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Abstract: The floating absorber for safety at transient (FAST) was proposed as a solution for the
positive coolant temperature coefficient in sodium-cooled fast reactors (SFRs). It is designed to insert
negative reactivity in the case of coolant temperature rise or coolant voiding in an inherently passive
way. The use of the original FAST design showed effectiveness in protecting the reactor core during
some anticipated transients without scram (ATWS) events. However, oscillation behaviors of power
due to refloating of the absorber module in FAST were observed during other ATWS events. In this
paper, we propose an improved FAST device (iFAST), in which a constraint is imposed on the sinking
(insertion) limit of the absorber module in FAST. This provides a simple and effective solution to the
power oscillation problem. Here, we focus on an oxide fuel-loaded SFR that is characterized by a
more negative Doppler reactivity coefficient and higher operating temperature than the metallic-
loaded SFR cores. The study is carried out for the 1000 MWth advanced burner reactor with an
oxide fuel-loaded core during postulated ATWS events that are unprotected transient over power,
unprotected loss of flow, and unprotected loss of the heat sink. It was found that the iFAST device
has promising potentials for protecting the oxide SFR core during the various studied ATWS events.

Keywords: sodium-cooled fast reactors; inherent safety; anticipated transients without scram; coolant
temperature coefficient

1. Introduction

In fast neutron spectrum reactors, the fission-to-capture ratio usually increases with
spectrum hardening. This is largely because the fission cross-section of actinides, including
Pu-239, changes just a little, while their capture cross-section sharply decreases with
increasing neutron energy in the fast-spectrum region. As a result, the number of neutrons
produced per neutron absorbed (η) for Pu-239 increases with spectrum hardening in fast-
spectrum reactors. This leads to more excess neutrons available for breeding fissile isotopes
and transmutation of spent nuclear fuel in fast reactors. In addition, the high fission-to-
capture ratio in a fast neutron spectrum leads to less generation of higher actinides, which
simplifies fuel recycling. There are several fast spectrum reactor technologies that have
been investigated for decades, such as lead cooled fast reactors (LFRs), and sodium-cooled
fast reactors (SFRs). The SFRs can operate at a higher power density than LFRs. However,
there are safety concerns of Na-water interactions which require utilizing an intermediate
heat exchanger in SFRs [1,2]. In addition, the Na temperature increase will yield a hardened
neutron spectrum, less Na capture, and enhanced leakage. Furthermore, in a low leakage
SFR design, coolant void reactivity (CVR) and CTC can be clearly positive at burned core
conditions [3].

In SFRs, the Doppler reactivity coefficient is more negative in an oxide fuel-loaded core
(OLC) than that in a metallic fuel-loaded core (MLC). This is because the neutron spectrum
is harder in a MLC. In addition, the oxide fuel has a lower thermal conductivity, and it
operates at a higher temperature than a metallic fuel for the same power. The negative
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reactivity feedback from the axial fuel expansion is higher in a metallic fuel. However,
in an MLC, the effects of the smaller fuel temperature and a smaller Doppler reactivity
coefficient lead to lower asymptotic temperatures after anticipated transients without scram
(ATWS) than those in an OLC. Therefore, it is necessary to improve the safety of oxide
fuel-loaded SFRs.

Previously, a study was performed for FAST (floating absorber for safety at transient)
as a solution for the positive CTC in SFRs [4]. The study was performed on the movement
of the floating absorber module during the ATWS. The results showed promising potentials;
however, oscillation behaviors of power and temperature due to refloating of FAST were
observed during unprotected transient over power (UTOP) that may lead to core damage.

