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Abstract: X-ray CT imaging provides a 3D view of a sample and is a powerful tool for investigating
the internal features of porous rock. Reliable phase segmentation in these images is highly necessary
but, like any other digital rock imaging technique, is time-consuming, labor-intensive, and subjective.
Combining 3D X-ray CT imaging with machine learning methods that can simultaneously consider
several extracted features in addition to color attenuation, is a promising and powerful method
for reliable phase segmentation. Machine learning-based phase segmentation of X-ray CT images
enables faster data collection and interpretation than traditional methods. This study investigates the
performance of several filtering techniques with three machine learning methods and a deep learning
method to assess the potential for reliable feature extraction and pixel-level phase segmentation
of X-ray CT images. Features were first extracted from images using well-known filters and from
the second convolutional layer of the pre-trained VGG16 architecture. Then, K-means clustering,
Random Forest, and Feed Forward Artificial Neural Network methods, as well as the modified
U-Net model, were applied to the extracted input features. The models” performances were then
compared and contrasted to determine the influence of the machine learning method and input
features on reliable phase segmentation. The results showed considering more dimensionality has
promising results and all classification algorithms result in high accuracy ranging from 0.87 to 0.94.
Feature-based Random Forest demonstrated the best performance among the machine learning
models, with an accuracy of 0.88 for Mancos and 0.94 for Marcellus. The U-Net model with the linear
combination of focal and dice loss also performed well with an accuracy of 0.91 and 0.93 for Mancos
and Marcellus, respectively. In general, considering more features provided promising and reliable
segmentation results that are valuable for analyzing the composition of dense samples, such as shales,

which are significant unconventional reservoirs in oil recovery.

Keywords: 3D X-ray computed tomography; U-Net convolutional neural network; feed-forward
neural network; random forest; 3D imaging of shale samples; Mancos; Marcellus

1. Introduction

Shales are important unconventional oil reservoirs. In these low permeability forma-
tions, hydrocarbons can be extracted using hydraulic fracturing, often enhanced with the
injection of CO, referred to as CO;-enhanced oil recovery (CO,-EOR) [1]. As hydrocarbon
distribution can be correlated with the inorganic and organic constituents of the formation,
understanding the mineralogy and mineral distribution in these samples is critical for
assessing the gas capacity. Studying mineral distribution in these formations can also
help with the prediction of fracture formation and hydrocarbon recovery as fractures may
preferentially form in calcite [2] or clay-rich regions [2—4]. In CO,-EOR systems, fracture
aperture may be dynamic as minerals dissolve and precipitate following CO, injection.
This process, however, is complex and not well understood where reactions may enhance
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or reduce fracture permeability, influenced by the distribution of reactive minerals on the
fracture surface [5,6].

X-ray computed tomography (X-ray CT) is a powerful means of imaging that can
facilitate the 3D non-destructive characterization of geologic samples. While historically
high-resolution X-ray CT imaging of samples was only possible using synchrotron sources,
advancements in the development of laboratory and benchtop instruments have broadened
access to high-resolution X-ray CT imaging in the form of X-ray mico- and nano-computed
tomography (X-ray nano CT) instruments. These X-ray CT instruments can provide a three-
dimensional (3D) depiction of an object with high resolution (up to 100 nanometers) with
a relatively large field of view (FOV) compared to other 3D imaging techniques [7]. This
scale of information is typically only widely available in the laboratory using 2D imaging
approaches such as scanning electron microscopy (SEM). 3D X-ray CT imaging, however,
offers an additional depth of information that is not available with 2D-based microscopy
analysis [8]. This can facilitate the analysis of the 3D nature of the sample, such as pore size
distribution and connectivity [9]. The use of 3D X-ray CT imaging instead of 2D imaging
also eliminates stereological errors generated by conventional 2D microscopy analysis used
for porous media samples, allowing more accurate analysis of the samples [8,10].

X-ray CT images consist of voxels of varying grayscale intensity correlated to the
X-ray attenuation of the material. Variations in attenuation result due to differences in
material properties including density and atomic number. Traditional image processing
and segmentation rely on the similarity or intensity (or both) of the pixels to delineate
the boundaries of the objects [11]. Segmentation of images by attenuation can facilitate
quantitative image processing of sample properties and characteristics including porosity,
surface area, and mineral volume fractions [12-14]. It should be noted, however, that not all
mineral phases can be segmented using attenuation alone due to close or overlapping x-ray
attenuation coefficients and partial volume effects [15-17]. In addition, beam hardening
can make the grayscale attenuation of a given phase differ depending on the location of
the phase within the sample [8], especially in the borders of the images. This is particularly
noted in dense samples such as shale cores. These challenges make image segmentation,
even into groups of minerals with similar attenuations, time-consuming, labor-intensive,
and subjective. One practical alternative is utilizing some advanced techniques such as
machine learning.

