halbach cylinders with a reciprocated single
bed of magnetocaloric material into a cylindrical bore; (ii) the dimensions of the inner
diameter, outer diameter, and length of the cylinder were 8 mm, 38 mm, and 47 mm,
respectively; (iii) the volume of the high flux density field was 0.01 L, while the magnet
volume was 0.20 L; (v) the flux densities at the bore and the edge were 1.58 T and 1 T,
respectively, for an average flux density of 1.4 T and Pfield = 0.5. Trevizoli et al. [93] tested a
system with a reciprocating linear movement of the Halbach cell, as displayed in Figure 14.
The peak temperature difference between the regenerator’s hot and cold ends was 4.4 K.
The operating frequency was 0.14 Hz, with a hot source room temperature of 296.15 K, and
the overall cooling power of 3.9 W using Gd as the magnetocaloric material. Tagliafico
et al. [94] also suggested a linear reciprocating magnetic refrigerator. This design is made up
of 10 magnets arranged in a rectangular shape, in which the magnets were stationary in the
center of the system and the magnetocaloric material was moving. The main characteristics
of this design are: (i) the high flux density zone had a volume of 0.07 L and a flux density
of 1.55 T for the slots in the core of the device; (ii) a magnet weighing 5 kg was used,
corresponding to a volume of 0.68 L; and (iii) the Pfield optimal parameter was calculated
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to be 0.95. Balli et al. [95] demonstrated a pre-industrial linear reciprocating movement
prototype with an MR device at room temperature, as displayed in Figure 15. Two 1.45 T
fixed permanent NdFeB magnetic sources and 800 g of Gd were used in the prototype.
They seemed to have a cooling capacity of 80 to 100 W and a temperature range of 20 K.
Lu et al. [96] constructed a reciprocating system consisting of two magnetocaloric material
beds. The device consisted of 16 magnetic Halbach cylinders with 15 mm and 70 mm inner
and outer radii, respectively. The main properties of this design are: (i) the flux density
produced was 1.4 T; (ii) the cylinder was 200 mm long; (iii) the magnet had a volume of
2.94 L and the high flux density field had a volume of 0.14 L; and (iv) the Pfield parameter
for this device was 0.5. Bour et al. [97] constructed a reciprocating magnetic refrigeration
prototype, as shown in Figure 16. The main properties are: (i) The AMRR bed was made up
of 37 gadolinium plates with a thickness of 0.6 mm. The heat transfer fluid channels were
spaced 0.1 mm and 0.2 mm apart. (ii) The Halbach arrays were made up of three 50 mm
thick NdFeB magnet sets that generated a magnetic field strength between 0.8 and 1.1 T in
the air gap. (iii) A maximum temperature span of 16.1 k was achieved. Lei et al. [98] tested
a reciprocating magnetic refrigerator working with five-layer epoxy-bonded AMRR in the
form of spherical La(Fe, Mn, Si)13Hy particles. The results showed that at a temperature
span of 9.5 ◦C, the regenerator could reach a peak no-load temperature span of 16.8 ◦C
and had 5.7 W of cooling capacity. Li et al. [99] developed a 2D computational model of a
reciprocating active magnetic regenerator at room temperature. The effect of heat transfer
via the regenerator wall was introduced by the authors. This model could forecast the
AMRR’s efficiency under various operating conditions.
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Figure 12. A reciprocating two-bed magnetic refrigeration system was proposed by Zheng et al. 

[91]. The arrows show the magnets’ magnetization orientation. 

 

Figure 13. A reciprocating magnetic refrigeration device developed by Kim and Jeong [92]. 

 

Figure 14. The Halbach cell was proposed by Trevizoli et al. [93] to move in a reciprocating linear 

motion. 

1 2

 
3 

4 
5 

10 9 8 

6 

7 

16 

11 
12 

13 

14 

15 

Figure 12. A reciprocating two-bed magnetic refrigeration system was proposed by Zheng et al. [91]. The arrows show the
magnets’ magnetization orientation.



