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Abstract: Electromagnetic design problems are generally formulated as nonlinear programming
problems with multimodal objective functions and continuous variables. These can be solved by
either a deterministic or a stochastic optimization algorithm. Recently, many intelligent optimization
algorithms, such as particle swarm optimization (PSO), genetic algorithm (GA) and artificial bee
colony (ABC), have been proposed and applied to electromagnetic design problems with promising
results. However, there is no universal algorithm which can be used to solve engineering design
problems. In this paper, a stochastic smart quantum particle swarm optimization (SQPSO) algorithm
is introduced. In the proposed SQPSO, to tackle the premature convergence problem in order to
improve the global search ability, a smart particle and a memory archive are adopted instead of
mutation operations. Moreover, to enhance the exploration searching ability, a new set of random
numbers and control parameters are introduced. Experimental results validate that the adopted
control policy in this work can achieve a good balance between exploration and exploitation. Finally,
the SQPSO has been tested on well-known optimization benchmark functions and implemented
on the electromagnetic TEAM workshop problem 22. The simulation result shows an outstanding
capability of the proposed algorithm in speeding convergence compared to other algorithms.

Keywords: smart quantum particle; particle swarm optimization; design optimization;
electromagnetic problem

1. Introduction

Optimization of high dimensional design problems with a multimodal objective func-
tion in electromagnetics has attracted more attention for exploiting stochastic approaches
as deterministic methods are not capable of finding the global optimum solution to these
problems. In general, there is no unique solution to such an optimal problem, and most of
the techniques and algorithms are problem-oriented. Therefore, the intensification of global
searching ability stands essential in the optimization problems. In order to effectively
tackle this issue, scholars have developed many algorithms [1,2], such as a self-adaptive
penalty approach genetic algorithm [3], an artificial bee colony [4] and cuckoo search [5] for
finding solutions to optimization problems. Moreover, in the last decade particle swarm
optimization (PSO) has gained increasing popularity due to its better performances in
optimizing design problems [6]. Many theoretical analyses have been performed on the
PSO algorithm, focusing on the behavior of individual particles to understand the search
mechanism and parameter settings of the algorithm [7,8]. On the other hand, to solve an
engineering inverse problem such as super conducting magnetic energy storage (SMES),
optimization benchmark TEAM problem 22 [9] is used to check the robustness and output
of various optimization algorithms [10–12]. Much effort has been spent in the past few
years applying a stochastic approach, instead of a deterministic one, to find global optimal
solutions [13]. S.L. Ho et al. enhanced the convergence speed of conventional PSOs by
introducing age variables, but the premature convergence still creates a serious problem
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in finding the global minima [14]. However, premature convergence is still a key issue
in the QPSO algorithm, specifically when it is used in complicated design problems. To
address this problem, numerous modifications have been made by researchers in various
fields such as power-systems [15], control systems [16], antenna design [17], “internet
of things” [18], and electromagnetics [19,20]. In fundamental PSO, the basic equation
comprises the classical mechanics terminology (velocity v(t) and position x(t)) of a particle
in the search space to solve the optimization problem. However, in quantum mechanics,
waves are used instead of particles. Therefore, researchers switched and upgraded the
Newtonian mechanical PSO to a quantum mechanical PSO, known as a quantum particle
swarm optimization (QPSO). QPSO has shown great potential in the optimization of design
problems [21–23].

QPSO can demonstrate a more specific and rich global searching ability in the search
space. Schrodinger worked to unify the wave and energy equations, known as the
Schrodinger equation. In [18], the author presents a delta potential well model by us-
ing the time-dependent Schrodinger equation, as given by

ih̄Ψ (x, t) =
−h̄
2m

d2Ψ (x, t)
dx2 + V(x)Ψ (x, t) (1)

where h̄ is the Planck’s constant, V(x) is the potential energy and Ψ (x, t) is a quantum
state known as the normalized wave state vector Ψ (x, t), which is similar to a particle in
mechanics expressed as

Ψ(x) =
1√
L

e(
−|z−x|

L ) (2)

where z is a convergence point in search space. Max Born gives the interpretation of a
particle appearance in the search space by using a probability density function of the
quantum state, as given by

Probability density function = |Ψ(xt)|2 =
1
L

e(
−2|z−xt |

L ) (3)

Subsequently, the position function obtained by the Monto Carlo stochastic model is
given as follows:

Xi(t + 1) =
{

p(t) + β× |Mbest − Xi(t)| × ln 1
u , i f u ≥ 0.5

p(t)− β× |Mbest − Xi(t)| × ln 1
u , otherwise

(4)

where β is a contraction–expansion coefficient and Mbest is the mean best, as given by

Mbest =
1
M

M

∑
i=1

Pbesti (t) (5)

From our earlier work we identified that the traditional QPSOs have a premature
convergence problem due to the diversity loss at the final stages of the evolution process and
the unbalancing between the global and local searches of the particle. In order to address
the aforementioned issues, we introduced a novel global smart best particle to the basic
QPSO process and developed a new mechanism for the contraction–expansion coefficient.
The main proposal of the novel strategies is to control the premature convergence process
of the basic QPSO method.