Machine learning methods utilize mathematical models to excavate nonlinear underly-
ing patterns in a dataset, which helps a computer system make predictions or classifications
on the dataset [10,18]. Within the petroleum industry and geosciences, machine learning
models have been used in various applications, such as fluid transport analysis [19], rock
typing [20,21], reservoir characterization [22], and multiscale imaging to quantify proper-
ties of shale source rocks [23], as well as phase segmentation [24] of SEM images of a shale.
A few studies have even focused on segmenting different mineral phases within X-ray CT
images using machine learning methods [8,10,15,25-27]. However, the effectiveness and
reliability of machine learning methods to differentiate, quantify and extract features from
X-ray CT images of shales are not well understood but could provide a valuable approach
to image processing in the petroleum and geosciences field.

Machine learning-based phase segmentation makes it possible to simultaneously
consider several extracted features in addition to the voxel attenuation for a more re-
liable phase segmentation. This ability would be valuable when several phases have
similar/overlapping attenuation as well as in images with spatial variations in attenuation
for a given phase. In these cases, additional features of phases may be key to individual
phase segmentation [15,25]. While there exist works at the intersection of core imaging
and machine learning, no study has yet investigated the potential improvement of phase
segmentation in shale X-ray CT images using filtering techniques, as additional input,
along with machine learning models to reliably segment different phases. This study
investigates the performance of several filtering techniques with three machine learning
methods and one deep learning method to assess the potential for reliable feature extraction
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and pixel-level phase segmentation of a Marcellus and a Mancos shale. This study will
help geologists to obtain the different distinguishable phases in 3D X-ray CT images to
provide practical techniques for reliable phase segmentation. To our knowledge, it is the
first time that the task of distinguishing mineral phases of 3D X-ray CT images is integrated
through both pixel-level classifications using machine learning models along with filtering
techniques and image segmentation method using a deep learning model on shale samples.

2. Materials and Methods
2.1. Mancos and Marcellus Shale Samples

Shale core samples 1” in diameter and 2" in length from the Marcellus and Mancos
formations obtained from Kocurek Industries were used in this work. The Marcellus
shale is an organic-rich shale formation in the northeastern US [28]. According to the U.S.
Geological Survey (USGS) assessment, the Marcellus Shale contains about 84 trillion cubic
feet and 3.4 billion barrels of undiscovered, technically recoverable natural gas and natural
gas liquids, respectively. The Mancos shale formation is in the Midwestern US and is a
major source of rock for oil and/or gas in the Rocky Mountain Region. It is also estimated
that Mancos contains 66.3 trillion cubic feet of shale gas, 74 million barrels of shale oil, and
45 million barrels of natural gas liquids in addition to some unproved and undiscovered
recoverable resources based on the U.S. Geological Survey [29].

The mineralogical analysis obtained by XRD analysis in [3] is listed in Table 1. The
Marcellus shale is predominantly calcite, quartz, and pyrite. It should be noted that the clay
minerals were not detected in XRD. This indicated their minor concentrations with respect
to the major calcite phase. The Mancos formation has a larger variation in mineralogy
and is 57.63% quartz with approximately equal clay (Muscovite and Kaolinite), carbonate
(dolomite and calcite), and feldspar (microcline and albite) fractions, and minor pyrite.

Table 1. XRD composition analysis of the shale samples (Volume percentage of minerals).

Sample/

. Quartz Pyrite Calcite Muscovite Kaolinite = Microcline Albite Dolomite
Mineral
Mancos 57.63 0.22 6.88 9.68 3.37 7.45 8.11 6.66
Marcellus 2.97 0.33 96.70

2.2. Sample Preparation and Image Acquisition

Sub-samples for each formation were extracted from 1” core sample for high-resolution
X-ray CT imaging by Carl Zeiss Microscopy Customer Center Bay Area (Pleasanton).
0.8 mm X 1 mm sections were milled from the top 5mm of each core sample using a laser
and mounted on pins (Figure 1). X-ray CT images of each sample were then collected
using an Xradia 620 Versa (Zeiss Microscopy Customer Center Bay Area). The sample
scan parameters are shown in Table 2 where the X-ray energy of 60 kV was utilized to
provide better imaging of the less dense features of the sample [25]. Almost all parameters
are the same for both samples, only the filter and exposure time are different. Projections
were reconstructed using the Reconstructor Scout-and-Scan Control System software and
exported as TXM and tiff format files. The resulting images are used in this study.
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Figure 1. Marcellus and Mancos core samples were extracted and mounted on pins to scan (Carl

Zeiss Microscopy Customer Center Bay Area).

Table 2. Experimental conditions of the X-ray CT scanning (Zeiss Microscopy Customer Center

Bay Area).
Sample Name Marcellus Mancos
Voltage 60 kV 60 kV
Power 10W 10W
No. of projections 2201 2201
Spatial resolution 0.8 pm 0.8 pm
Bin 2 2
Objective 20x 20x
Filters LE4 LE2
Exposure time 20s 9s

2.3. Classification Experiment

This study explored mineral phase segmentation in X-ray CT images of shale sam-
ples using machine/deep learning with filtering techniques to provide image features as
additional inputs. Figure 2 shows the experimental design. The workflow includes defin-
ing input variables from cross-sectional slices of the original X-ray CT images, followed
by machine learning and deep learning for phase segmentation. The machine learning
section in the workflow of the study included three parts (three different sets of input
images), each of which considered different extracted features as the input data for the
machine learning methods. These stacked input variables were introduced to the Random
Forest (RF), K-means clustering (K-means), Feed Forward Neural network (FNN), and the
U-Net deep learning models to train and evaluate their computational performance and
accuracy. Each machine learning model was trained and cross-validated for each sample
using the 78,018,066-pixel data (81 x 994 x 969 pixels). For the deep learning method,
data augmentation was also applied to increase the amount of data by augmenting images
including flipping, zooming, shifting, and rotation. The associated images were cropped
to 128 x 128-pixel size images to be used for the U-Net deep learning method. After data
augmentation, 11,000 slices with 128 x 128-pixel size were provided.
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Figure 2. The (workflow) schematic of mineral classification using different filters as input variables
and three machine learning approaches.

