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Abstract: Magnetic couplings (MCs) enable contactless speed/torque transmission via interactions
between the magnetic fields of permanent magnets (PMs) rather than a physical mechanical connec-
tion. The contactless transmission of mechanical power leads to improvements in terms of efficiency
and reliability due to the absence of wear between moving parts. One of the most common MC topolo-
gies is the coaxial type, also known as the radial configuration. This paper presents an analytical tool
for the accurate and fast analysis of coaxial magnetic couplings (CMCs) using a two-dimensional
subdomain approach. In particular, the proposed analytical tool resolves Laplace’s and Poisson’s
equations for both air-gap and PM regions. The tool can be used to evaluate the impact of several
design parameters on the performance of the CMC, enabling quick and accurate sensitivity analyses,
which in turn guide the choice of design parameters. After discussing the building procedure of
the analytical tool, its applicability and suitability for sensitivity analyses are assessed and proven
with the analysis of a fully parameterized CMC geometry. The accuracy and the computational
burden of the proposed analytical tool are compared against those of the finite element method
(FEM), revealing faster solving times and acceptable levels of precision.

Keywords: analytical method; magnetic coupling; contactless torque transmission; finite element
method; magnetic field; permanent magnet; Laplace’s equation; Poisson’s equation

1. Introduction

MCs are used in applications where contactless torque/speed transmission is achieved
by exploiting the magnetic interaction between both sides of the coupling. Contactless
torque/speed transmission delivers substantial advantages in terms of low maintenance
requirements, high efficiency, thermal isolation, and overload protection [1–3]. Further-
more, the absence of physical contact allows the blockage or separation of the magnetic
connection between prime mover and load sides [4]. Thus, the power transmission can
be inhibited in case of failure, providing inherent overload protection that allows for safe
operation under excessive load conditions, which might otherwise lead to catastrophic
failures. Although MCs possess significant advantages over existing mechanical couplings,
research is still ongoing, and care is required in their design and operation [5,6]. They
may need soft staring conditions or very low inertia systems to avoid critical speeds and
prevent rotor resonance, which would lead to excessive torsional loading [7,8]. Therefore,
it is critical to ensure appropriate torque capacity is achieved in MCs by analyzing their
design parameters in a fast and accurate manner.

One of the most effective numerical analysis methods, the finite element method
(FEM), is widely used in rotating electrical machine design [9] and similar fields [10].
Currently available commercial software (e.g., MagNet, Flux, ANSYS, COMSOL, JMAG,
etc.) enables the resolution of complex models for performance analysis of electrical motors,
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generators, MCs and magnetic gearboxes. Some of them feature more advanced coding
with improved discretization of models such as meshing with h-adaptive elements and by
considering elements up to the fifth order [11,12]. FEM allows accurate computation of
air-gap field and torque [13–16]. However, in cases where a study needs to be evaluated
with a wide range of size parameters, the FEM becomes more complex and time consuming
than evaluating by analytical methods [17,18]. Therefore, analytical methods are helpful
analysis tools for the first step of the design process (i.e., trade-off studies and sensitivity
analyses) as they can be used to rapidly obtain a solution. Previously, the COMPUMAG
TEAM benchmark problem 30a is solved by analytical method. The method is suggested
due to challenges that finite element approaches were not capable of resolving with respect
to rotational induced eddy currents [19]. The problem was later solved by the boundary
element method and by the time-harmonic FEM [20]. A two-dimensional (2D) analytical
model by subdomain analysis was introduced by Thierry et al. [21]. The model was
developed for an axial MC for an exact analytical solution of the magnetic field distribution
and electromagnetic torque. Due to model simplifications in changing the geometry from
3D to 2D by considering an unrolled cylindrical cutting surface, the torque results see
a significant mismatch with the experimental results. However, the analytical approach
discussed in [21] is suitable for the preliminary design and sizing of an axial MC. In [22],
the MC detailed in [21] is investigated to observe its steady state and transient performance.
The experimental study of same axial MC is debated in [23] along with the investigation
on the effects of misalignment between the motor and load side of the MC. In [24], one side
of the axial MC is replaced with copper material to develop an axial-field eddy-current
coupling. The resulting eddy currents are analytically evaluated using a 2D model. The
research on the axial-field eddy-current coupling is further improved by introducing the
3D analytical method in [25].