Energies 2021, 14, 4662 16 of 26

Energies 2021, 14, 4662 16 of 26 
 

 

Figure 11. A reciprocating magnetic refrigeration prototype developed by Gómez et al. [89]. 
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Figure 16. A prototype of a magnetic refrigeration system with reciprocating movement was proposed by Bour et al. [97].

5.3. C-Shaped Magnetic Refrigeration Design

A C-shaped magnetic system with a strong homogenous magnetic flux intensity in
the core was studied by Lee et al. [100], as demonstrated in Figure 17. One of the horizontal
segments of an eight-segmented Halbach cylinder has been omitted in this configuration.
Based on the FEMM simulation, a magnetic flux density of 2.1 T was generated in the high
flux field. Vasile and Muller [101] suggested another C-shaped arrangement of rectangular
magnetic parts, as displayed in Figure 18. This configuration comprised revolving magnets
arranged in a circle with magnetocaloric material inserts. The cross-sectional area of these
magnets was 9.2 L/m, with a high field difference of 0.75 L/m. This arrangement produced
an average flux density of 0.8 T and was expected to have a Pfield of 0.90. Alahmer [102]
suggested a magnetic refrigeration system in the form of a spinning C-shape near room
temperature. This design is made up of 20 sets of permanent magnets, each measuring
37 mm× 22 mm× 10 mm. To direct the flux lines and create the “C” form seen in Figure 19,
16 parts with a soft material frame were used. The remaining four parts were used in the
heat transfer fluid’s fixed shell under the spinning wheel of magnetocaloric material (two
pieces are in the fixed case and the remaining two pieces are placed outside the case). It
was possible to achieve a mean flux density of around 0.6 T in the high flux region and a
value of 0.02 T in the low flux region.
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From the previous analyses of magnets designs using the FEMM program, the fol-
lowing points must be taken into consideration: (i) it is important to use a soft material to
direct the flux lines in a certain area where the magnetocaloric material would be mounted;
(ii) the design of the magnet must provide as a low volume of air gap as possible; (iii) the
arrangement of the magnetic pieces (the direction of magnetization) in a manner to provide
a maximum flux (lines) density in the magnetocaloric material region is recommended.