The remainder of this paper is organized as follows: The proposed framework for
a new variant of QPSO is presented in Section 2. In Section 3, the proposed QPSO are
compared with the standard QPSO, GQPSO, LIQPSO and MQPSO and applied on different
benchmark functions followed by result and discussion in Section 4. Section 5 reports
our experimental testing and validation of the proposed QPSO on TEAM-22 optimization
benchmark problems of superconducting magnetic energy stored (SMES). Finally, our
conclusion is presented in Section 6.
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2. The Proposed Work

The standard QPSO has good searching ability; however, its drawbacks manifest
as low convergence speed and an unexpected premature convergence without enough
exploration of the search space. As aforementioned, clinching the low convergence speed
and premature convergence are the core focusses of improvements to QPSOs. The proper
mechanism of the proposed framework will be described below.

2.1. Process Analysis of Smart Particle of the Swarm

In this section, we analyze the process of the best particle nomination in the swarm
to lead and increase the searching ability of the algorithm. Unlike the traditional QPSO,
which is focused to select the global best particle gbest amongst the pbest of the current
iteration of the whole population, the proposed algorithm uses a memory bank called
“the archive” to store the current and previous pbest for better selections of the global best
particle gbest. Mathematically this process is expressed as

Pbesti (t) =
{

Xi i f f (Xi(t)) < f
(

PXi−1(t)
)

PXi−1(t) otherwise
(6)

In this process, the current pbest position of the particle is compared with its own
previously store pbest position. If it is better than the previous one, it will replace the
previous pbest, otherwise it will retain the current one for future use. A pseudocode of the
archive phenomenon is given below:

Pseudocode of updating rule of pbest in the archive

If f (Xi+1) < f (PXi ) do
Clear the previous pbest of PXi

Store the new pbest as Xi+1 in the archive
elseif f (Xi+1) f (PXi )

Ignore the new pbest and upheld the previous one
end if
declare the global best gbest from the updated archive.

2.2. Optimal Strategy for Parameter Setting

We have intensified the exploration capability of the proposed algorithm to obtain a
better convergence speed and to avoid premature convergence by a proposed strategy to
update the contraction–expansion coefficient β by

β = u(0, 1)× N
(

µ, σ2
)

(7)

where u(0, 1) is a random number and N
(
µ, σ2) is the cumulative distribution function

with σ = 1 and µ = 0.
With updated version of β, the proposed algorithm used also revised the sets of

random numbers ϕ and phi ρ with 0.5 offset instead of a pure random number, as given
below in Equations (8) and (9).

ϕ = u + no f f set (8)

ρ =u + no f f set (9)

After using the revised set of-random numbers, the position-updating equation becomes

Xi(t + 1) =

{
p(t) + β× |Mbest − Xi(t)| × ln 1

ρ , i f u ≥ 0.5
p(t)− β× |Mbest − Xi(t)| × ln 1

ρ , otherwise
(10)

p(t) = ϕ× pbest(t) + (1− ϕ)× gbest(g) (11)
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Considering the new set of random numbers and the proposed strategy, it is possible
to observe that this approach enhances the global search ability in the early stage of
the optimization and encourages the particles to converge quickly towards the global
optimal solution.

3. Numerical Result Analysis

In this section, to elaborate the performance of our proposed algorithm, it is compared
with some well-known optimization algorithms, including standard QPSO proposed by J.
Sun et al. [24], GQPSO by L. dos S. Coelho [21], LIQPSO proposed by S. Jiang et al. [23],
and MQPSO in [22]. The comparison conditions and benchmark functions listed in Table 1
are taken as the same for all algorithms: population sizes were set to be 40, corresponding
to the dimension 30, and maximum iterations were set to 2000.

Table 1. High dimensional classical benchmark functions.