The mentioned papers, i.e., [21–25], show that in the literature there is a relatively
high availability of research on MCs featuring an axial configuration, although the same
cannot be asserted for the coaxial topology. The first considerable study on the coaxial
configuration was presented in [26], where the static torque distribution of the CMC is
plotted by considering different numbers of pole pairs. Furthermore, the effects of the
air-gap thickness on the CMC have been investigated through 2D and 3D FEMs in [27] and
the obtained results are compared against experimental findings. Finally, the performance
of the CMC equipped with NdFeB rare earth PMs has been assessed in [28].

For both axial and coaxial MCs [29], the research works available in literature mainly
focus on the performance impact of a single size parameter, although more effective
design choices could be made by taking into account several design parameters, such
as the number of pole pairs, PM thickness, air-gap thickness, etc. To achieve a more
comprehensive preliminary design capability, it would be essential to rely on a fast and
accurate analysis tool.

In response to such a need, the paper introduces a 2D analytical tool capable of
computing both the air-gap field distribution and the transmitted torque in order to assess
the CMC performance. Firstly, the building procedure and the fundamental equations
for the tool are detailed. Then, the analytical tool is used to analyze a variety of size
parameters as would be required during the preliminary design of a CMC. The benefits
of the proposed approach in terms of both computation time and accuracy are evaluated
against FEM outcomes. As expected, the analytical tool features excellent solving time
and its accuracy is more than acceptable for the purpose of a sensitivity study. These two
strengths prove the feasibility and effectiveness of the preliminary design tool.

2. Development and Validation of the 2D Analytical Tool

This section deals with the fundamental equations and the boundary conditions of
each subdomain of the CMC architecture. Once the proposed 2D analytical tool is built, an
arbitrary fully parametric CMC geometry is chosen and validated with results obtained
from the FEM. The analytical method employed in this paper is based on the resolution
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of the Laplace’s and Poisson’s equations in the air-gap and PM subdomains respectively.
Figure 1 outlines the CMC which is comprised of three subdomains. These are the inner
ring and outer ring PM subdomains (region I and III), and the air-gap subdomain (region
II). The numerical values reported in Table 1 refer to the CMC geometry adopted for
comparing analytical and FEM initial outcomes. It should be noted that the parameters
listed in Table 1 are procured from one of the cases detailed in Section 3 and the vector
potentials are solved in polar coordinate.
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Table 1. CMC parameters used in the validation exercise.

Symbol Parameters Values

Ri Back iron inner radius 35 mm
R1 Inner PM inner radius 45 mm
R2 Inner PM outer radius 49 mm
R3 Outer PM inner radius 51 mm
R4 Outer PM outer radius 55 mm
Ro Outer back iron outer radius 62 mm
la Air-gap thickness 2 mm
p Number of pole-pairs 4

lm PM thickness 4 mm
Bm PM openings 95%
lout Outer diameter 50 mm
ls Active part length 50 mm
Br Remanence of PMs 1.29 T

The 2D analytical method is developed under following assumptions [30]:

• End effects are neglected due to the cylindrical geometry.
• Permeability of the back iron is infinite. Hence, the magnetic field is perpendicular to

the back iron.
• Relative permeability of the PMs is taken as 1.
• PMs are radially magnetized.
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For MC PMs, assuming a ferromagnetic material with infinite permeability (i.e., the
magnetic saturation is neglected) is fair, since they do not suffer from the same arma-
ture reaction effect as electrical machines and unlike magnetic gearboxes, the portion of
ferromagnetic material facing the air-gap is limited.

According to the polar coordinate adoption, the vector potentials for each subdomain
have only z-directional components which depend on r and θ (i.e., radial distance and
angle respectively). Thus, the magnetic vector potential for each subdomain is represented
by the following notations.

AI = AI(r, θ) · ez for the inner PM subdomain.

AI I = AI I(r, θ) · ez for the air-gap subdomain.

AI I I = AI I I(r, θ) · ez for the outer PM subdomain.

2.1. Potential Functions

Figure 2 shows the air-gap subdomain and the related boundary conditions. The
general solution of the air-gap region potential function is given by (1).

