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Abstract: The present study is focused on the development of a material model where the orthotropic-
visco-elastic and orthotropic-visco-plastic mechanical behavior of a polymeric material is considered.
The increasing need to reduce the climate-damaging exhaust gases in the automotive industry leads
to an increasing usage of electric powered drive systems using Lithium-ion (Li-ion) batteries. For
the safety and crashworthiness investigations, a deeper understanding of the mechanical behavior
under high and dynamic loads is needed. In order to prevent internal short circuits and thermal
runaways within a Li-ion battery, the separator plays a crucial role. Based on results of material tests,
a novel material model for finite element analysis (FEA) is developed using the explicit solver Altair
Radioss. Based on this model, the visco-elastic-orthotropic, as well as the visco-plastic-orthotropic,
behavior until failure can be modeled. Finally, a FE simulation model of the separator material
is performed, using the results of different tensile tests conducted at three different velocities,
0.1 mm·s−1, 1.0 mm·s−1 and 10.0 mm·s−1 and different orientations of the specimen. The purpose
is to predict the anisotropic, rate-dependent stiffness behavior of separator materials in order to
improve FE simulations of the mechanical behavior of batteries and therefore reduce the development
time of electrically powered vehicles and consumer goods. The present novel material model in
combination with a well-suited failure criterion, which considers the different states of stress and
anisotropic-visco-dependent failure limits, can be applied for crashworthiness FE analysis. The
model succeeded in predicting anisotropic, visco-elastic orthotropic and visco-plastic orthotropic
stiffness behavior up to failure.

Keywords: polyethylene separator; visco-elasticity; visco-plasticity; elasto-plasticity; orthotropy;
material model; finite element model; safety; crashworthiness

1. Introduction

Increasing efficiency, defined as energy consumption relative to the distance travelled,
is considered a core development goal of the automotive industry. Customer demands
for vehicles with larger mobility range in combination with legal requirements for climate
protection by limiting CO2 emissions are the motivation for increasing the efficiency of electric
vehicles. In addition to the ecological motivation, economic factors are a major incentive for
vehicle manufacturers to focus on the reduction in the development time of their vehicles by
using high fidelity computational simulation tools such as finite element analysis. Product
development to raise battery performance of portable electronic devices such as laptops or
mobile phones also benefits from an increased accuracy of FEA results [1,2]. To achieve
this goal, more precise FE models are required to describe the mechanical behavior of all
involved materials under high mechanical loads. Recent developments, especially in the
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automotive industry, with focus on the electrification require precise prediction of how
Li-ion cells respond to high mechanical load cases, due to misuse or crash events. Here,
understanding the properties of the polymeric separator layer, maintaining a physical barrier
between anodes and cathodes plays an important role. Therefore, knowing its mechanical
behavior, especially in the nonlinear domain, is essential.

In the past, the determination of material properties for plastics was mainly limited
to the determination of elastic parameters and yield strength. These characteristic values
were determined almost exclusively under quasi-static loading at one defined orientation.
Typical characteristic values for FE modeling of plastics are available, for example, in the
Computer Aided Material Preselection by Uniform Standards (CAMPUS) database [3].
Since the largest part of energy in crash processes is dissipated by plastic deformation,
the material models, used for crashworthiness analysis, must also be able to describe the
plastic material behavior accurately. The determination of the plastic material behavior
is difficult for many plastics, since engineering strains with more than 100% value can
occur under tensile loading. In addition, it is possible to have inhomogeneous distribution
of strains in such plastic parts, which is also referred to as strain localization [4]. In the
tensile test, this strain localization is noticeable by a constriction of the specimen. Standard
strain measurement methods, such as strain gauges or extensometers, cannot consider
these localizations. Therefore, the displacement at the clamping of the specimen is often
used for strain measurement in the entire specimen. This determination of the strain
distribution over the free gripping length of the specimen is also proposed in the standard
for determining the tensile properties of plastics, ISO EN 527 [5]. However, this procedure
can lead to considerable errors in the strain measurement as local strain overshoots are not
detected. A reliable determination of the stress-strain curve, which represents the physical
material behavior, which is necessary as a basis for the development of material models, is
thus not readily available of such materials [6,7].

