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Abstract: In the field of microgrids (MGs), steady-state power imbalances and frequency/voltage
fluctuations in the transient state have been gaining prominence owing to the advancing distributed
energy resources (DERs) connected to MGs via grid-connected inverters. Because a stable, safe
power supply and demand must be maintained, accurate analyses of power system dynamics are
crucial. However, the natural frequency components present in the dynamics make analyses complex.
The nonlinearity and confidentiality of grid-connected inverters also hinder controllability. The
MG considered in this study consisted of a synchronous generator (the main power source) and
multiple grid-connected inverters with storage batteries and virtual synchronous generator (VSG)
control. Although smart inverter controls such as VSG contribute to system stabilization, they induce
system nonlinearity. Therefore, Koopman mode decomposition (KMD) was utilized in this study for
consideration as a future method of data-driven analysis of the measured frequencies and voltages,
and a frequency response analysis of the power system dynamics was performed. The Koopman
operator is a linear operator on an infinite dimensional space, whereas the original dynamics is a
nonlinear map on a finite state space. In other words, the proposed method can precisely analyze all
the dynamics of the power system, which involve the complex nonlinearities caused by VSGs.

Keywords: data driven analysis; frequency characteristics; Koopman mode; microgrid; nonlinearity;
virtual synchronous generator

1. Introduction

To achieve environmental friendliness and sustainability, various types of power
sources are freely connected to power systems. Moreover, distributed energy resources
(DERs) such as batteries must be connected to use renewable energy, thereby avoiding
fossil fuel depletion, and to shield the power system from accidental power outages caused
by natural disasters such as hurricanes and earthquakes. It is a major challenge to maintain
system stability in microgrids (MGs), which include small DERs with autonomous power,
unlike traditional power systems, which are powered by large synchronous generators
(SGs) with large inertial forces and short-circuit ratios (SCRs). Because the SCR is deter-
mined by the system voltage, impedance, and power supply capacity, the SCR of a small
DER connected to a low-voltage distribution system cannot be increased. Furthermore,
to protect the equipment from accidental overcurrent or overvoltage, a conventional grid-
connected inverter, which cannot have inertial force, is controlled to respond immediately.

Numerous studies on new methods of grid-connected inverter control are underway
to overcome the problem of inertial force. In particular, virtual synchronous generator
(VSG) control of grid-connected inverters is attracting attention. VSG control can contribute
to frequency stabilization by using battery energy as the inertial force of the SG [1–4]. VSG
inverter controls, also called “smart inverters,” were proposed at approximately the same
time [1,2]. In the corresponding methods, the inertial control and voltage control of an
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SG supplement the conventional current control method installed in power conditioning
systems. In contrast, Zhong et al. [3] based their research on the voltage control method
and faithfully reproduced Park’s generator theory with a controller. Meanwhile, Hirase
et al. [4] analyzed the transient response of the VSG control and frequency response.

The grid-connected inverters that are used when DERs are connected to a grid are
required to comply with the grid codes, although the methods of achieving compliance
differ by manufacturer and are not disclosed. Because it is more complicated to analyze a
system that includes a large number of black-boxed smart inverters, as described above,
research is also underway to make the grid code applied to such inverters necessary
and sufficient [5–8]. In [5,6], the correlations among frequency fluctuation, time, and
control parameters were quantified by presenting analyses of the transient response of
a VSG inverter based on the generator mechanism. Hashimoto et al. [7] presented a test
method for obtaining comprehensive indices of the characteristics of various residential
single-phase photovoltaic (PV) inverters. In addition, the use of power/control hardware-
in-the-loop (PHIL/CHIL) is being actively promoted for the testing of various power
supplies and interoperable controllers [8]. Nevertheless, both types of analyses model and
approximate the system dynamics within the controller and simulate its behavior.