∂2 AI I

∂r2 +
1
r

∂AI I
∂r

+
1
r2

∂2 AI I

∂θ2 = 0 f or
{

0 ≤ θ ≤ 2π
R2 ≤ r ≤ R3

(1)
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The boundary conditions, which define the behavior of the magnetic fields between
different materials for the air-gap subdomain, are expressed in (2) and (3).

∂AI
∂r

∣∣∣∣
r=R2

=
∂AI I

∂r

∣∣∣∣
r=R2

(2)

∂AI I
∂r

∣∣∣∣
r=R3

=
∂AI I I

∂r

∣∣∣∣
r=R3

(3)

Given the air-gap subdomain boundary conditions, Equation (1) is characterized as
detailed in (4).

AI I(r, θ) =
∞

∑
n=1

(
AI I

n rn + BI I
n r−n

)
cos(nθ) +

∞

∑
n=1

(
CI I

n rn + DI I
n r−n

)
sin(nθ) (4)
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where AI I
n , BI I

n , CI I
n , and DI I

n are the coefficients of the vector potential determined by using
the relationship between the boundary conditions and the potential functions that, for
the sake of completeness, are reported in Appendix A. The potential functions are then
employed to create a Fourier series expansion and determine the coefficients. The notation
n represents a positive integer.

The potential equation for the PM regions is developed by the resolution of the
Poisson’s equation as shown in (5).

∂2 AI,I I I

∂r2 +
1
r

∂AI,I I I

∂r
+

1
r2

∂2 AI,I I I

∂θ2 =
µ0

r
∂Mr

∂θ
f or
{

0 ≤ θ ≤ 2π
R1,3 ≤ r ≤ R2,4

(5)

where AI and AI I I are the vector potentials for the inner and outer PMs, respectively and
Mr(r, θ) is the radial magnetization of the PMs. The magnetization vector is represented
by the expression provided in (6) with µ0 as the permeability of free space and Br as the
remanent magnetization.

→
M =

→
Br

µ0
(6)

In terms of polar coordinates,
→
M is expressed according to (7), where

→
r and

→
θ denote

the direction vectors in the radial and tangential directions, while Mr and Mθ denote the
components’ magnitudes, as depicted in Figure 3.

→
M = Mr ·

→
r + Mθ ·

→
θ (7)
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The PMs in the analytical models are represented with a Fourier series expansion of
their magnetization. As previously mentioned, the magnetization pattern is assumed to be
radial. Different types of magnetization patterns, such as parallel or Halbach array, can be
found in [31,32]. The general solution for the inner PM subdomain is given in (8).

AI(r, θ) =
∞
∑

n=1

(
AI

nrn + BI
nr−n + FI

n(r) cos( nϕI)
)

cos(nθ)

+
∞
∑

n=1

(
CI

nrn + DI
nr−n + FI

n(r) sin( nϕI)
)

sin(nθ)AI(r, θ)
(8)

where AI
n, BI

n, CI
n, and DI

n are the coefficients of the vector potential, ϕI is the initial angle
of the inner PM, and FI

n is defined in (9).

FI
n(r) =


4Br pr

π(1−n2)
i f n = sp, s = 1, 3, 5, . . .

2Brrlnr
π elsei f n = p = 1

0 otherwise

(9)
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For the inner PM region, the boundary conditions are illustrated in Figure 4 while
their mathematical expression is formalized in (10) and (11).

∂AI
∂r

∣∣∣∣
r=R1

= 0 (10)

AI(R2, θ) = AI I(R2, θ) (11)
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Similarly, the vector potential for the outer PM is determined according to (12).

AI I I(r, θ) =
∞
∑

n=1

(
AI I I

n rn + BI I I
n r−n + FI I I

n (r)cos(nϕO)
)
cos(nθ)

+
∞
∑

n=1

(
CI I I

n rn + DI I I
n r−n + FI I I

n (r)sin(nϕO)
)
sin(nθ)

(12)

where AI I I
n , BI I I

n , CI I I
n , and DI I I

n are the coefficients of the vector potential, ϕO is the initial
angle of the outer PM, and FI I I

n is calculated based on (13).

FI I I
n (r) =


4Br pr

π(1−n2)
i f n = sp, s = 1, 3, 5, . . .