A further difficulty arises from the widely varying material behavior of different
plastics [8]. The behavior of polymers is affected by many factors, e.g., moisture, temper-
ature and others. In addition, polymers are sensitive to the rate of loading. An increase
in the strain rate often results in a decrease in the ductility of the polymer. In contrast,
the modulus and the yield or tensile strength increase with increasing loading rate [9].
Many authors have examined the influence of temperature and strain rate on the material
behavior of polymers. Walley and Field [10] performed tests at room temperature over
strain rates ranging from 10−2 s−1 to 104 s−1. Carnella [11] provided rate-dependent tests
at high strain rates under tension and compression.

Therefore, several problems arise in the development of material models for the
numerical representation of thermoplastic components under dynamic and high load
cases. Neither in commercial simulation programs nor in the literature do material models
exist that have been developed specifically for the crash simulation of thermoplastic
components. For this reason, material models developed for metallic materials are often
used in industrial applications to illustrate the dynamic material behavior of thermoplastics.
This includes, above all, the von Mises plasticity models. However, this material model
is not suitable for mapping the mechanical behavior of thermoplastics and, as shown
in [12] and this leads to incorrect results. The reason for this lies in two aspects, which are
important for a precise mechanical response prediction: (1) viscose effects in the elastic
domain and (2) anisotropic material hardening in the plastic domain. Deeper investigation
of anisotropic behavior is performed in Pfeiffer et al. [13].

In this work, the focus is on the modeling of the separator material used in Li-ion bat-
teries using time explicit method of nonlinear dynamic FEM. Figure 1 shows the multiscale
view of a Panasonic 18650AF cell used in electric cars as well as in notebooks and other
consumer goods showing the cell cross section and the multilayered structure inside that,
including electrodes and the separator. Within this work, a novel material model is devel-
oped, which considers the visco-elastic-orthotropic as well as the visco-plastic-orthotropic
(strain rate dependent) behavior for modeling of the separator.
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In addition to a suited failure model [14,15], the material stiffens, and the damage and
fracture of a high dynamic mechanical load can be predicted. In Bulla et al. [16], a failure
model is proposed, which considers the state of stress as well as the strain-rate effect based
on the tests of a PE separator.
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Figure 1. Panasonic CGR18650AF Li-Ion cell: (a) real photo and (b) schematic cut-view, (c) Finite-Element-mesh using an
1 × 1× 1 mm representative volume, (d) detailed view of the 3d hexahedron elements with an average element size of
0.01 × 0.01 × 0.01 mm showing the separator layer in white.

2. Separator Materials and Methods

The investigated commercial polymeric separator was provided to us from a battery
manufacturing company. The exact chemical composition of the materials used in these
samples was not specified. The separators had the porosity of 36–46% [17].

In this study, the mechanical properties of the specimen were studied by conducting
tensile tests on small strips cut out in 2 perpendicular spatial directions corresponding to
machined direction (MD) and transversal direction (TD) of the separator samples. Figure 2
shows the experimental setup which was used for performing the tensile tests. Each
specimen with dimensions of 12× 60× 0.025 mm was glued at each end to metal specimen
holders which led to a free test length of 36 mm. The specimens were marked with a gray
pattern to enable digital image correlation (DIC), as shown in Figure 3a,b. The 3D ARAMIS
system from GOM (GOM GmbH, Schmitzstraße 2, 38122 Braunschweig, Germany) was
used for analysis of the strain field, shown in Figure 3c,d. Each test was repeated 5 times to
ensure repeatability. Three different tension velocities were used for testing: 0.1 mm·s−1,
1 mm·s−1 and 10 mm·s−1 corresponding to strain rates 0.002778 s−1, 0.02778 s−1, and
0.2778 s−1.

Figure 3 shows one specimen before and after testing. The recording frequency for the
force and displacement measurements ranged from 2 Hz for the slowest tension velocity
up to 40 Hz for the fastest ones.

The measured elongation in MD direction is in the range of 10–19 mm, which results
in 27–53% total strain. Figure 4 shows the engineering stress vs. engineering strain curves
for the three tested velocities in MD. The Young’s moduli are computed using the initial
slope. Within this work, the statistical R-squared value (coefficient of determination) is
used for the fitted regression line, starting with the first 2 measuring points. When the
adjusted R-squared value drops below a defined threshold, we use the previous fit line as
the Young’s modulus. After failure, the specimen retained almost all its extension, which
indicates a low relaxation. In conclusion, the material exhibits high plasticity and low
elasticity behavior. Localization of strain occurs close to the center and proceeds to one of
the fixed ends, where final rupture occurs.
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Figure 4. Tested engineering stress vs. strain curves in machine direction (MD = 0◦), at three different
velocities with the corresponding Young’s moduli (dashed lines).