Modal Name Benchmark Functions Search Space f(x*)

Unimodal

Sphere f1(x) =
n
∑

i=1
x2

i
[−100, 100]D 0

Schwefel’s 2.22 f2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| [−100, 100]D 0

Multimodal

Rosenbrock f3(x) =
n
∑

i=1
[100(xi+1 − x2

i )
2
+
(

xi − 1)2] [−100, 100]D 0

Griewank f4(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 [−100, 100]D 0

Complex

Schwefel’s Problem 1.2 f5(x) =
D
∑

i=1

(
n
∑

i=1
zi

)2
+ fbias1

,

z = x− o and fbias1
= −450

[−100, 100]D 0

Griewank
f6(x) = 1

4000

n
∑

i=1
z2

i −
n
∏
i=1

cos
(

zi√
i

)
+ 1 + fbias2 ,

z = x− o and fbias2 = −180
[−100, 100]D 0

All algorithms are executed with the same number of function evolutions to make
judicious comparison when analyzing the statistical data of these benchmark functions, as
shown in Table 2.

Table 2. High dimensional classical benchmark functions results.

Sphere f 1

QPSO GQPSO LIQPSO MQPSO SQPSO
Max 3.00 2.00 0.00 −4.00 −26.66
Min −32.60 −14.40 −41.50 −160.00 −282.40
Std 13.95 4.43 12.69 60.38 72.92
Mn −13.43 −2.88 −27.17 −78.82 −230.27

Schwefel’s 2.22 f 2

QPSO GQPSO LIQPSO MQPSO SQPSO
Max 1.00 0.00 5.00 −39.80 −8.58
Min 1.00 −96.30 −111.67 −138.01 −352.19
Std 0.00 29.18 34.63 25.14 99.77
Mn 1.00 −43.47 −75.96 −125.62 −175.87
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Table 2. Cont.

Rosenbrock f 3

QPSO GQPSO LIQPSO MQPSO SQPSO
Max 0.75 0.40 1.40 −0.60 1.59
Min 0.75 −2.42 −2.60 −3.70 −10.33
Std 0.00 0.36 0.48 0.78 2.92
Mn 0.75 −0.19 −1.06 −3.46 −7.30

Griewank f 4

QPSO GQPSO LIQPSO MQPSO SQPSO
Max 1.20 1.60 1.80 1.20 −7.83
Min −4.20 −7.20 −5.30 −12.01 −36.04
Std 2.17 1.74 1.19 2.79 6.47
Mn −1.91 −6.71 −4.21 −11.22 −33.61

Schwefel’s Problem 1.2 f 5

QPSO GQPSO LIQPSO MQPSO SQPSO
Max 0.10 0.05 0.12 −1.70 6.04
Min −7.48 −3.20 −5.90 −7.10 −8.38
Std 2.89 0.95 1.80 1.32 4.31
Mn −3.09 −0.89 −1.48 −6.59 −5.14

Complex Griewank f 6

QPSO GQPSO LIQPSO MQPSO SQPSO
Max 0.25 0.15 0.25 −4.80 1.38
Min −6.30 −1.50 −3.10 −6.20 −6.31
Std 2.61 0.58 1.30 0.21 1.68
Mn −2.84 −0.41 −1.35 −6.17 −3.42

In Table 2, four indicators: the minimum (best), the maximum, the mean and the
SD, are used to measure the performance of a SQPSO in comparison with other algo-
rithms. Each algorithm runs ten times to attain the average value of each indicator for a
fair comparison.

4. Result and Discussion

Based on these corresponding data indicators, it is noted that SQPSO shows better
performance. In Table 2, the statistical optimized results are highlighted for our proposed
algorithm on f 1 and f 2 functions, which are unimodal benchmark problems. Similarly, the
best results are also highlighted for complicated multimodal functions f 3, f 4 and complex
functions with various premature convergences and global solutions for other variants
of algorithms tested on f 5 and f 6. The presented functions are more dynamically chal-
lenging and complex and therefore research experts commonly utilize them as benchmark
problems for computing algorithm tests. Consequently, the tabulations depict that our pro-
posed novel smart SQPSO excels in performance compared to other well-known modified
algorithms on the presented optimization problems.

Moreover, to clarify the convergence effect of the SQPSO over time and speed,
Figures 1–6 present the convergence curves for all benchmark problems. SQPSO con-
verges more rapidly with the optimal global region than the basic QPSO, GQPSO, LIQPSO
and MQPSO, specifically in the earlier variants, in f 1, f 2, as presented by the test functions’
graphical comparison curves. In the same way, the convergence trajectory for other test
functions show the proposed method’s computational superiority in comparison to other
state of the art algorithms. To conclude, our modified algorithm finds all the test func-
tions’ global optimal solution, highlighting that the proposed algorithm is more robust
and efficient.
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From these computational results and statistical analyses, it is clear that the proposed
algorithm’s convergence curves and corresponding results are better than the standard
QPSO, GQPSO and LIQPSO, and MQPSO and it converges to the global minimum using
fewer iterations. Moreover, the execution time of SQPSO is shorter than other versions
of QPSOs.