2.3.1. Image Processing and Feature Extraction

Mineral phases can have distinguishable features in images, such as texture and grain
size. In feature-based classification, images can be represented in additional dimensions
(i.e., extracted feature images) which helps to better explore the similarities and differences
of different phases to classify phases in separate classes. In this study, different types of
features were extracted from the 2D cross-sectional slices of X-ray CT images, and phase
classification was performed leveraging these features in addition to attenuation values.
Two different feature extraction strategies were utilized (Figure 2) to create feature maps,
which are briefly discussed in the following sections.

Filtering Techniques

Filters were applied to both Mancos and Marcellus images using the OpenCV [30] and
Scikit-image [31] filters in Python to provide feature maps representative of texture, grain
size, edges, entropy, and abnormality, as well as color attenuation. Several well-known
filters, including Gaussian, Median, Sobel (45 degrees, vertical and horizontal), and Gabor
(Table 3), were used. Each filter convolutes the original image to perform specific tasks such
as blurring (e.g., the Gaussian filter), edge detection, or texture extraction (e.g., the Gabor
and Sobel filters). For example, the Gaussian filter convolutes the image using specific
standard deviations (o), creating feature maps in different scales. Filtered images with
higher standard deviation (more blurred) lose details of smaller grains while those with
smaller standard deviations preserve more features from the smaller grains. The difference
in the two images provides new information that can be also used as input variables to the
machine learning models. In this work, edge features and textures were extracted using
Sobel and Gabor filters (horizontal and vertical), while blobs and corners were extracted
with a difference of Gaussians, the determinant of the Hessian matrix, and Laplacian filters.
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Table 3. Filters used to extract features and their associated kernel size and standard deviations (SD).

Filter Name Kernel Size SD Task Abbreviation
Median 3x3 - denoising and integrating phases -
Gaussian 3x3 1 denoising and integrating phases -
Difference of Gaussians 1-10 3x3 1,10 Detecting smaller features DoG 1-10
Difference of Gaussians 1-5 3x3 1,5 Detecting smaller features DoG 1-5
Difference of Gaussians 2-5 3x3 2,5 Detecting smaller features DoG 2-5
Difference of Gaussians 1-2 3x3 1,2 Detecting smaller features DoG 1-2
Sobel (45 degrees) 3x3 - Detecting edges and textures Sobel-45
Sobel (Vertical) 3x3 - Detecting edges and textures Sobel-V
Sobel (Horizontal) 3x3 - Detecting edges and textures Sobel-H
Laplace 3x3 - Detecting blobs and edges -
Difference of Hessians 3x3 3,5 Detecting blobs and corners DoH
Gabor (Horizontal) 3x3 - Detecting textures Gabor-H
Gabor (Vertical) 3x3 - Detecting textures Gabor-V

Extracting Filters from a Deep Convolutional Layer

One promising technique for feature extraction is applying pre-trained filters obtained
from a trained deep learning model. In this study, the trained filters obtained from the
second convolutional layer of the first block in the visual geometry group (VGG16) net-
work [32] were applied to extract image features. The VGG16 convolutional neural network
is widely used in a wide variety of fields because of its high generalization capability, sim-
ple structure, and accuracy where is it among the top-5 of models tested on ImageNet, a
dataset of over 14 million images belonging to 1000 classes [32]. As a result, the VGG16
network has learned a rich array of feature representations for a wide range of images.
Here, features were extracted from X-ray CT images using the second convolutional layer
of the first block of VGG16 with 64 filters. This layer was selected since it is the deepest
layer of VGG16 which its output feature images will have the same size as the original
input CT images. As a result, same-size feature images were provided. In this study, the
filters of this block were applied to each X-ray CT slice to extract features for machine
learning models.