The measured elongation in TD direction was in the range of 40–53 mm, which results
in 111–147% total strain. Figure 5 shows the engineering stress vs. strain curves for all three
tested velocities in TD. The Young’s moduli are computed using the initial slope as shown
in Figure 6, which shows a cutout (indicated with the red-dotted rectangle in Figure 5).
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Table 1 shows the estimated Young’s moduli over the nominal strain rates (based on
the used tension velocities). The values for the diagonal direction DD (=45◦) were obtained
from Sahraei [17].

Table 1. Young’s moduli dependent on orientation and engineering strain rate.

Orientation (Degree)
.
ε1= 0.002778 (s−1)

.
ε2= 0.02778 (s−1)

.
ε3= 0.2778 (s−1)

0 1300 MPa 1400 MPa 1500 MPa
45 800 MPa 900 MPa 950 MPa
90 300 MPa 400 MPa 500 MPa

3. Modeling and Results
3.1. Viscosity in Elastic Region

Hereinafter the denotation of a matrix is defined as
[�],
and of a vector as
{�}.
The viscosity effect is easily treated by explicit solvers because of the usage the

equation of motion and solving for unknown values without the need of inverting the
entire model:

[M]
{ ..

xn
}
+ [C]

{ .
xn
}
+ [K]{xn} = {Fext(tn)}, (1)

where:

[M] = Mass matrix (kg),
[C] = Damping matrix (kg·m·s−1),
[K] = Stiffness matrix (N·m−1),{ ..

xn
}

= Acceleration vector (m·s−2),{ .
xn
}

= Velocity vector (m·s−1),
{xn} = Displacement vector (m),
{Fext(tn)} = External force (N).
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Due to the usage of the small strain formulation, where the stress increment is inte-
grated at each time step and considering a stiffness that depends on the local strain rate in
individual time steps, the integration schema—which solves the equation of motion in the
time domain—leads to high oscillations of the total strain rates. Figure 7a shows consider-
able strain rate oscillations within the specimen during loading in the elastic domain. To
reduce these oscillations, several approaches are used by commercial solvers [18–20].
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The approach chosen here is to apply an exponential moving average filter [21] to the
strain rate as a time series filter that removes high frequency oscillations:

.
ε

average
n = αEMA·

.
ε

average
n−1 + (1− αEMA)·

.
εn, (2)

where:
.
ε

average
n = Filtered actual strain rate (s−1),

.
ε

average
n−1 = Filtered previous strain rate (s−1),

.
εn = Actual (not filtered) strain rate (s−1),
αEMA = Exponential moving filter value (−).

With the αEMA parameter it is possible to control the response of the filter. If αEMA = 0,
no filtering is applied. Values close to 1 apply a strong low-pass filter. Figure 7b shows the
result of applying the strain rate filtering. It leads to a smoother strain rate distribution and
more realistic behavior within the FE model. The strain rate filtering plays an important
role in explicit time integration.

3.2. Plasticity

In the novel developed visco-elastic-plastic model, the true-stress vs. true-plastic-
strain curves must be derived from the tested engineering-stress vs. engineering-strain
curves. For the calculation of the plasticity curves in the MD direction, the approach
based on Swift–Voce interpolation, described by Bulla [16], is used. However, the TD
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behavior is showing a much higher plasticity range beyond 100% strain. Figure 8 shows
one representative engineering stress vs. engineering strain curve close to 120% total
strain before the material fractures (green curve). For usage in an elasto-plastic material
model, the parametrization for the engineering stress vs. engineering strain curve must
be modified further. The true stress vs. true strain curve (Figure 8: red curve) is derived
and then the elastic portion of the strain is subtracted from the total strain, using the
linear strain–stress relation corresponding to the strain rate, dependent Young’s modulus
(Figure 6: dashed lines).
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Figure 8. Preparation of the TD test curve from engineering stress vs. engineering strain (green curve), to true stress vs. true
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Due to the need for values beyond the curve, derived from testing, it is necessary to
extrapolate the true stress vs. true plastic strain curve. Based on the work of G’Sell et al. [22]
who tested such high ductile polymer materials, the parameter identification is carried out
using the modified equation:

σyield = A + B·
(

1− exp
(
−C·εpl.