2Brrlnr
π elsei f n = p = 1

0 otherwise

(13)

Considering the outer PM region, its boundary conditions are described by (14) and
(15) and visualized in Figure 4 for the sake of completeness.

AI I(R3, θ) = AI I I(R3, θ) (14)

∂AIII

∂r

∣∣∣∣
r = R4

= 0 (15)
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2.2. Flux Density and Static Torque

Knowing the solutions of the vector potential in the air-gap, the corresponding flux
density distribution is determined as in (16) and (17).

BI Ir(r, θ) =
1
r

∂AI I
∂θ

(16)

BI Iθ(r, θ) = −∂AI I
∂r

(17)

Rearranging (16) and (17), the components of the flux density distribution can also be
expressed through (18) and (19).

BI Ir(r, θ) = −
∞

∑
n=1

(
AI I

n
nrn

r
+ BI I

n
nr−n

r

)
sin(nθ) +

∞

∑
n=1

(
CI I

n
nrn

r
+ DI I

n
nr−n

r

)
sin(nθ) (18)

BI Iθ(r, θ) = −
∞

∑
n=1

(
AI I

n
nrn

r
− BI I

n
nr−n

r

)
cos(nθ)−

∞

∑
n=1

(
CI I

n
nrn

r
− DI I

n
nr−n

r

)
sin(nθ) (19)

Finally, the transmitted torque is calculated by using the Maxwell stress tensor method,
as shown in (20), where Ra represents the mean radius for the integration within the
air-gap region.

T =
lsR2

a
µ0

∫ 2π

0
[BI Ir(Ra, θ)BI Iθ(Ra, θ)] dθ (20)

2.3. Validation Exercise

In this subsection, a comparative exercise between the 2D analytical method and 2D
FEM is performed for validation purposes and the obtained results are presented. The
FEM simulations are carried out by using the software package Simcenter MagNet. The
FEM analysis takes the polynomial orders (i.e., p-type adaption) as 2 for all cases in this
paper and magnetic material properties are non-linear. In addition, the mesh refinement
(i.e., h-type adaption) is considered until the maximum relative error is minimized.

The comparative exercise is carried out by taking the values given in Table 1. The
back-iron and PM materials considered in the FEM are laminated silicon steel M530-50A
(grade EN 10106) and NdFeB (Br = 1.29 T) respectively. The mesh edge subdivision is taken
to be uniform. After applying the specified conditions, the flux lines and flux density map
resulting from the 2D FEM are plotted in Figure 5. The highest magnetic saturation level is
observed at the maximum torque point, which is an unstable operating point (small torque
variations will cause slip in magnetic couplings). Under actual operating conditions, the
magnetic coupling will transfer torque at a non-zero shift angle, therefore the transmitted
toque is lower than the maximum torque. However it will feature a higher stability
margin and a lower magnetic saturation level. For this reason, the assumption of infinite
permeability is consistent with the actual operation conditions of the magnetic coupling.
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Figure 5. Flux density distribution and flux lines at the maximum torque point.

At the maximum torque point, the local magnetic saturation mainly occurs near the
PM edges (see Figure 5), while the air-gap magnetic field is not significantly affected by
the magnetic saturation. In fact, a good match between 2D FEM and analytical results
is obtained when the radial (i.e., Figure 6) and tangential (i.e., Figure 7) components of
the flux density distribution in the air-gap are evaluated. Due to the magnetic saturation,
the mismatch between 2D FEM and 2D analytical results in Figure 8 increases when the
PMs are not aligned (i.e., the shift angle is non-zero and the maximum static torque is
transferred). Indeed, a more significant local magnetic saturation is observable at the PM
edges (see Figure 5) when the maximum static torque equilibrium point is considered. The
relatively low error values for both flux density components and static torque prove the
effectiveness of the 2D analytical tool.
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3. Sensitivity Analyses and Computational Time Evaluation

Following validation of the 2D analytical tool in Section 2, its performance is further
evaluated in terms of the required computational time compared to the FEM. It is worth
pointing out that the accuracy evaluation (see Section 2.3) was performed considering
the parameters listed in Table 1, while the computational time investigation is carried out
based on the different CMC geometries whose parameters are given in Table 2. Indeed,
different size parameters are selected and varied to emulate a sensitivity analysis typical
of the preliminary design. In particular, the effects of the design parameters, such as pole
pairs number, PM thickness, and the outer diameter of the CMC, on the computational
time are analysed.
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Table 2. Parameters of the CMC considered during the sensitivity analysis.