In this work, an improved FAST device (iFAST) design is suggested to minimize the
oscillation of power and temperatures during the various ATWS events. Here, we describe
the suggested design of the iFAST device with a constrained insertion limit of the absorber
module. The study is carried out for the 1000 MWth advanced burner reactor (ABR)
with an oxide fuel-loaded core. The iFAST is designed to be installed in the ABR core by
replacing a number of the fuel pins in the fuel assembly. In the numerical models, the power
variation is calculated using the point kinetics equation with six delayed neutrons groups.
The net reactivity of Doppler, coolant, radial core expansion, and axial fuel expansion
reactivity feedback was considered, as well as the passive reactivity feedback from the
iFAST device. The models also solve 1-D time-dependent balance equations in the axial
direction and Navier–Stokes equation in the cylindrical direction to calculate the movement
of the absorber module in the device. The studied ATWS scenarios are UTOP, unprotected
loss of flow (ULOF), and unprotected loss of heat sink (ULOHS). Sensitivity analyses on
the insertion limit in the iFAST device were carried out to find an optimum insertion
limit for the ABR core. Furthermore, to demonstrate the effectiveness of the improved
FAST device in protecting various SFR cores with no concern of power oscillation, two
severe UTOP scenarios were studied, and the impact of varying the total worth of iFAST
was investigated.

2. Improved FAST Design

The improved FAST device is designed to insert negative reactivity in the case of
coolant temperature rise or coolant voiding in an inherently passive way. The density of
the absorber and the volume of the void canister are determined to make the absorber
module float above the core during normal operation. If the coolant temperature rises,
the coolant density decreases. Thus, the absorber module in the iFAST pin sinks due to
weakened buoyancy.

For the original design of the device [4,5], the oscillation of the power may lead to
core failure, especially during UTOP. In order to solve this problem, the iFAST pin imposes
a constraint on the insertion region of the absorber module, as demonstrated in Figure 1.
The location of the constraint, or the insertion limit, in the iFAST pin, is optimized to
minimize the power oscillation that is caused by the refloating of the absorber module.
This represents a simple and effective improvement of the performance of the device during
the various ATWS events.

The iFAST device has the same dimensions as the fuel pins, and it can be easily
installed in conventional SFRs by replacing some fuel pins. Compared to other passive-
safety devices, such as GEM (gas expansion module) [6] and ARC (autonomous reactivity
control) [7], iFAST is unique because it can improve the CTC in an extremely simple way,
and it is applicable without changes in the fuel assembly design. This study is mainly
dedicated to demonstrating the effectiveness of the iFAST device in protecting the core of
a large-size oxide SFR during UTOP, ULOHS, and ULOF. The iFAST design for ABR is
0.3775 cm in radius, and the radius of the absorber module in the device is 0.2 cm. The
absorber module height is 80 cm which includes 60 cm for the absorber module and 20 cm
for the void canister, and it is designed so that the average density of the absorber module
is 0.832 g/cm3.
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Figure 1. Concept of the iFAST device.

3. Methods and Assumptions for Evaluation of iFAST

The algorithm of the models used in this work is demonstrated in Figure 2. The
point kinetics equation (PKE) with six delayed neutrons groups is used to determine the
power variation, as shown in Equation (1). Meanwhile, Equation (2) is used to update the
net reactivity that is the summation of the initial reactivity, Doppler reactivity feedback,
coolant reactivity feedback, radial core expansion reactivity feedback, axial fuel expansion
reactivity feedback, excess reactivity, and iFAST reactivity feedback. It should be noticed
that reactivity feedback from iFAST is a sort of external reactivity feedback that is inserted
in an inherently passive manner due to the coolant temperature variation.

.
p(t) = ρ(t)−β

Λ p(t) + ∑k λkCk(t),
.
Ck(t) =

βk
Λ n(t)− λkCk(t).

(1)

ρ(t) = ρ0 + α f uel∆Tf uel + αcoolant∆Tcoolant + αradial expansion∆Tcoolant + αaxial expansion∆Tf uel + ∆ρex + ∆ρFAST . (2)

The 1000 MWth ABR core developed by Argonne National Laboratory [8,9] is chosen
as an oxide fuel-loaded reference core for the analysis of iFAST behavior during the ATWS
events. The kinetic parameters and reactivity feedback coefficients of ABR at EOL are
listed in Tables 1 and 2. Figure 3 shows the axial temperature distribution in the 1.067 m
long active core region of ABR calculated by an in-house thermal-hydraulics code. It
should be noted that chopped cosine-shaped axial power distribution is assumed, and 1-D
time-dependent energy and mass conservations are considered in the axial direction. The
velocity field of the coolant surrounding the absorber module in iFAST is calculated using
the Navier–Stokes equation in a cylindrical shape [4,10]. Based on the calculated velocity,
the position of the absorber module is calculated. The position-wise reactivity worth of the
absorber module in iFAST is shown in Figure 4, which is utilized to determine the iFAST
reactivity feedback.
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Figure 2. Algorithm of system modeling, including movement of the absorber module in iFAST.