))
·
(

1 + D·εpl. + F·εpl.
2
)

, (3)

where:

A = initial yield stress parameter (MPa);
B = hardening coefficient (MPa);
C = hardening plastic strain coefficient (−)
D = 2nd hardening plastic strain coefficient (−);
F = 3rd hardening plastic strain coefficient (−);
εpl. = equivalent plastic strain (−).

Table 2 shows the identified parameter used for the hardening curve, based on
G’Sell equation.

Table 2. Parameter list obtained for the G’Sell hardening curve.

A (MPa) B (MPa) C (−) D (−) F (−)

0.005826 0.00422 77.76 0.09992 2.803
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Figure 9 shows very good agreement between the true stress vs. true plastic strain
curves obtained from real test data (black curve) and the calculated hardening curve based
on G’Sell’s equation.
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Within the further FEA analysis, the G’Sell-based hardening curve will be used for the
TD behavior. Figure 10 shows parametrized hardening curves resulting from test data for
different strain rates.
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3.3. Stability Investigation

In the explicit FEA, the numerical stability plays an important role, since the numerical
method is unstable if the timestep is above a critical timestep [23,24]. Another instability
results from the material behavior. This material instability is investigated further since the
tested separator material shows a large strain in the TD direction.
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In real tests with metallic materials, the engineering stress vs. engineering strain curve
shows monotonic increase in stress with the increase in strain, starting with the slope of
the Young’s modulus. When approaching plastic deformation, the stress still increases, but
with decreasing slope, until a maximum stress value is reached. Then, the measured stress
starts to decrease. At this point of maximal stress, localization occurs, where a certain area
continues plastic deformation without an increase in tension force. This important point is
so called the necking point. For metals, the material instability is reached, and the material
starts to damage and soften until final separation and failure will occur.

In the MD, the specimens reach their terminal strain shortly after the maximum stress
is reached. With a well calibrated failure criterium, the finite elements, where this point is
reached, will be deleted from further calculation.

In the TD of the tested material, the strain increases significantly after reaching the
maximum stress value, without fracture. Therefore, the stability will be investigated more
thoroughly. Inspired by the Drucker stability condition [25], which is widely used in
hyper-elastic material models [26], the slope of the stress vs. strain curve will be analyzed.
Using the true strain:

εtrue =
∫ L1

L0

dL
L

= ln
L1

L0
= ln

L0 + ∆L
L0

= ln
(

1 +
∆L
L0

)
= ln

(
1 + εeng

)
(4)

where:

εeng = engineering strain (−);
εtrue = true strain (−);
L0 = initial length (mm);
L1 = final length (mm);
L = measured Length (mm);
∆L = relative displacement (mm) of the parallel length

and the true stress:

σtrue =
F
S
=

F·L
S·L =

F·L
S0·L0

= σeng·eεtrue = σeng·
(
1 + εeng

)
, (5)

where:

σtrue = true stress (MPa);
F = measured force (N);
S0 = initial cross section (mm2);
S = actual cross section (mm2) of the parallel length.

The assumption of constant volume is made due to the lack of measurement of volume
change, because of the small thickness of the separator material. The extension of this work,
including consideration of the volume change during the test, is the topic of ongoing work
and will be the subject of future investigation. Assuming a stable behavior of a material
with a positive slope in the engineering stress–strain relationship and isochoric behavior in
plastic region, the limit is reached where the slope becomes zero:

dσeng

dεeng
= 0 (6)

This indicates the necking point. Proceeding with the slope in the true stress vs. true
strain domain, used in the elasto-plastic material models:

dσtrue

dεtrue
=

dσeng·
(
1 + εeng

)
+ σeng·dεeng

1
(1+εeng)

·dεeng
=

(
1 + εeng

)2·dσeng

dεeng
+

(
1 + εeng

)
·σeng·dεeng

dεeng
, (7)
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we obtain as a condition for the necking point:

dσtrue

dεtrue
= σtrue (8)

Figure 11 shows the true stress vs. true plastic strain and the first derivative in the same
chart. According to Equation (8), the material instability occurs when the 1st derivative of
the true stress vs. true strain curve equals the true stress value, which is the first crossing
point. This corresponds to the maximum stress in the engineering stress vs. engineering
strain diagram.
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Figure 11. Extrapolated, fitted hardening curve in TD (green curve) and its 1st derivative, indicating the material stability
range (red curve).