Symbol Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Ri (mm) 35 35 35 35 150 150 35
R1 (mm) 45 45 45 45 200 200 45
R2 (mm) 49 49 49 49 220 230 49
R3 (mm) 51 51 53 57 224 234 51
R4 (mm) 55 55 61 61 244 264 55
Ro (mm) 62 62 68 68 294 314 62
la (mm) 2 2 4 8 4 4 2

p 4 16 8 8 8 8 2–30
lm (mm) 4 4 4 4 20 30 4
Bm (%) 95 95 95 95 95 95 95

ls (mm) 50 50 50 50 150 250 50
Br (T) 1.29 1.29 1.29 1.29 1.29 1.29 1.29

One of the important parameters effecting the simulation and solving time is the
number of pole pairs. It is widely known that increasing the number of pole-pairs requires
the analysis of a greater number of harmonics in order to maintain accurate flux density
plots and torque results [17], thus leading to an increase in the solving time. The first two
cases of the sensitivity analysis (see Table 2) aim to compare the solving time between two
CMC geometries, which feature four and sixteen pole pairs respectively, while the other
geometric parameters are kept unchanged. By varying the number of pole-pairs, a greater
impact on the solving time of the 2D analytical method is expected compared with that of
the FEM.

In cases three and four of the sensitivity analysis, the air-gap thickness of the CMC
is varied (see Table 2) and a fair comparison is achieved by carefully selecting the air-gap
mesh size in the FEM, as discussed in Section 3.1. The variation in air-gap thickness has a
greater impact on the FEM solving time.

In cases five and six of the sensitivity analysis, the active volume of the CMC is
changed by adjusting both the inner radius of the back-iron (i.e., 150 mm instead of 35 mm)
and the PM thicknesses (i.e., 20 mm and 30 mm respectively), as can be seen in Table 2.

Finally, case seven of the sensitivity analysis examines a full pole-pairs sweep ranging
from 2 to 30, while maintaining the same geometric parameters. The maximum static
torque is then calculated for each CMC geometry considered, along with the solving time
for both the 2D analytical method and FEM. It is worth noting that the solving time required
by the FEM also includes the time needed for building the simulated model.

3.1. Mesh Size Selection

In the FEM, the size of the mesh elements plays an important role in determining both
the solution accuracy and the solving time [33]. Both quantities grow with smaller mesh
elements. Thus, the mesh density should be increased only in important areas of the model,
such as the air-gap, to avoid unnecessary computational burden. A trade-off analysis is
performed with variable mesh density to obtain the most effective model solution whilst
maintaining accurate results. In order to achieve this task, an index named “mesh-factor” h
is introduced, which is a dimensionless variable that enables auto adjustment of the mesh
size for each CMC region, i.e., air-gap, PMs, and back-iron. Therefore, the mesh-factor is
changed accordingly to obtain the appropriate mesh density. Table 3 shows the specified
CMC regions along with the corresponding mesh size values, which are expressed as
function of the mesh-factor.
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Table 3. Mesh size selection method.

Region Mesh Expression (mm) Mesh Size for h = 1 (mm)

Air-gap 0.25 * h 0.25
PMs 0.5 * h 0.5

Back Iron 1 * h 1

Figure 9 depicts the mesh map at different mesh-factor values (h), i.e., 10, 1, and 0.5,
and the reported results refer to the CMC parameters of the first case given in Table 2.
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In terms of solution accuracy, the ‘optimal mesh-factor’ for FEM is identified by
determining the maximum relative error. In particular, the CMC geometry described in
case one of Table 2 is adopted as benchmark model and several mesh-factor values, ranging
from 1 to 20, have been tested. The maximum error associated with each mesh factor value
is calculated relative to the error resulting from the selection of a mesh-factor equal to
0.5 (i.e., the smallest value that leads to the most accurate solution that also requires the
greatest computational time). The obtained error values are given in Figure 10, which
shows that h = 3 delivers a relatively low error with reasonable computational effort.
Hence, the mesh-factor h = 3 is selected for the FEM applied to case one of Table 2. For the
remaining cases, a similar trade-off study has been performed to determine the ‘optimal
mesh-factor’ value. The obtained results are listed in Table 4 along with the mesh size
(expressed in mm) of every CMC part.
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Table 4. Mesh-factor and Mash size values.