Table 1. Kinetic parameters of the large-size oxide SFR ABR.

Kinetic Parameters (EOL)

G βg λg

1 5.36 × 10−5 0.0124

2 5.73 × 10−4 0.0305

3 5.08 × 10−4 0.111

4 1.31 × 10−3 0.301

5 5.22 × 10−4 1.14

6 1.33 × 10−4 3.01
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Table 2. Reactivity feedback coefficients of the large-size oxide SFR ABR.

Reactivity Feedback Coefficients (EOL)

Parameters Value

Fuel temperature (pcm/K) −0.372

Coolant temperature (pcm/K) 0.496

Axial expansion (pcm/K) −0.155

Radial expansion (pcm/K) −0.930

Effective delayed neutron fraction 0.0031

Prompt neutron lifetime (µs) 0.420
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4. Results and Discussion

The utilization of the iFAST device in the oxide fuel-loaded core aims to enhance the
passive negative reactivity feedback in response to any ATWS events. This is important
to rapidly shut down and protect the reactor core. The insertion of the absorber module
in the iFAST device due to coolant temperature increase introduces an inherently passive
negative reactivity feedback that helps in mitigating the hazardous consequences of the
ATWS events in oxide-loaded SFRs.
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4.1. Unprotected Loss of Flow in ABR

In the simulated ULOF, we assumed failure of all the coolant pumps in the primary
system. Consequently, the coolant mass flow rate quickly decreases, and we assumed
a pump halving time of 5 s and 5% natural circulation. Meanwhile, the inlet coolant
temperature remains unchanged during the simulation. An in-house code based on the
Fortran-90 program was used to solve the numerical models demonstrated in Figure 2.
The study was carried out with and without utilizing the iFAST device to demonstrate its
effectiveness in reducing the maximum coolant and fuel temperatures during the ULOF.
Here, we compared the results for two assumed maximum worth of iFAST that are 1.8$
and 1$.

In addition, a sensitivity study on the insertion limit was made to study its impact
on avoiding large oscillation of the reactor power due to an unfavorable, big refloating of
the absorber module in iFAST. The insertion limit was measured from the bottom of the
active core region. Thus, for example, a 0.1 m insertion limit means a deeper insertion limit
than 0.2 m. It should be noticed that the numerical simulations were stopped if the coolant
temperature reaches its boiling temperature, which is 1156 K because only a single-phase
flow is considered in the current models.

Figure 5 demonstrates the numerical results of ULOF for 1.8$ maximum iFAST worth.
In Figure 5, the reactor power, the movement of the absorber module in iFAST, and the
maximum coolant and fuel temperatures during the ULOF are plotted. The reactor power
decreased due to the net negative reactivity feedback even without utilizing the iFAST
device. However, utilizing iFAST yielded a faster power ramping-down rate. The decrease
of coolant flow rate initially led to a rise in core coolant temperature. Thus, the absorber
module in the iFAST pin sinks due to the weakened buoyancy force. This introduced
negative reactivity feedback, which enhanced the power ramping-down rate. In addition,
a deeper insertion limit, i.e., 0.1 m, yielded faster power ramping-down rate during the
ULOF. Nevertheless, the insertion limit in iFAST must be optimized in view of the reactor
safety during the various ATWS, especially because oscillations of the reactor power were
previously reported for the UTOP scenario with the old FAST design without an optimized
insertion limit (insertion limit = 0). Figure 5b shows the movement of the absorber module
in the iFAST device after the ULOF. The refloating of the absorber module is bigger for
a deeper insertion limit, however, without causing any hazardous consequences or any
oscillation of the reactor power. Figure 5c shows that the maximum coolant temperature
initially increased due to the decrease of the flow rate. Then the temperature decreases due
to the decline in the reactor power. The iFAST noticeably reduced the maximum coolant
temperature due to the faster power decrease. Furthermore, the maximum fuel temperature
was also significantly reduced by utilizing the iFAST device, as shown in Figure 5d. In
addition, the deeper insertion limit in iFAST yielded lower asymptotic maximum coolant
and fuel temperatures. It is clear from Figure 5 that without utilizing iFAST and with an
insertion limit of 0.5 m, the maximum boiling temperature exceeds the boiling temperature.
However, the maximum coolant and fuel temperatures remain below the failure limits for
0.1, 0.2, and 0.3 m insertion limits.