From this point, the first derivative is below the true stress vs. true plastic strain curve.
This indicates an unstable material behavior. Proceeding further with the elongation up
to a strain value of approximately 0.6, the derivative crosses again the true stress vs. true
strain curve and continues above this curve. This indicates a stabilization of the material
due to potential orientation of the molecular chains in the loading direction.

A similar effect is observed in real tests in TD direction. Figure 12 sows two examples
in TD, showing the localization through the rest of the specimen (a) or a localization in a
certain area with a second localization occurring while proceeding with the tension test (b).
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3.4. Material Modeling

In a recent work, a nonlinear visco-elastic-orthotropic and visco-plastic-orthotropic
material model was developed, based on the investigation of the PE material used as
separator in Li-Ion batteries. In recent publications and commercial FEA products and
solvers, there exists several material models to model the behavior of polymers [27–29].

Within the nonlinear and crashworthiness FEA models, used by the automotive and
other industries, the by far most used material model is based on elasto-visco-plasticity,
using the Von Mises plasticity formulation [30]. This is due to the fact that the user can
easily obtain the necessary values to fit the material model by using results from various
performed tensile tests. Another very important advantage of this model is based on the
efficiency and performance in huge FE models, which lead to its wide usage in industrial
environments [9].

Therefore, the Von Mises plasticity model was chosen as a basis and enhancements
were implemented to handle the visco-elastic and orthotropic behavior of the PE separator.

Material modeling starts with the description of the isotropic, elastic behavior, which
is based on Hooke’s law:

{σ} = [D]{ε}, (9)

where:

{σ} = 2nd order stress tensor (MPa);
[D] = 4th order elasticity tensor (MPa);
{ε} = 2nd order strain tensor (−).

The elasticity tensor [E] may be written in Voigt’s notation as 6 × 6 matrix

[D] =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
1− ν ν 0 0 0

1− ν 0 0 0
1−2ν

2 0 0
Symmetry 1−2ν

2 0
1−2ν

2

, (10)

where:

E = Young’s modulus (MPa);
ν = Poisson’s ratio (−).

Now, the Young’s modulus E will be replaced by the filtered, orthotropic, strain-
rate dependent Young’s modulus E

( .
ε
)

interpolated nonlinearly between the three tested
directions: MD, TD, DD (see Table 1).

For the nonlinear interpolation, between the three orthotropic directions, the cosine-
interpolation function is used, as described by Bulla [16].

With the assumption of no sudden changes in the orthotropy of neighboring elements,
the same method is applied to the Von Mises plastic potential:

f (J2, k) =
√

3J2 − k = 0, (11)

where:

f = Flow potential (MPa);
J2 = deviatoric stress tensor (MPa);
k = yield stress obtained from the uniaxial tension test (MPa).

We obtain the 2nd deviatoric stress invariant, using Einstein’s notation:

J2 =
1
2

SijSij, (12)
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with the additive decomposition of the stress tensor, the deviatoric stress is computed using:

Sij = σij −
1
3

I1δij, (13)

where:

Sij = deviatoric stress tensor (MPa);
σij = Cauchy stress tensor (MPa);
δij = Kronecker delta (−).

With:
I1 = σkk, (14)

where:

I1 = 1st invariant on the stress tensor (MPa).

Using a similar approach for viscosity and orthotropy, as used in the elastic region,
the yield stress k is dependent on the filtered strain rate and orthotropy direction measured
in the real test. With the assumption of no sudden changes in the orthotropy, the associated
flow rule is used within this new material model.

3.5. FE-Model

In present work the new developed material model is used and validated by the tested
results. The orthotropic visco-elastic properties, obtained from test results (see Table 1)
are used, to model the orthotropic-visco-elasticity. During the loading phase, a precise
modeling of the elastic properties is important to accurately predict the stress response of
the entire model since all elements are participating in this mechanical region.

Figure 13 shows the three visco-plastic hardening curves for the MD direction obtained
by the test carried out during this study and the DD direction result curves taken from
Sahraei [17]. The engineering stress vs. engineering strain curves in MD direction are fitted
to the Swift and Voce equations [31] and extrapolated to 100 % strain, using an interpolation
function as described in Bulla [16]. Figure 14 shows the FE results of the material behavior
in MD direction. It can be seen that after the first localization occurs, the localized area
remains at the same group of elements. These elements are further extending whereas the
neighboring elements remain at the strain level, they had before the localization started.
For these material curves (shown in Figure 13, left side) the slope of the true stress vs.
true plastic strain curve is decreasing, which means, the material will not become stable
back again.
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Figure 14. FE results showing the loading phases in the MD direction at initial stage (a), short before the first localization
occurs (b) and further development of the total elongation (c).