2.3.2. Image Segmentation and Labeling

Segmentation refers to the grouping of pixels into several classes by identification and
isolation of pixels that have the same features into a single category. The most common
segmentation method is based on the histogram analysis of grayscale intensities of the
pixels in the image which provides the distribution of the grayscale level of each pixel
in the image. In X-ray CT images, this provides a relative identification of the different
phases contained in the image. Figure 3 shows the histograms of gray intensities for a 2D
slice from the Mancos and Marcellus datasets. The two peaks indicate a clear threshold
value for separating two classes, which in this case are the background (left peak which
has zero intensity) and the sample (right peak). Further segmentation and phase labeling
were carried out manually based on knowledge of phases in the sample (their attenuation
grayscale, texture, and size characteristics) and characteristics of these phases from pro-
cessed SEM, BSE, and EDS images in prior work [3] and XRD data (Table 1). Figure 4 shows
an example of labeled images and their corresponding colors and phases (Furthermore,
reader are referred to 3D view videos (S1 to S6) of both samples in the Supplementary
Material which show the samples and segmented mineral phases). For example, in the
Marcellus sample, phases were considered as grains (mostly quartz), matrix (which was
mostly calcite and clays), pyrite, organic matter, and background. Labels were assigned by
manually segmenting, correcting, and post-processing of 2D slices. In total, 81 2D slices
(994 x 969-pixel images, i.e., 78,018,066 pixels in total) from the X-ray CT image were
segmented, in which, 60 labeled X-ray CT images were used to train the classifiers and the
21 images used to evaluate the performance of trained models.
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Figure 3. Representative histograms for 2D slices from Mancos and Marcellus X-ray CT images.

Figure 4. Labeled images and their corresponding phases and colors. (a) Mancos sample; (b) Marcellus sample.

2.3.3. Machine Learning

Machine learning algorithms rely on sets of features to train the classification models.
Once trained, models can be used to identify features in an unknown dataset and group
them into respective classes. Machine learning methods in general fall into unsupervised
and supervised categories. Here, three classification machine learning algorithms are
implemented. Of these, k-means is unsupervised, while RF and Feed Forward Artificial
Neuron Network are non-linear supervised classification algorithms. The theories and
parameters for the considered algorithms are briefly described in this section.

K-Means Clustering

K-means clustering partitions a collection of data into a k number group of data to
make respective clusters. It then calculates the k centroid and assigns each point to the
cluster with the nearest centroid from the respective data point [33]. There are several ways
of calculating the similarities between pixels, in this study we used Euclidean distance to
define the most similar centroid. Once the grouping is done it recalculates the new centroid
for each cluster and a new Euclidean distance between each center and each data point to
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assign the points in the cluster with minimum Euclidean distance. As such, K-means is
an iterative algorithm in which it minimizes the sum of distances from each object to its
cluster centroid [33].

Here, K-means clustering was implemented using the Scikit-learn library [34] in
python. The K was considered 3 to 9 to find the best (k = 5) number of clusters. In addition,
the epoch varied from 100 to 1000, the initialization method was set to “K-means++" to
speed up the algorithm convergence. The “n-initint” was set to 10 and the best results were
kept, “n-jobs” was set to -1 for parallel computation, and the algorithm was set to “Elkan”.

Random Forest

Random Forest (RF) [35] is an ensemble learning method for classification and regres-
sion consisting of multiple individual trees. In the training step, observations are randomly
sampled from the training dataset to build an individual classification/regression tree and
the best feature to split a node is selected within a randomly picked subset of features to
further add randomness to the system. This process is repeated for a certain number of
trees (ntree) and different randomly selected sets of input features (mtry). The overall goal
of the process is to decrease the variance and improve the training accuracy. Then, the
predictions are made for the remaining observations based on a weighted vote across all
trees. The hierarchical structure of RF makes it an appealing method for phase segmenta-
tion where the data are largely imbalanced (i.e., some phases have more frequency than
minority classes).

In this study, the RF model was implemented using the “Random Forest” Scikit-learn
library [34]. In the first run, a forest of 100 random trees was created (i.e., ntree = 100);
each tree had unlimited depth and was grown without pruning. At each node, m input
variables (estimated as the square root of the numbers of predictors, i.e., mtry ~ 4 for type2
input variables and mtry ~ 8 for type3) were randomly selected among all input variables
to training the model. In this study, only two main hyperparameters, ntree and mtry, were
fine-tuned using random search, and the depth of the tree remained as the default settings
in the RF classifier in the Scikit-learn library. Then the random search [36] was applied
to fine-tune the hyperparameters of RF (i.e., mtry and ntree) by grid searching between
the number of trees in the range of 100 to 700 trees and the number of randomly selected
input variables at each split (i.e., mtry) in the rage of 2 to 8, resulting in the final forest
with ntree = 200 and mtry = 2 in each node for type2 variable inputs and ntree = 300 and
mtry = 2 for type3 variable inputs.

Feed Forward Neural Network

Feed Forward Neural Networks can learn and model non-linear and complex rela-
tionships, which makes them a compelling approach for phase segmentation since high
non-linearity can exist among input features and the target classes. A network consists
of an input layer, hidden layers, and a layer of output neurons with multiple activated
perceptrons stacked together and associated weights and biases. Adjacent layers are fully
connected, and results obtained from each layer are fed into the next layer through a
non-linear transformation called an activation function. Neurons of the input layer receive
the input features, process them, and pass the processed information through the hidden
layers to the last layer. The output of the last layer adjusts based on the predefined loss
function using backward propagation by changing the weights and biases. Thus, the
network trains by adjusting the weights to predict the correct class label of the given inputs
for the classification task.