Figure 6 demonstrates the numerical results of ULOF for 1$ maximum iFAST worth.
Due to the smaller iFAST worth, the maximum coolant temperature can be sufficiently
below the boiling temperature only for a 0.1 m insertion limit or deeper. Figure 7 demon-
strates the variation of the reactivity components during the ULOF for 1$ iFAST worth. The
reactivity components shown in Figure 7 are the Doppler reactivity feedback, the expansion
feedback from both radial core expansion and axial fuel expansion, the coolant reactivity
feedback, and the inherently passive reactivity feedback from the iFAST device. Figure 7
shows relatively strong negative reactivity feedback from iFAST in response to the ULOF
without any external reactivity control.
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4.2. Unprotected Transient Overpower in ABR

A UTOP scenario in ABR is demonstrated in Figure 8. In this scenario, we assumed a
50 s of external reactivity insertion with a ramp rate of 0.008 $/s (0.4$/50 s) in the ABR core
while keeping the nominal coolant flow rate. In the UTOP simulation shown in Figure 8,
1.8$ maximum worth of the iFAST and a constant temperature drop in the intermediate
heat exchanger (IHX) are assumed. Figure 8 shows that the asymptotic maximum fuel and
coolant temperatures were sufficiently reduced by utilizing the iFAST device.

Figure 8 shows that a deeper insertion limit below 0.6 m yields smaller maximum fuel
and coolant temperatures. However, it also shows that there is no advantage for a deeper
insertion limit below 0.5 m. For 0.6 m insertion a very limited power oscillation is noticed.
Larger power oscillations are noticed for 0.5 m and deeper insertion limits. However, these
power oscillations are quickly dampened. A similar UTOP scenario, but with assuming
constant inlet coolant temperature, is illustrated in Figure 9. It was found that the iFAST
significantly reduces the maximum coolant and fuel temperatures, especially for 0.5 m or
deeper insertion limits.