5.4. Active Magnetic Regenerative Refregeration (AMRR)

Tušek et al. [103] experimentally investigated the magnetic refrigeration device shown
in Figure 20, which basically consists of three components: the AMRR is located in the
center of the hub, and the magnet assembly is made up of four Nd2Fe14B-type permanent
magnets with a combined energy product of 50 MGOe, as well as a soft ferromagnetic
material. The magnetic flux density in the magnetization region is 1.15 T, while the magnetic
flux density in the demagnetization area is 0.007 T, and the factor Λcool is 0.064. The highest
temperature span (19.8 K) was achieved with a 0.3 Hz operating frequency and a cooling
power of 0 W. Trevizoli et al. [104,105] assessed the output of an AMRR, which used a
nested Halbach cylinder magnetic circuit to generate a maximum magnetic flux density
of 1.69 T, as presented in Figure 21. Different operating frequencies of 0.25, 0.5, and 1 Hz
were used to set the operating AMRR frequency. The utilization factor was varied between
0.14 and 1.15. At a zero-temperature span, the overall cooling power was 53.7 W, with a
utilization factor of around 0.77 and a frequency of 1 Hz. The highest temperature span
achieved was 30 K. With an operating frequency of 0.25 Hz and a utilization factor of 0.77,
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the maximum COP of 4.6 was obtained. Trevizoli et al. [106] studied different regenerative
geometries; namely parallel plates, pin sets, and packed spheres on the performance of
active magnetic regenerators. They discovered that the maximum temperature spans of
the parallel plates were often smaller and performed worse than the other geometries,
particularly at high frequency and utilization factors. Thermal behavior was much better
with the pin sets and lined beds of spheres than parallel plates. Legait et al. [107] stated
that it is critical to know the heat transfer changes that occur in the regenerator, as well as
the impact of the magnetocaloric material’s intrinsic properties, in order to maximize the
performance of the AMRR. Lei et al. [108] simulated a one-dimensional numerical model to
select and optimize the AMRR’s geometry. Five regenerator geometries, namely a parallel
plate framework, a bundled screen bed, a bundled sphere bed, a rectangular micro-channel
layer, and a circular micro-channel sequence, were suggested. The use of parallel plates
and micro-channel matrices yielded the highest theoretical efficiency. On the other hand,
the packed screens and the packed sphere beds were better for realistic applications. To
examine the AMRR, Allab et al. [109] established a 1D time-dependent model. The authors
did not consider the diffusion phenomenon along the bed. Only the convective exchanges
at the fluid–regenerator interface were taken. The finite-difference method was used to
numerically simulate the model in order to compare its results with the experimental data.
The analytical model was quite reliable regarding the thermal phenomenon. Except for
small fluid flow rates, where axial heat conduction in the Gd was no longer negligible, the
model demonstrated good agreement with experimental observations. Roudaut et al. [110]
modified the model and utilized it to undertake a parametric study of a parallel plate AMRR.
Aprea et al. [111] developed a two-dimensional (2D) multiphysics model to numerically
describe a packed bed of rectangular regenerator filled with magnetocaloric material
spheres operating at room temperature as an AMRR cycle. Experiments of zero load at
different cycle frequencies and heat removal temperatures were carried out. The simulation
findings showed an excellent match to the experimental data. Scarpa et al. [112] proposed
a classification for magnetic refrigerators at room temperature according to the magnetic
sources, magnetocaloric materials, and the motion of the active elements of the device. This
classification was according to 12 different criteria, marked on a scale from 1 to 12.
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6. Cost Analysis

A cost assessment of the experimental configuration of a magnetic refrigeration system
is needed to determine whether this device is viable for commercial use or not. The
magnetic refrigeration system would be unable to compete with the traditional refrigeration
systems if its cost was very high. The primary capital expense study concerns the following:
(i) the strength of the magnetic field and (ii) the quantity of the magnetocaloric substance.
The cost estimation was carried out on the basis of three factors: (i) initial investment; (ii)
ongoing maintenance; and (iii) the ongoing running costs. Bejan et al. [113] established
a logical way of costing energy flows using exergy balances. As a result, the costs of
the output exergy sources can be determined. Permanent magnets and superconducting
magnets are distinguished by the following characteristics: (i) the output of the field
strength and (ii) the quantity of permanent magnet or superconducting material used
divided by the volume of the high field region [114,115]. If the COP is in the range of
1.6–2.6, the specific exergetic cooling power for a given application must be between 400
and 1000 W/L.T. If the COP were increased, the system must be more expensive and have
a lower real exergetic capacity [19].

Several feasibility studies on magnetic refrigeration technology have been carried
out. As a function of the optimal temperature span and cooling capacity, Bjørk et al. [116]
calculated the lowest cost of the magnet and magnetocaloric material needed for a magnetic
refrigerator with parallel plates and packed Gd sphere bed regenerators and the Halbach
cylinder. Furthermore, the authors stated that by increasing the frequency of the AMRR,
the cost can be minimized. Kitanovski [117] studied the cost analysis of rotary magnetic
refrigeration with different operating conditions, magnetocaloric regenerators, and operat-
ing working fluids. They [117] stated that the magnet assembly takes about 85–90% of the
magnetic refrigeration’s total cost. Moreover, to reduce the cost and improve the efficiency
and cooling power, the magnetic processes should be optimized as: thermodynamic cycles,
magnet design, regenerator design, and working fluids.

7. Conclusions

This study described magnetic refrigeration systems that include the most important
design aspects for the generation of cooling systems. These systems are categorized into
four main groups: rotating designs, reciprocating designs, C-shaped design, and active
magnetic regenerators. The main findings in this manuscript can be summed up as follows:

• While magnetic refrigeration is a highly effective and environmentally friendly refrig-
eration system, it still requires development in several areas before it can be used in
a broad variety of applications, such as domestic refrigerators and air conditioners,
since it has a limited temperature span and cooling capability.