In this study, we used a shallow Feed Forward Neural Network as it was easier to
be trained and fine-tuned on a small dataset. Based on the recommendations of previous
studies [37,38], several structures were randomly selected and tested, including one or two
hidden layers with a various number of neurons (i.e., 2 x 14 and 2 x 64, for type 2 and
type 3 input variables, respectively), and their corresponding performance compared. For
the type 1 input variable, the best number of hidden neurons was 32. Finally, a three-layer
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neural network with a single hidden layer consisting of a two x number of input neurons
was selected as the hidden units.

TensorFlow library [39] was used to develop the Feed Forward Neural networks.
For this study, the input layer consisted of N neurons, which corresponds to the number
of input features, and the output layer included M neurons, which is the number of
segmented phases in each sample, with a SoftMax activation function. A single hidden
layer consisting of K neurons was selected as the hidden units. For example, the input layer
consisted of 14 neurons for type 2 variable inputs and 64 for type 2 variable inputs, each
corresponding to one of the selected input variables, which was connected to the hidden
layer through a rectified linear unit (ReLU) activation function. In addition, each output
neuron represented a distinct phase identified by having maximum probability obtained
from a SoftMax activation function. The Categorical cross-entropy and focal loss and
dice functions were considered as loss functions to adjust weights and biases, and Adam
(adaptive moment estimation) was selected as the optimizer. We also used early-stopping
callbacks to avoid overfitting. Fine-tuning was carried out using a fine-tuning function
in the TensorFlow library where the numbers of epochs varied from 100 to 1000 and the
learning rate (LR) from 107° to 10° (the best LR was 0.0001).

2.3.4. Deep Learning Model (U-Net)

U-Net is a fully connected Convolutional Neural Network (CNN) method that was
initially developed for biomedical image segmentation by [32]. It is comprised of two
main sections: an encoder and a decoder. The encoder contains several blocks which
take an input and apply two convolutional kernels of 3 x 3, followed by a rectified linear
transformation (ReLU) and a max-pooling operation with a stride of 2 x 2. The reduced
spatial information with increased feature channels in the encoder path allows the network
to learn the complex structure effectively due to propagating context information to the
higher dimension. The decoder section consists of several expansion blocks, each of which
passes the input to two convolutional layers followed by a 2 x 2 up-sampling layer. To
maintain symmetry, the channels in the CNN layers are cut into half after applying each
block. In the decoder, the size of the image gradually increases, and the depth gradually
decreases. Finally, the last layer feature maps pass through a1 x 1 CNN layer with M
feature maps where M is the same as the number of classes desired.

Here, 2D slices from the original X-ray CT images and their corresponding segmented
maps were used to train the network. The focal (equation 1) and dice loss (equation 2)
functions were applied, along with categorical cross-entropy as a loss function to adjusted
weights and biases, and their performance to training a multi-class classifier model was
compared. The focal loss function is designed to address the class imbalance by down-
weighting easy classes such that their contribution to the total loss is small even if their
number is large. Thus, it focuses on training a sparse set of hard classes.

Focal Loss(pt) = —at(1— pt)” log(pt) 1)

where p; is the probability of a given class, ¥ > 0, and when y = 1 focal loss works like

cross-entropy loss function, and « range from [0, 1]. In this study, ¢ =2 had the best

performance and « was set to 1. Dice loss based on [40,41] has also been adapted as a loss

function:

2xXYxY,+1)
Y+Y,+1)

where Y is labeled data and Y, is predicted values. Adam (adaptive moment estimation)
was selected as the optimizer, and similar to Feed Forward Neural network, early-stopping
was used to prevent overfitting. In addition, fine-tuning was applied using the fine-tuning
function in the TensorFlow library where the number of epochs varied from 100 to 1000
(epoch = 500 was the best one), and the learning rate (LR) from 10~ to 10° (LR = 0.0001

Dice Loss(Y; Yp) =1 — ( )



Energies 2021, 14, 4595

10 of 21

was the best one). Note that the datasets were normalized into an array with an interval of
[0, 1] so that the models can perform faster.

3. Model Evaluation

To evaluate the prediction performance and the trained models, the multiclass version
of the Fl-score, Intersection over Union or overall goodness-of-fit (IOU), and overall
accuracy of each method were determined and compared. Model evaluation was carried
out using the test image set against the ground truth images.

The Fl1-score based on [40,41] is identified as

2 X Precision x Recall

Fl1 =
(Precision + Recall) @)
TP
Precision = —————— 4
recision (TP +FP) (4)
TP

Recall = ———

= TP+ EN) ©)

where TP is true positive prediction, FP is false positive prediction, and FN is false-negative
prediction. To calculate the multiclass version of the F1-score, each class was considered
individually as the positive class, with the other classes considered as negative classes,
to get the binary Fl-score for all classes. Then, the multiclass F1-score was calculated by
averaging the binary F1-scores of all classes.

IOU evaluates the overlap of the predicted test image set and the ground truth images
using the following equation:

Area of overlap

IOU =
v Area of union

(6)
In addition, Overall accuracy was calculated based on the total number of true pre-
dicted values over the total number of pixels.