Mesh
(mm)

Case1
(h = 3)

Case 2
(h = 2)

Case 3
(h = 1)

Case 4
(h = 1)

Case 5
(h = 5)

Case 6
(h = 5)

Case 7
(h = 5)

Air-gap 0.75 0.5 0.25 0.25 1.25 1.25 1.25
PMs 1.5 1 0.5 0.5 2.5 2.5 2.5

Back Iron 3 2 1 1 5 5 5

3.2. Harmonic Numbers Selection

The 2D analytical tool that has been developed relies on the Fourier series expansion
of the arbitrary constants of the general equations found by the resolution of the Laplace’s
and Poisson’s equations (see Section 2). The air-gap field is produced by the PMs excitation
due to their space harmonics and the 2D analytical tool accounts for just five harmonics
in this work. Apart from the fundamental harmonic, which corresponds to the number
of pole-pairs, another four harmonics are considered (e.g., for case one, the evaluated
harmonics are 4, 12, 20, 28 and 36). Thus, the fundamental and the summation up to five
harmonics is taken into account for every analysed CMC, as detailed in Table 5, where the
harmonic values are made explicit. The MMF harmonics, when n = s. p with s = 1, 3, 5, 7, 9,
and n pole-pairs number, create the air-gap field. Thus, the summation 4 in Table 5 simply
takes the summation of the fundamental harmonic and 4 other following harmonics, which
are 3rd, 5th, 7th, and 9th.

Table 5. Selected harmonic numbers for the 2D analytical tool.

Harmonic Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Fundamental 4 16 8 8 8 8 2–30
Sum 1 12 48 24 24 24 24 6–90
Sum 2 20 80 40 40 40 40 10–150
Sum 3 28 112 56 56 56 45 14–210
Sum 4 36 144 72 72 72 72 18–270

Referring to the values of Table 5, the CMC’s static torque has been calculated at differ-
ent harmonic numbers via the 2D analytical tool and the results have been compared with
those obtained through the FEM. For case one, the comparison outcomes are summarized
in Figure 11, which reveals that the static torque associated with only the fundamental
harmonic produces almost 20% of maximum relative error. Conversely, the maximum
relative error decreases to 2.3% when the summation of all five harmonic components
are evaluated.
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3.3. Results Comparison

Following determination of the ‘optimal’ value of the mesh-factor for the FEM and
definition of the number of harmonics for the 2D analytical tool, the sensitivity analyses are
performed for the 7 cases detailed in Table 2. The computational time comparison has been
carried out on a Desktop PC running the Microsoft 10 operating system with an Intel Core
i3 CPU @ 3.4 GHz with 2 cores. In terms of software, a Matlab m-file has been adopted
to implement the developed analytical tool, while the finite element simulations are ran
on the Simcenter MagNet FE software package. The results in terms of solving time and
maximum relative error of the static torque are given in Table 6 for both 2D analytical tool
and the FEM. It should be noted that the time values from case one to case six are relative
to 46 samples of the static torque (i.e., 46 shift angle values), which are taken on half cycle
(i.e., 180 electrical degrees). Analyzing case one, the 2D analytical method takes 32.8 s with
a 3.1% error (calculated against the FEM static torque), while 240 s are required by the FEM.
Hence, the developed analytical tool delivers the solution in approximately 87% less time
than the FEM. For case one, the graphical comparison regarding the static torque trend is
illustrated in Figure 11. On the other hand, case two considers the same size parameters
as for case one, but with four times the number of pole-pairs (i.e., 16 instead of 4). The
greater number of pole-pairs implies a longer solving time. Indeed, the solving time is
equal to 31.2 s with a 3.8% error for the 2D analytical tool, whilst the FEM takes 401 s. In
other words, a time saving of about 92% is achieved with the 2D analytical tool. For case
two, the static torque trend comparison is shown in Figure 12.