5. Numerical Validation for Engineering Problems

The efficacy of the proposed SQPSO control algorithm has been already validated by
benchmark functions. Thus, to make further validation of the SQPSO, we implemented the
algorithm on the TEAM workshop problem 22, using this as a test suite for electromagnetic
optimization problems [25]. We leveraged the same aforementioned evaluation parameters
used for QPSO, GQPSO and LIQPSO and MQPSO. In Figure 7, a sample reward of a SMES
device consists of two superconducting concentric coils carrying currents in the opposite
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direction, with the corresponding radius, heights, thickness and search space of the stray
field [26].

Energies 2021, 14, x FOR PEER REVIEW 8 of 11 
 

 

 

Figure 6. The convergence curve of algorithms on f6. 

From these computational results and statistical analyses, it is clear that the proposed 

algorithm’s convergence curves and corresponding results are better than the standard 

QPSO, GQPSO and LIQPSO, and MQPSO and it converges to the global minimum using 

fewer iterations. Moreover, the execution time of SQPSO is shorter than other versions of 

QPSOs. 

5. Numerical Validation for Engineering Problems 

The efficacy of the proposed SQPSO control algorithm has been already validated by 

benchmark functions. Thus, to make further validation of the SQPSO, we implemented 

the algorithm on the TEAM workshop problem 22, using this as a test suite for electro-

magnetic optimization problems [25]. We leveraged the same aforementioned evaluation 

parameters used for QPSO, GQPSO and LIQPSO and MQPSO. In Figure 7, a sample re-

ward of a SMES device consists of two superconducting concentric coils carrying currents 

in the opposite direction, with the corresponding radius, heights, thickness and search 

space of the stray field [26]. 

 

Figure 7. Schematic diagram of SMES optimization TEAM problem 22. 

d1

d2

h1 h2

J1 J2

R1 R2

Line a (11 points)

L
in

e
 b

 (1
1

 p
o

in
ts)

z in m

r in m

(10,0)

(0,10)

Figure 7. Schematic diagram of SMES optimization TEAM problem 22.

Objective Function of the TEAM Problem 22

In this paper, we consider the stray field as the objective function with three design
parameters: radius, height and thickness of the SMES device, i.e.,

OF =
B2

stray

B2
norm

+

∣∣∣E− Ere f

∣∣∣
Ere f

(12)

where Ere f = 180MJ, Bnorm = 3× 10−3T and B2
stray is defined as:

B2
stray =

∑22
i=1
∣∣Bstray,i

∣∣2
22

(13)

The main aim of this work was to find the global optimal solution to the problem
examined above. The problem was solved by considering three design variables of the
outer coil in continuous states with a dynamic current density following through the
quench condition, which guarantees that the superconducting material should work safely.
This linked the value of the current density in the coils with the maximum value of the
generated flux density according to the TEAM workshop problem 22.

Hence, the experimental results in Table 3 show the SQPSO stray field minimum
compared with that of the other algorithms.
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Table 3. Performance comparison of different optimal methods on Team problem 22.

Algorithm R2 h2/2 d2 OF

QPSO 3.0786 0.2414 0.3795 0.1077
GQPSO 3.1723 0.2319 0.3892 0.1222

LI-QPSO 3.0214 0.2732 0.3419 0.0959
MQPSO 3.1396 0.3160 0.2871 0.0716
SQPSO 3.0245 0.2561 0.2871 0.0278

6. Conclusions

In this paper, to improve the reliability of QPSO in solving electromagnetic optimiza-
tion problems, a SQPSO was used to encode particles using memory adaptation of smart
behavior. A replacement of the particles’ best position in the whole swarm is no longer
required to update the optimal position; instead, individual experience is used for this
purpose. Consequently, several significant features are now possessed by the developed
SQPSO: (1) a smart particle; (2) a memory archive; and (3) a new set of random variables
and control parameters to reach the global minima without premature convergence in
a shorter execution time. The numerical experimental results show that this algorithm
effectively improves the global search ability and earlier convergence rapidity compared
with other modified optimal QPSO algorithms. Moreover, the computational results veri-
fied its comprehensive applications for multimodal objective functions of electromagnetic
optimization problems.
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