In recent years, power semiconductor materials such as silicon carbide (SiC) and
gallium nitride (GaN), and communication technologies such as the fifth-generation (5G)
mobile communication system, have improved dramatically, and breakthroughs have also
occurred in power system development. Previously, communication delays occurring in
the supervisory control and data acquisition (SCADA) were fatal for controls requiring high
speed, such as transient response controls. However, we can now analyze and control data
measured in real time using the aforementioned innovative technologies. This method is
called the “data-driven approach” [9–14]; it is characterized by calculation of the dynamics
to be analyzed and controlled based on the acquired data. Park et al. [9] estimated the load
consumption in a building by modeling based on an unsupervised learning method, as well
as the demand response. Similarly, Gorjão et al. [10] calculated a stochastic model from the
obtained data (market rules, consumer behavior, etc.) and performed a frequency analysis.
Xinhui et al. [11] improved the calculation speed of the above methods by estimating the
state from past data. Li et al. [12] estimated a dynamic model using synchronous phase
measurements, whereas Almunif et al. [13] identified low-dimensional eigenvalues of
power systems and enhanced noise immunity. Liu et al. [14] improved the robustness
and calculation speed of the power system by evaluating the static voltage stabilization
margin (VSM).

The key points of the preceding discussion can be summarized as follows. First,
the analysis of a power system is complicated when numerous DERs are connected to it.
Next, DERs are connected via grid-connected inverters, and conventional inverters lack
stability owing to their responsiveness. Meanwhile, sophisticated autonomous controls for
system stabilization, such as the VSG controls in smart inverters, are not publicly available.
Nevertheless, thanks to 5G technology, the development of data-driven system analysis
and controls that attempt to simultaneously perform system measurement and control is
progressing. However, the dynamics of complex power systems are high-order, and the
spectral characteristics of the dynamics can be compromised by reducing the order and
approximating the dynamics in a data-driven approach.

To handle the high-order and nonlinear dynamics, a dynamic analysis method that
uses the spectral characteristics of the linear Koopman operator (KO) has been pro-
posed [15]. Although the introduction of the KO dates back to 1931 [16], the computational
technology of the time hindered its application in industry. Dynamic mode decomposition
(DMD) using the KO is called Koopman mode decomposition (KMD), and it calculates the
eigenvalues (KEs) and modes (KMs) of KOs using empirical values obtained from nonlinear
dynamics, even if the dynamic operator itself is not clear [17]. In recent years, increasingly
many mathematical studies focusing on the spectral characteristics of the KO have ap-
peared [17–26]. Cho and Yamazaki [18] classifies the properties of a composition operator,
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which is another name of KO. Williams et al. [19] presented a data-driven method for ap-
proximating the leading KEs and KMs. Surana [20] demonstrated forecasting and anomaly
detection using nonlinear dynamic generative modeling of a time series based on the KO.
Meanwhile, Lange et al. [21] described a spectral decomposition method that is applicable
to nonlinear systems. The Fourier transform applied to a linear system was extended using
KO, without assuming periodicity, thereby facilitating long-term predictions based on data
measured at arbitrary sampling intervals. Arbabi and Mezic [22] demonstrated the spectral
decomposition of KO in the DMD by assuming that the underlying dynamical system
was ergodic. They also showed that the singular value decomposition, which is central
to most DMD algorithms, converges to the appropriate orthogonal decomposition of the
observable. Takeishi et al. [23] and Sinha et al. [24] described a KO approximation method
used for observables with large measurement noise. Takeishi et al. [25] also introduced an
application of KMD to a neural network and showed that KO has an invariant subspace
even when an observable that spans it is not available. Further, Črnjarić-Žic et al. [26]
discussed the characteristics of the KEs and KMs for the stochastic KO in various types of
linear random dynamical systems (RDS).