4. Results and Discussion
4.1. Comparison of the Model's Performance and the Prediction Results

This section compares and contrasts the performance of all models. Figures 5 and 6
show the test performance of pixel-wise phase segmentation of all the models with
21 stacked 2D image slices (994 x 969 pixels) that were randomly chosen from the 3D
X-ray CT image stack. All three machine learning methods (RF, FNN, and K-means) were
trained and tested on the original dataset (OI), 14 extracted features (14F), and 64 extracted
features (VGG16F). The latter was obtained from pre-trained filters of the convolutional
layer of VGG16 architecture.
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Figure 5. Overall performance of different machine learning methods and U-Net deep learning
method on perdition of different phases in the Mancos dataset; (a) Overall performance of the RF
model, (b) Overall performance of the FNN model, (c) Overall performance of the K-means model,
(d) Overall performance of the U-Net model.
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Figure 6. Overall performance of different machine learning methods and U-Net deep learning
method on perdition of different phases in Marcellus dataset. (a) Overall performance of the RF
model, (b) Overall performance of the FNN model, (c) Overall performance of the K-means model,
(d) Overall performance of the U-Net model.
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In addition, the U-Net model was trained with different loss functions (i.e., categorical
cross-entropy, focal and dice losses). Focal and dice losses were added to improve the
prediction of minority phases in addition to preserving the accuracy of the majority classes.
In the first scenario (S1) for the U-Net model, loss and metric were set to the defaults of the
original U-Net method (i.e., categorical cross-entropy as loss function and accuracy as a
metric). For the second scenario (52), the metric was set to mean IOU and F1-scores, and
the loss function was set to focal loss. The linear combination of focal and dice loss (dice
loss + 2 x focal loss) was set as a loss function for the third scenario (S3), and the metric
was similar to S2. To select the best coefficient for focal and dice losses in the third scenario
(S3), several coefficients were implemented using random search. The linear combination
of loss functions (coefficient = 1 for dice loss and coefficient = 2 for focal loss) showed
the highest IOU, F1-score, and accuracy. In addition, the class weights for dice loss were
obtained based on the fraction of each class with respect to the total number of pixels,
which reduced the influence of the imbalance dataset on the models” performance.

As shown in Figures 5 and 6, using only the original image (OI) as input, the accuracy
of the machine learning models was less than that for feature-based machine learning image
segmentation (i.e., 14F and VGG16F) for both Mancos (Figure 5) and Marcellus (Figure 6)
datasets. Considering IOU and F1-score, which includes a weighted prediction precision
for each class, reveals that using only the original image (OI) for phase segmentation is not
reliable and including more input features might result in a more robust prediction. Figure 6
also indicates all machine learning models achieved a decent accuracy with 14F inputs
outperforming the Ol and VGG16F.

This higher performance for 14F can be attributed to the fact that many filters were
examined visually, and the top 14 filters were selected for the segmentation task. These
results demonstrate the importance of feature engineering and also selecting the top
features for the machine learning classification tasks. The obtained results are in good
agreement with the previous study conducted by [15] on X-ray images of several sandstone
samples which showed the accuracy of machine learning methods was largely affected by
feature vector selection and was improved by utilizing more features obtained from some
filtering techniques.

Among machine learning models implemented on both datasets (Figures 5 and 6),
the RF model outperformed other methods in terms of accuracy, IOU, and F1-scores. On
the other hand, K-means achieved the lowest performance on this dataset since it is an
unsupervised model which may not perform well on noisy data due to spatial variations in
attenuation of a given phase, especially near the borders of the X-ray CT images. The U-Net
(U-Net, S3) model achieved the most accurate results in general. This finding is in line with
the previous study [24] that showed RF and U-Net methods had the best performance for a
mineral segmentation task on SEM images of a shale sample compared to other machine
learning models.

In addition, the results for the U-Net deep learning method using different metric and
loss functions (S1, S2, and S3) are promising that are in good agreement with previous works
using focal loss and dice losses [42,43]. The higher performance of the deep learning method
compared to machine learning methods is that the deep learning pixel segmentation better
identifies patterns in complex image datasets. It eventually uses these patterns to perform
classification. Another reason is that it has a dynamic (online) process of learning and
training for adjusting its feature weights and biases. In addition, compared to Feed
Forward Neural network, U-Net utilizes deep layers which helps it to project data to a
higher dimension (more features). As a result, this image segmentation technique is a more
powerful tool for partitioning challenging image datasets, which may include a variety
of artifacts and noises, as well as grayscale similarities which previously are difficult to
segment by thresholding or any other traditional approaches.

In general, the results obtained from the comparison of different methods (Figures 5 and 6)
show the U-Net model with the combination of focal and dice loss (S3) and the RF with
14 features (14F) outperform other methods in terms of accuracy (0.88 for RF and 0.91 for
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U-Net on the Mancos dataset, and 0.94 for RF and 0.93 for U-Net on Marcellus dataset),
IOU (0.67 for RF and 0.75 for U-Net on the Mancos dataset, and 0.71 for RF and 0.71 for
U-Net on Marcellus dataset), and F1-score (0.78 for RF and 0.84 for U-Net on the Mancos
dataset, and 0.81 for RF and 0.80 for U-Net on Marcellus dataset) on both test samples. This
is in good agreement with previous studies [11,24]. In the study conducted by [11], the
U-Net method that was applied on SEM images of Duvernay Shale samples showed an
IOU of 0.9 indicating the power of the U-Net deep learning method for phase segmentation
of core shale images over other machine learning methods.