Figure 15 shows the loading direction in the TD direction. As it can be seen in the
hardening curve (Figure 13 right side), the slope decreases until ~11% plastic strain and
then increases again, which results in stabilization of the material.
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Figure 15. FE results showing the loading phases in the TD direction at initial stage (a), after first localization occurs (b),
then proceeding through the specimen (c) and shortly before failure (d).

For materials with such hardening curves, the material becomes unstable as soon as
the 1st derivative decreases and undergoes the hardening true-stress-strain curve. Then,
the first localization can occur (Figure 15b) and become stable again. During further
loading (Figure 15c) the material stiffness increases, and the first derivative raises above the
true-stress-strain hardening curve. The material becomes stable again and localized strain
occurs in another area (Figure 15d) during further loading of the structure. This numerical
behavior, which can be simulated only with a sufficient complex material model, is also
observed in real tests (Figure 12). Figure 16 shows the corresponding force vs. displacement
simulation result curves. The influence of the strain rate dependent Young’s moduli (see
Table 1) is clearly visible (Figure 16, right side).

The simulations were conducted with the explicit FEA solver Radioss (version 2021)
by Altair Engineering Inc. (1820 E. Big Beaver Rd., Troy MI 48083, USA), on a Windows64
computer using four Intel i7-6820 CPUs at 2.7 GHz with 32GB RAM. The material model
was developed in FORTRAN and linked to the FEA solver as a dynamic linked library
(dll) compiled using the freeware MinGW-W64 project with a gcc 7.2.0 compiler [32]. The
developed validation models were meshed using 4-node shell elements with a mesh size
of 1 × 1 mm and a defined thickness of 0.025 mm.
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4. Discussion

The objective of the presented work was the development of a finite element material
model, for nonlinear, structural CAE simulation and predicting the mechanical behavior
of a PE separator material under dynamic and high mechanical load, used for the pre-
diction of stiffness and failure in Li-ion batteries. Nevertheless, our focus so far is set on
crashworthiness analysis where batteries undergo very complicated state of deformation
where bending plays an important role. Therefore, we set our focus on tensile loading until
fracture for the separators.

Based on the real test results, performed with different velocities and different orienta-
tions of the specimen, a novel material model was developed. It considers the visco-elastic
orthotropic, visco-plastic orthotropic behavior under high mechanical loadings. The de-
veloped FE material model accounts for the strain-rate effect in elastic loading phase and
different material orientations, as well as the different elasto-plastic-orthotropic behavior
in the plastic material domain, which was measured in the real tests. Within the material
model, the Von Mises potential was used, which is widely used in the industry and suitable
for modeling elasto-plastic materials. For material behavior characterization the only
necessary information was the results from real tests in the three directions (MD, DD, TD),
using a simple tension test under different loading velocities. Microscopic investigation
of the battery separator after high mechanical loading along the MD and TD directions
are published by Zhang [33]. Once the numerical material reaches instability, a further
consideration of damage propagation and failure must be considered.

Compared to existing orthotropic material models, as developed by Hill or Barlat [34,35],
the modeling is much easier due to the fact, that the orthogonal directions are obtained directly
by using the real tests as input for this model. It is also possible to apply the Hill or Barlat
yield surface if further studies show this need.
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5. Conclusions and Outlook

Within this work, our novel material model and the developed FE model succeeded
in predicting the test for all three directions (MD, DD, TD) with different velocities in the
linear elastic as well as the plastic domain within a range of 5%. This lies within the scatter
range of the tested specimen. For predicting the damage during this dynamic and high
mechanical load, a suited failure model should be used in addition to the material model,
as proposed by Bulla [16].

This should be useful in the design process of batteries and applications that contain
batteries and will serve as an important new computational tool for assessing the safety of
lithium-ion batteries against high mechanical loading and crashworthiness. The material
model will be implemented in the commercial FE solver Altair Radioss and will thus be
available for practical application in e-mobility simulation in near future. For porous poly-
mers such as separators, pore orientation and connectivity affect their effective mechanical
properties and performance in a battery, too [36]. However, this is the topic of further
investigation and the usage of an extended model.
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