Because of the high level of accuracy of its nonlinear dynamics estimations, the KO
has been utilized for actual analyses. Among such analyses, those described in [27–32]
are related to power systems. Susuki and Mezić [27] applied KMD to two major sets of
actual accident data (the 2011 Arizona-Southern California power outage and the 2006
European interconnection grid system failure) to detect unstable power flow patterns.
Susuki et al. [28] also described coherency identification regarding the swing of SGs
that interfere with each other. Meanwhile, Jlassi et al. [29] determined the minimum
number of calculations required for KMD convergence, and the results of the discrete
Fourier transform (DFT) and KMD were compared to identify the nonlinear characteristics
confirmed by KMD. Later, Korda et al. [30] introduced a method of combining KMD
analysis results with model predictive control (MPC). Hernandez-Ortega and Messina [31]
used KMD to improve the approximation accuracy when reducing the order of a nonlinear
perturbation analysis model to an arbitrary order. Finally, Cassamo and van Wingerden [32]
described a method of applying the KO to the aerodynamic analysis of a wind power
generation system to reproduce a low-dimensional linear state-space model accurately,
thereby reducing the design cost of the controller.

With the above research as a background, we focused on both the voltage stability
and frequency stability of a power system in this study and attempted to extract the charac-
teristics of their mutual interference using KMD. While prior literature [27,28] analyzes the
steady-state power fluctuations of large-scale power systems in detail, this study focuses
on the transient response in MGs including DERs and analyze the nonlinearity in transient
response caused by their controls. The characteristic extraction results were visualized
by widening the parameter range of the VSG control inverter. The test system was an
Institution of Electrical and Electronic Engineering (IEEE) nine-bus model that included a
main power supply and two distributed power supplies, which were inverters with storage
batteries. The inverters were controlled by VSG control. The transient responses and DFTs
of the system frequencies and terminal voltages were also calculated and compared with
the results of KMD, thereby confirming the effect of cross-interference in the VSG control
that appears only in KMD. The remainder of this paper is structured as follows. Section 2
reviews the KO and KMD. Section 3 explains the simulation test system used in this study.
Section 4 presents analyses of the frequency response of the KMs when applying KMD.
Finally, Section 5 summarizes the study.

2. Theory of the Koopman Operator (KO) and Koopman Mode Decomposition (KMD)

We briefly review the concept of the KO and KMD calculation method, which yields
approximate values of the KEs and KMs. Further details are presented in [19,27,28].
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2.1. Koopman Operator (KO)

Let M be a state space and f : M→ M a vector-valued function. Equation (1) presents
the dynamics of the state variable vector xt ∈ M, and Equation (2) presents the dynamics
at time t ∈ R+ with the initial time t0 ∈ R+. Equation (3) is a transformation of the
integral-difference equation (Equation (2)) of a continuous system into a discrete system.
In a power system with various types of generators, Ft is typically nonlinear.

d
dt

xt = f (xt), (1)

Ft(xt0) = xt0+t = xt0 +
∫ t0+t

t0

f (xτ)dτ, (2)

xk+1 = F(xk), where we define F := F1. (3)

To define the concept of the KO, let G be the space of the observable. The linear
operator K is defined on G, which maps the observable g : M→ C to the new observable,
as shown in Equation (4). As evident in the power system, any element, such as the
frequency, phase, or voltage, at the terminal of each generator can be selected.

Kg := g ◦ F (g ∈ G). (4)

The observables are obtained in a discrete-time system, and the observable g(xt) with
dynamics F can be rewritten as Equation (5) from Equations (3) and (4):

g(xk) = g(F(xk−1)) = Kg(xk−1) = K2g(xk−2) = · · · = Kkg(x0). (5)

Kk is an operator that represents the time evolution of the observable g up to time t,
and it is referred to as the KO. The KO K is a linear operator on an infinite dimensional
space G even though the original dynamics F are a nonlinear map on a finite state space M.
The expression of nonlinear dynamics using linear operators could be employed to analyze
the factors contributing to system instability that are attributable nonlinear dynamics
without linear approximation. In addition, it is useful to divert control library assets that
are commonly applied to linear dynamics.