• The cooling potential of magnetic refrigeration is determined by the magnitude of its
MCE.
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• The cooling effect would be improved if the magnetocaloric material (MCM) volume
or the magnet volume were increased.

• The value of ∆SM is a significant factor that contributes to the productivity of the
material. Thus, the focus in the material choice is on having a large ∆SM around Tc
when it is in a magnetic field, such as in the ferromagnetic materials.

• The most important factors in achieving the best model design are low cost, a high
temperature span, and small-scale design.

• It could be argued that there is no optimal design, because no design has achieved all
the required targets. The best design’s performance was five times higher than that
of the worst design. The magnetic refrigeration was affected by many parameters:
(i) the intensity of the magnetic field, as the superconducting magnet can provide
a higher magnetic field to the system; (ii) the state of the magnetocaloric materials
used in the system (magnetic elements as low as 1 to 20 nm scattered across the
material modify the material’s susceptibility to a magnetic field), e.g., through using
Gd powder; a permanent magnet provides the required cooling power; (iii) as the
purity of the magnetocaloric material increases, smaller quantities are needed to give
the required cooling power due to interstitial impurities, especially carbon; (iv) the
design of the refrigerator (e.g., the rotary design has greater refrigeration efficiency
than other designs); and (v) the magnetocaloric effect of a material will be strongly
affected by adjusting the composition of the magnetic alloy.

From the previous studies and reviews, some points must be taken into consideration
for future research:

• The first problem facing this technology is the production of a strong magnetic field
at low cost. Therefore, the best choice is a permanent magnet configuration to pro-
vide the necessary magnetization region in a smart design inspired by the previous
recommendations and tests.

• Improving the design of a magnetic refrigeration system will ensures the best behavior
of fluid flow and heat transfer rates. To get the maximum coefficient of performance,
the operating conditions, such as frequency, rotation speed (if the rotary design is
used), magnetization time, cyclic time and the time to accomplish a steady-state
condition, must be taken into account. Noting that when a regenerator is added, the
efficiency of magnetic refrigeration will be enhanced.

• Discovering a novel magnetocaloric material with a large magnetocaloric effect at
room temperature and under a mean magnetic flux strength of about 2 T (generated
by a permanent magnet) is important.

The first two points are minor problems, while the last one is a major problem,
because large magnetocaloric effects are possessed by rare earth materials. Researchers
must provide available, cheap, and economically feasible materials to make this technology
revolutinary in the field of refrigeration.
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Nomenclature

Variable Definition Units
AMRR Active magnetic regenerative refrigeration -
B Magnetic field strength T
B◦ The magnetic field applied T
∆B Variation of the magnetic field T
C Operating magnet’s refrigerant heat capacity J·m−3

CFC Chlorofluorocarbons -
COP Coefficient of performance -
ExQ Exergetic cooling power W
ƒ Frequency Hz
FEMM Finite element method magnetic -
H Magnetic field A·m−1

LCA Lifecycle assessment -
M Refrigerant’s magnetization A·m−1

Ma Magnetic moment -
MC Magnetocaloric material -
MCE Magnetocaloric effect -
MCM Magnetocaloric material -
MR Magnetic regenerator -
ï Efficiency -
Pfield Fraction of the AMR cycle when the magnet is in use -
Q Heat transfer rate W
qc Absorbed heat; cooling load J
qr Rejected heat J
RPMMR Magnetic refrigeration with a rotating permanent magnet -
S Entropy kJ·kg−1·K−1

SCP Specific cooling power W·kg−1

∆Sm Magnetic entropy transition -
T Temperature K
Tc Cold temperature K
TC Curie temperature K
TH Hot temperature K
∆Tad Adiabatic temperature difference K
µ Specific exergetic cooling power W·T−1·L−1

VMCM Total volume of refrigerant used L
W Work input J
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