Figures 7 and 8 show IOU scores for the perdition of different phases for the Mancos
dataset and Marcellus datasets. In Figure 7, ‘0" is organic matter, ‘1" is the
Kaolinite + Dolomite + Calcite group, ‘2" is background, ‘3" is Quartz + Illite/Smectite +
Albite group, ‘4’ is pyrite. In Figure 8, ‘0 is organic matter, ‘1" is the Muscovite + Microcline
+ Albite +Dolomite + Quartz group, ‘2 is background, ‘3" is Calcite + clay group, 4 is pyrite.
The results show that major phases such as grains (mostly quartz), matrix (which was
mostly calcite and clays), pyrite, and background were correctly detected in almost all cases.
However, organic matter (class “1’) was not predicted accurately due to misclassification
with the background. Both background and organic matter classes share similar comprising
features including black grayscale value with no specific pattern or texture.
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Figure 7. IOU score for the perdition of different phases for the Mancos dataset (‘0" is organic matter,
‘1’ is the ‘Kaolinite + Dolomite + Calcite” group, ‘2 is background, ‘3’ is ‘Quartz + Illite/Smectite +
Albite” group, ‘4’ is pyrite). (a) IOU score for the RF model, (b) IOU score for the FNN model, (c) IOU
score for the K-means model, (d) IOU score for the U-Net model.

As shown in Figures 7 and 8, considering extracted features (e.g., 14F and VGG16F)
in addition to color attenuation improved samples” IOU score in almost all classes. The
increase in IOU was as low as 4% or as high as 45%. This indicates the power of feature-
based machine learning which is particularly valuable for a small dataset where applying
deep learning methods and trainable filtering techniques is difficult or even impossible.
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Figure 8. IOU score for the perdition of different phases for Marcellus dataset ("0’ is organic matter, ‘1’
is the ‘Muscovite + Microcline + Albite +Dolomite + Quartz” group, 2" is background, ‘3" is ‘Calcite +
clay’ group, ‘4’ is pyrite). (a) IOU score for the RF model, (b) IOU score for the FNN model, (c) IOU
score for the K-means model, (d) IOU score for the U-Net model.

Compared to the RF model with the original image (OI) and 14 features (14F), the
predicted images by the U-Net model exhibited a better performance (less scatteredness,
artifacts, and misclassification) in terms of prediction of different classes, especially for
isolated small particles. It is because the U-Net model takes the spatial information of
the input data along with attenuation (grayscale) information. The results are in good
agreement with [11,24].

4.2. Applying Trained Machine Learning and U-Net Models on an Unseen Sample

In this section, an example of applying machine learning and U-Net deep learning
models for phase segmentation of unseen X-ray CT images is discussed and visualization
is provided. A total of 963,186 pixels were fed into the trained models to visually compare
the results. The ground truth (labeled data) and predicted images are shown in Figure 9
(Marcellus) and Figure 10 (Mancos), respectively. In both figures, the label data is shown
along with the output from the models. Only the top-performing methods are selected
and shown for brevity, for example, for RF and FNN, the results with original images
(OI) as input as well as VGG16 filters (VGG16F) as input are shown while for U-Net the
scenario 3 (S3) is presented. As shown in these figures, the difference between simple and
feature-based semantic segmentation is well demonstrated on visualization of pixel-wise
semantic segmentation obtained from the RF and FNN models (Figures 9 and 10). It is clear
that adding extra features to machine learning models improved the prediction results.
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(a) (b) (c)

(d (e) ®)

Figure 9. Output phase segmented images using ML methods with filtering techniques and deep learning method for
Marcellus sample. (a) label image, (b) FNN model using original image as input (OI), (c¢) RF model using original image as
input (OI), (d) U-Net considering focal and dice loss as the loss function (S3), (e) FNN model using 14 extracted features as
input (14F), (f) RF model using 14 extracted features as input (14F).

(a) (b) ()

(d) (V) )

Figure 10. Output phase segmented images using machine learning methods with filtering techniques and deep learning
method for the Mancos sample. (a) label image, (b) FNN model using original image as input (OI), (c) RF model using
original image as input (OI), (d) U-Net considering focal and dice loss as the loss function (S3), (e) FNN model using 14
extracted features as input (14F), (f) RF model using 14 extracted features as input (14F).
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In addition, results show that the machine learning with different filtering techniques
removed artifacts (such as the blue ring in Figure 9) and improved prediction near the
borders in both samples. As such, the special variation in color attenuation of a given phase
which prevents a correct phase segmentation, especially on the edges of X-ray CT images,
is not a prohibitive issue and can be addressed. The result of U-Net with Focal and dice
loss showed the best segmentation among all methods which improved the reliability of
prediction of minority classes and removed noise from the predicted segmented images.
This is in good agreement with previous studies [42,43]. In general, a comparison of
predicted results in both samples shows that filtering techniques and the deep learning
method improve the predation of borders of each phase (edges).