Table 6. Solving time and static torque maximum error.

Case
Number

Analyt.
(Fund.)

(s)

Error
(Fund.)

(%)

Analyt.
(Sum. 1)

(s)

Error
(Sum. 1)

(%)

Analyt.
(Sum. 2)

(s)

Error
(Sum. 2)

(%)

Analyt.
(Sum. 3)

(s)

Error
(Sum. 3)

(%)

Analyt.
(Sum. 4)

(s)

Error
(Sum. 4)

(%)

FEM
(s)

Case 1 11.54 15.8 16.36 7.3 21.87 4.2 27.51 3.4 32.8 3.1 240
Case 2 22.12 5.4 31.2 3.8 40.81 4.2 49.29 4.4 58.42 4.4 401
Case 3 14.2 6.6 20.3 3.3 26.78 2.9 32.96 2.9 39.92 2.9 665
Case 4 14.2 4.3 20.3 3.1 26.78 3 32.96 3 39.92 3 1666
Case 5 14.2 10.5 20.3 5 26.78 3.5 32.96 2.8 39.92 2.7 815
Case 6 14.2 8.8 20.3 4.4 26.78 3.2 32.96 2.6 39.92 2.5 990
Case 7 7.04 20.3 14.65 6 19.93 6.5 28.52 6 38.5 6 650
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The effect of the air-gap thickness is addressed by cases three and four, where the
CMCs feature 4 mm and 8 mm air-gap thickness respectively (i.e., twice and four times the
air-gap thickness considered for the CMCs of the previous two cases). As expected, the
solving time increases with increased air-gap thickness, although the 2D analytical method
does not require a high number of harmonics as shown in Figure 13 (case four). In terms of
solving time, 20.3 s and 665 s are respectively employed by the 2D analytical tool and the
FEM, with an overall time saving of about 96%.
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In cases five and six, the CMCs are characterized by a significantly larger volume
compared to the previous cases. This aspect mainly affects the solving time of the FEM,
since the 2D analytical method features almost the same time values as in cases three and
four, although slightly less accurate results are obtained. The lowest relative error (about
2.6% average) is achieved when all five harmonics are summated, with a solving time
reduction of about 97% (i.e., 27 s and 902 s for 2D analytical tool and FEM respectively
on average).

In case seven, the CMC’s pole-pairs number is varied from 2 to 30, as would be
required during a preliminary design sensitivity analysis. In order to complete this anal-
ysis, the 2D analytical tool demands 14.65 s, whereas 650 s are needed by the FEM (i.e.,
approximately a 97% time reduction). For the sake of completeness, the peak static torque
comparison for up to 5 harmonics with the FEM is shown in Figure 14.

Energies 2021, 14, 4656 14 of 17 
 

 

 

Figure 14. Case seven: Comparison of the peak static torque as function of the pole-pairs number. 

4. Conclusions 

A 2D analytical tool has been developed by using a subdomain method. The pro-

posed analytical tool takes resolutions of Laplace’s equations in the air-gap and Poisson’s 

equations in the PM subdomains. The air-gap flux density distribution and the static 

torque are calculated by the analytical tool and validated with a FEM. The validation re-

sults showed a good agreement, hence fast and accurate CMC analysis is achieved via the 

proposed tool. These features make the tool suitable for employment at the early design 

stage of a CMC, where several design parameters need to be evaluated for guiding the 

design choices. 

A comprehensive sensitivity analysis has been carried out for evaluating both com-

putational time and accuracy under the variation of design parameters (e.g., air-gap thick-

ness, number of pole-pairs, etc.). Based on the presented findings, the proposed 2D ana-

lytical tool is characterized by a significantly shorter computational time than the FEM 

while ensuring a reasonable level of accuracy. 

Author Contributions: Conceptualization, Y.A., P.G. and M.G.; methodology, Y.A. and P.G.; soft-

ware, Y.A.; validation, O.T., P.G. and M.G.; formal analysis, P.G. and M.G.; investigation, Y.A and 

O.T.; resources, Y.A.; data curation, P.G. and M.G.; writing—original draft preparation, Y.A.; writ-

ing—review and editing, Y.A., O.T. and P.G.; visualization, O.T. and P.G; supervision, P.G. and 

M.G.; project administration, M.G.; funding acquisition, M.G. All authors have read and agreed to 

the published version of the manuscript. 