In a previous study on the original FAST device [4], the continuous oscillation of
power and temperatures were noticed for more severe UTOP (1$/50 s) and 1$ worth of
the device. To demonstrate the impact of optimizing the insertion limit in removing such
oscillations, we performed sensitivity analysis on the insertion limit during the UTOP and
1$ worth of the iFAST. Figure 10 shows 50 s of external reactivity insertion with a ramp rate
of 0.02 $/s in the ABR core. The nominal coolant flow rate and a constant temperature drop
in the intermediate heat exchanger (IHX) and 1$ maximum worth of iFAST were assumed.
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The asymptotic maximum fuel and coolant temperatures were sufficiently reduced by
utilizing the iFAST device. For insertion limits from 0.5 to 0.2 m, a deeper insertion limit
yielded smaller maximum fuel and coolant temperatures. Nevertheless, clear oscillations
of power and coolant temperatures occurred for the 0.1 m insertion limit. This is because
of the refloating of the absorber module in iFAST, as shown in Figure 10b. A simple
solution to the power oscillation problem was to reduce the refloating/insertion region
by optimizing the insertion limit in iFAST. The negative reactivity feedback from iFAST
mitigates the consequences of the positive coolant reactivity feedback throughout the UTOP.
For a 0.2 m insertion limit, the small refloating of the absorber module caused limited
oscillation of the iFAST reactivity feedback and the reactor power. However, such a small
refloating was quickly dampened, as shown in Figure 10a. Meanwhile, the least variation
of maximum fuel and coolant temperatures occurred by using iFAST with a 0.2 m insertion
limit, as illustrated in Figure 10c,d. Therefore, from the viewpoint of both reducing the core
temperatures and preventing the power oscillation, utilizing iFAST, which has an insertion
limit at 0.2 m, was successful in preventing the core failure even in such a postulated severe
UTOP scenario.
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Figure 11 demonstrates a similar severe UTOP scenario and iFAST worth but with
a constant inlet coolant temperature. The reactor power was quickly doubled, and the
maximum fuel temperature exceeded the failure limit, as shown in Figure 11. This indicates
that that the oxide SFR core without a reactivity safety device will fail in such a severe
UTOP scenario. Nevertheless, in the case of utilizing iFAST, due to the increase of coolant
temperature, the absorber module in iFAST will sink and provide a relatively large negative
reactivity feedback that limits the power increase. Figure 11a shows a significant reduction
of the asymptotic power due to utilizing iFAST with a deep insertion limit. The movement
of the absorber module is shown in Figure 11b. As a result, the maximum coolant fuel
temperatures were effectively reduced, and the reactor core was protected, as illustrated in
Figure 11c,d.

4.3. Unprotected Loss of Heat Sink in ABR

We also investigated a ULOHS scenario in the ABR core where we assumed a complete
loss of the IHX over 20 s while the primary coolant flow rate remains unchanged. Figure 12
demonstrates the ULOHS in ABR with and without utilizing iFAST and 1.8$ maximum
iFAST worth. A sensitivity analysis of the insertion limit in iFAST was performed. Due
to the net reactivity feedback, the reactor power eventually goes to zero, even without
utilizing iFAST. Once again, the utilization of iFAST yielded a faster power decrease, as
illustrated in Figure 11a. The movement of the absorber module is shown in Figure 11b.
No refloating of the absorber module occurred for all the studied insertion limits in iFAST,
and a deeper insertion limit resulted in a faster power decrease. For 1.8$ maximum iFAST
worth, the maximum coolant and fuel temperatures during the ULOHS are below the
failure limit, as designed for 0.2 m or deeper, as shown in Figure 11c,d. However, for 1$
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maximum iFAST worth, the maximum coolant temperature reaches the boiling limit even
for a 0.1 m insertion limit, as shown in Figure 13.
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5. Conclusions

Improved FAST device (iFAST) design is proposed. In iFAST, an insertion limit
is added based on an optimized insertion region of the absorber module. This is an
effective solution to the power oscillation problem that was previously reported for certain
ATWS events, especially the UTOP. The paper demonstrates the effectiveness of iFAST
in protecting the oxide SFR core from damage during ATWS. Practically, we performed
sensitivity analysis on the insertion limit and tested 1.8$ and 1$ maximum worth for the
iFAST device. Numerical simulations of ULOF, UTOP, and ULOHS were carried out for the
1000 MWth advanced burner reactor (ABR), which is an oxide-loaded SFR. The movement
of the absorber module is fully passive due to the variation of coolant temperature, which
demonstrates the uniqueness of the iFAST device as it directly affects the CTC. This study
shows that optimizing the insertion limit and the maximum worth of the device is very
important to guarantee reactor safety during severe ATWS events. Particularly, they must
be optimized to deny any continuous refloating of the absorber module, even in a severe
UTOP case. The oscillation of power during a severe UTOP (1$/50 s) is removed by
utilizing a 0.2 m insertion limit and 1$ maximum worth of iFAST. Such values of worth and
insertion limits were successful for ULOF. However, the maximum coolant temperature
reached boiling temperature for ULOHS. Nevertheless, the iFAST device with a 0.2 m, or
deeper, insertion limit and 1.8$ maximum showed promising potentials in protecting the
ABR core at EOL during ULOF, ULOHS, and 0.4$/50 s UTOP.
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