4.3. Core Segmentation and Analysis

The X-ray CT image dataset of the Mancos and Marcellus core samples were processed
and segmented using the best-trained model (U-Net, S3) with python programming lan-
guage. Visualization of segmented pyrite, matrix, grains, organic matter, and background
within the cores are shown in Figure 11 for both samples. As shown, the most prevalent
component of the Marcellus sample is calcite (red color) which is confirmed by XRD data.
In Mancos, the quartz-dominated matrix is the most dominant phase that also agreed with
the XRD data.

Figure 11. The 3D view of segmented core samples; (a) Mancos and (b) Marcellus samples.
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Segmented images may be used to extract useful data such as grain size distributions
or mineral volume fractions. Here, the grain size distribution analysis of granular minerals
was performed to determine the relative size of the most abundant granular mineral
phase (blue color in both samples) presented within both samples (Figure 12). The Image]
plugin was used to calculate the area, size, and spatial information of the segmented blue
phase within predicted images. Then, each grain diameter was calculated to plot the
diameter distribution.
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Figure 12. Grain size distribution of granular minerals within samples imaged with X-ray CT; (a) the distribution for
Mancos sample, (b) the distribution for Marcellus sample.

Figure 12 depicts the grain size distribution of granular minerals (blue color in both
samples) within both Mancos and Marcellus images and the predicted ones obtained from
the RF and U-Net (S3) models. The analysis of grain distribution confirms the previous
data and suggests although the predicted grain distribution of both methods is similar to
the true grain distribution, the U-Net is more similar to ground truth data. It is particularly
more evident for the Mancos sample.

4.4. Feature Importance

The RF model, which had the best performance among all machine learning methods,
was used to determine the most important variables for pixel-wise phase segmentation
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based on the “mean decrease in Gini Impurity”. This metric was chosen due to its robust-
ness in ranking the variable importance.

The rank of each variable at each dataset was obtained using Gini Impurity and
the final variable importance ranking was calculated by averaging the results over both
samples. Figure 13 shows the relative rank of variable importance based on a decrease in
Gini Impurity for the classification task. The higher the number, the more important the
filter. Higher numbers show a higher contribution to successful classification. As shown in
the Figure, the Median filter had the highest importance followed by the original image
and difference of the Gaussian filter. The feature importance results for VGG16F extracted
features showed “filter 32” has the highest contribution to the classification tasks. VGG16
has 64 filters which are named from 1 to 64. In this figure, the most contributing filters are
ranked and named from F-4 to F-32.
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Figure 13. The rank of the extracted features is based on their contribution to improving segmentation (vertical variables
are filter names, for example, F-32 is the 32nd filter of the second convolutional layer of VGG16, and horizontal numbers are
the average rank of filters called feature importance value). (a) the rank for the VGG16F extracted features; (b) the rank for

the 14F extracted features.

5. Conclusions

This research explores the feasibility of using machine learning approaches with
feature extraction techniques for pixel-level phase segmentation of shales in 3D X-ray CT
images. Once segmented, the categorized data could be used to retrieve useful information
such as grain size distributions.

Based on the results for two different datasets, RF had the best accuracy among all
applied machine learning methods due to its capability to handle imbalanced datasets
and data scarcity. The feature-based RF model (14F-RF and VGG16F-RF) improved the
segmentation results significantly for both samples since filtering techniques helped to
find additional features to reliably segment different phases. Feature importance analysis
showed the Median and Gaussian filters had the highest contribution in phase segmentation
due to removing unwanted noise and providing more integrated phases.

The results from U-Net showed even higher performance compared to RF. Considering
all three methods of evaluations (i.e., F1-score, IOU, and accuracy), the U-Net method has
a better performance in predicting each class compared to all other methods which provide
a more reliable phase segmentation in different sample types.

It was also shown that the loss function plays an essential role in determining the
model performance in both Marcellus and Mancos samples. The results showed that,
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for the complex objectives of mineral phase segmentation, it is not efficient to train the
model only based on a universal loss function such as categorical cross-entropy which just
monitors the overall loss since the majority class can directly affect it. In fact, for highly
imbalanced segmentation, focal and dice losses, which are focus-based loss functions, work
better as it minimizes the error based on each class as well as overall error. As a result, a
minority class is less likely to be overwhelmed by a majority class.

Overall, it was shown that the U-Net deep learning model can outperform machine
learning models for mineral phase segmentation and is the recommended method when
a large dataset is available. This study will help geologists to obtain the different distin-
guishable phases in 3D X-ray CT images to provide practical techniques for reliable phase
segmentation. The future work would be further distinguishing discrete mineral phases
by training ML/DL methods using SEM images of a surface of a given sample as ground
truth for the X-ray CT mineral segmentation task. The trained model then can be utilized
to segment the complete stack of X-ray CT images into individual mineral phases.

Supplementary Materials: The following are available online at https://github.com /Parisa-Asadi/Inte
grating-machine-deep-learning-and-filtering-techniques-for-reliable-mineral-phase-segmentation /blob /
main/README.md, Video: S1: A 3D View of Mancos Shale (View 1); S2: A 3D view of Mancos Shale
(View 2); S3: A 3D view of Phase Segmented Mancos Shale; S4: A 3D view of Marcellus Shale (View
1); S5: A 3D view of Marcellus Shale (View 2); S6: A 3D view of Phase Segmented Marcellus Shale.
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