Funding: This research was funded by the Clean Sky 2 Joint Undertaking under the European Un-

ion’s Horizon 2020 research and innovation programme, grant number 821023 and the Clean Sky 2 

Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme, 

grant number 807081. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Considering the boundary conditions at the air-gap (region II) given in (2) and (3), 

the following equation can be written: 

Figure 14. Case seven: Comparison of the peak static torque as function of the pole-pairs number.



Energies 2021, 14, 4656 15 of 18

4. Conclusions

A 2D analytical tool has been developed by using a subdomain method. The proposed
analytical tool takes resolutions of Laplace’s equations in the air-gap and Poisson’s equa-
tions in the PM subdomains. The air-gap flux density distribution and the static torque are
calculated by the analytical tool and validated with a FEM. The validation results showed
a good agreement, hence fast and accurate CMC analysis is achieved via the proposed tool.
These features make the tool suitable for employment at the early design stage of a CMC,
where several design parameters need to be evaluated for guiding the design choices.

A comprehensive sensitivity analysis has been carried out for evaluating both compu-
tational time and accuracy under the variation of design parameters (e.g., air-gap thickness,
number of pole-pairs, etc.). Based on the presented findings, the proposed 2D analytical
tool is characterized by a significantly shorter computational time than the FEM while
ensuring a reasonable level of accuracy.
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Appendix A

Considering the boundary conditions at the air-gap (region II) given in (2) and (3), the
following equation can be written:

AI I
n Rn

2 − BI I
n R−n

2 = AI
nRn

2 − BI
nR−n

2 +
R2FI′

n (r)
n

cos(nϕI) (A1)

CI I
n Rn

2 − DI I
n R−n

2 = CI
nRn
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nR−n

2 +
R2FI′

n (r)
n

cos(nϕI) (A2)

AI I
n Rn

3 − BI I
n R−n

3 = AI I I
n Rn

3 − BI I I
n R−n
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R3FI I I′

n (r)
n

cos(nϕO) (A3)
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3 = CI I I
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3 − DI I I
n R−n

3 +
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n (r)
n

cos(nϕo) (A4)

From the boundary conditions in the PMs subdomains expressed by (10) and (11), the
following equations can be derived:

An
I Rn

1 − Bn
I R−n

1 +
R1Fn′

I (R1)

n
cos(nϕI) = 0 (A5)

Cn
I Rn

1 − Dn
I R−n

1 +
R1Fn′

I (R1)

n
sin(nϕI) = 0 (A6)
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The continuity of the PM and the air-gap subdomains leads to (A7) and (A8).

An
II R2

n + Bn
II R2

−n = An
I R2

n + Bn
I R2

−n + Fn
I (R2)cos(nϕI) (A7)

Cn
II R2

n + Dn
II R2

−n = Cn
I R2

n + Dn
I R2

−n + Fn
I (R2)sin(nϕI) (A8)

Rearranging (14), it is possible to obtain (A9) and (A10).

An
II R3

n + Bn
II R3

−n = An
II I R3

n + Bn
II I R3

−n + Fn
II I(R3)cos(nϕo) (A9)

Cn
II R3

n + Dn
II R3

−n = Cn
II I R3

n + Dn
II I R3

−n + Fn
II I(R3)sin(nϕo) (A10)

Finally, the boundary condition given by (14) results in (A11) and (A12).

An
II I Rn

4 − Bn
II I R−n

4 +
R4Fn′

I I I(R4)

n
cos(nϕo) = 0 (A11)

Cn
II I Rn

4 − Dn
II I R−n

4 +
R4Fn′

I I I(R4)

n
sin(nϕo) = 0 (A12)

The equations resulting from both boundary and interface conditions, i.e., (A1)–(A12),
are organized in matrix form and then solved using linear equations in order to find the
vector potential coefficients. The solution of the constants requires MATLAB software to be
solved and the matrix form is written as shown in (A13).

[A12×12][X12×1] = [B12×1] (A13)

Therefore, the complete matrix form is given by (A14).
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