2.2. Koopman Mode Decomposition

The KO K has eigenfunctions φj ∈ G that correspond to eigenvalues λj ∈ C that
satisfy Equation (6). λj and φj are called Koopman eigenvalues (KEs) and Koopman
eigenfunctions (KEFs), respectively:

Kφj = λjφj, j = 1, 2, · · · . (6)

Consider the m-dimensional vector g ∈ Mm of the observables, that is g = [g1, · · · , gm]
T ,

where the superscript T denotes the transpose. If φj ∈ G, j = 1, 2, · · · span the whole G,
then any observable gi ∈ G can be represented by the Fourier series as follows:

gi =
∞

∑
j=1

φjvij, i = 1, 2, · · · , m. (7)

Using Equations (3), (4) and (6), the time evolution of the i-th observable gi(xk) at the
time step k derived from (7) can be expressed as Equation (8). Equation (9) demonstrates
the decomposition of the observable vector g into an infinite number of oscillation modes,
which is called KMD. Each oscillation mode is represented by the product of KEs, KEFs,



Energies 2021, 14, 4581 5 of 20

and the complex vectors vj =
[
v1j, v2j, · · · , vmj

]T , which are called Koopman modes (KMs).
Figure 1 illustrates the concepts of the KO and KMD.

gi(xk) =
∞
∑

j=1
φj(xk)vij

=
∞
∑

j=1
λj

kφj(x0)vij,
(8)

where x0 is the initial state variable vector.
yk := g(xk) ∈ Cm is defined as follows:

yk := g(xk) =
∞

∑
j=1

λk
j · φj(x0) · vj. (9)

Figure 1. Conceptual illustration of the Koopman operator (KO) and Koopman Mode Decomposition (KMD).

2.3. Arnoldi Algorithm

It is difficult to know the nonlinear dynamics F in advance, because DERs are repeat-
edly added and disconnected at arbitrary times. That is, it may not be possible to obtain
the theoretical formula for KMD, because the KE and KEFs generally cannot be obtained. It
is thus necessary to acquire the observables with minimal delay and to identify the system
utilizing them. In this study, the Arnoldi-type algorithm was applied so that both the KEs
and KMs could be calculated from time series observables without knowing the dynamics
F or KO K.

N + 1 is a finite integer indicating the number of time samples, and we consider
the observation of time series data {g(x0), · · · , g(xN)}. The coefficients cj that satisfy
Equation (10) can be calculated when the vector r is orthogonal to the space spanned by
{g(x0), · · · , g(xN−1)}. In particular, from the inner-product

〈
r, g(xj)

〉
= 0 (j = 0, · · · , N − 1),

cj can be obtained by solving Equation (11).

r = g(xN)−
N−1

∑
j=0

cjg(xj), (10)

 〈g(x0), g(x0)〉 · · · 〈g(xN−1), g(x0)〉
...

. . .
...

〈g(x0), g(xN−1)〉 · · · 〈g(xN−1), g(xN−1)〉


 c0

...
cN−1

 =

 〈g(xN), g(x0)〉
...

〈g(xN), g(xN−1)〉

. (11)
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Let A ∈ RN×N and b, c ∈ RN be as in Equation (11); that is, Ac := b holds, and by
using the Moore Penrose pseudo-inverse matrix A+, A+Ac = A+b is satisfied. If A is
regular, c can be calculated from c = A−1b, and even if it is not, ‖Ac− b‖ can be minimized
by setting c = A+b. The N eigenvalues of the companion matrix C ∈ RN×N defined by
c0, c1, · · · cN−1 ∈ R (Equation (12)) are empirical Ritz values (λ̃j, j = 0, · · · , N − 1) and can
be considered equivalent to KEs (λj, j = 0, · · · , N − 1).

C =


0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 · · · 0 c2
...

...
. . .

...
...

0 0 · · · 1 cN−1

. (12)

When the matrix V = [g(x0) · · · g(xN−1)]U−1 ∈ CN×N is obtained by using
Equations (13) and (14) holds. Each column

~
vj of U corresponds to φj(x0)vj (i.e., the KEFs

and KMs) in Equation (9), where U represents the Vandermode matrix and λ̃j are the
empirical Ritz values:

U =


1 λ̃1 λ̃1

2 · · · λ̃1
N−1

1 λ̃2 λ̃2
2 · · · λ̃2

N−1

...
...

...
. . .

...
1 λ̃N λ̃N

2 · · · λ̃N
N−1

, (13)


g(xk) =

N−1
∑

j=0
λ̃j

k ~
vj (k = 0, · · ·N − 1)

g(xN) =
N−1
∑

j=0
λ̃j

N ~
vj + r

. (14)

Because the differences between the empirical Ritz values and true values and between
the finite and infinite series are small in the power system investigated in this study, we do
not discuss how they differ here and rewrite λ̃j and

~
vj as λj and vj.

3. Transient Responses of Power Systems
3.1. IEEE Nine-Bus Model Test System

In this study, we considered the IEEE nine-bus model (three-machine system) (Figure 2).
One primary power supply was assumed to be a SG, and the other two generators were
assumed to be distributed power sources of inverters with batteries which were equipped
with the same VSG control. In the simulation tests, the SG model was that of the standard
synchronous machine installed in the simulator. Figure 2 shows the rated capacities
and voltages of the generators, bus voltages, line impedance, transformer capacities, and
impedance. The total base load of 100 MVA was evenly distributed in the three locations of
Buses 5, 6, and 8, and the simulation started with all the power being supplied from the
main power supply (SG). A load of 100 MVA was added to Bus 8 in a stepwise manner,
and the system fluctuation was analyzed immediately after adding the load. By adjusting
the set point of the SG, the frequency and voltage just before the load was added were set
to the rated values of 50 Hz and 13.8 kV. In the standard tests, the equipment constants and
control parameters of all the generators were set to be nearly identical. In the other tests,
the VSG control parameter was increased or decreased for comparative purposes. The
main objective of this study was to investigate the instability caused by the interference
between DERs (inverters) and the nonlinearity due to the interference of the control loop
in each power supply.
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Figure 2. Connection diagrams of the Institution of Electrical and Electronic Engineering (IEEE) nine-bus system.

3.2. Virtual Synchronous Generator Control Model

Figure 3 shows a block diagram of VSG control. A Kawasaki VSG [2,4] was used in
this study. The generator phase difference angle δ [rad] was calculated from Equation (15),
which corresponds to the block enclosed by the red rectangle in Figure 3. s denotes the
Laplace operator. P∗ [pu] and P [pu] denote the reference and feedback values of the
active power, respectively. ω∗ [pu] and ωg [pu] are respectively the reference and feedback
values of the angular frequency calculated at the output terminal of the VSG inverter.
KPF [pu/pu] is the droop coefficient of the frequency (ωg) with respect to P. The time
constant TPF [s] is given by TPF = MKPF, where M [s] is the unit inertia constant, and
the first-order lag transfer function KPF/(1 + sTPF) in Equation (14) represents the swing
equation. A conventional swing equation is a higher-order equation (degree 2 or higher)
because it includes the governor delay time and unit inertia constant. Conversely, the
swing equation of the Kawasaki VSG becomes linear when the governor delay time, which
is the characteristic of the Kawasaki VSG that is the easiest to adjust, is set to 0. The
magnitude of the generator (induced) voltage vector

∣∣∣E f

∣∣∣ [pu] is given by Equation (16).
KQV [pu/pu] is the droop coefficient associated with the reactive power Q [pu], and the
magnitude of the terminal (inverter) voltage vector is Vg =

∣∣Vg
∣∣ [pu]. Q∗ [pu] and V∗ [pu]

are the command values to Q and Vg, respectively. TQV [s] is the measurement delay time
of the terminal voltage, and the conventional proportional-integral (PI) compensator (for
which the proportional and integral coefficients are Kp and Ki, respectively) is used as the
automatic voltage regulator (AVR). Equation (17) is the impedance model, which represents
the relationship among E f , Vg, and the command value vector I∗ of the inverter current.
The impedance r and x [pu] constitute a pseudo-impedance set in the VSG control software
and becomes dominant over the alternating current (AC) output filter impedance in low-
frequency regions, such as commercial frequencies. The ratio of the virtual inductance x
to the virtual resistance r was empirically set to x = 2r.The current command value was
limited to avoid overcurrent, and was input into the minor control, which was composed
of current control. The pulse width modulation (PWM) command value (V∗abc) output from
the minor control was input into the valve control. Because these controls are conventional,
detailed explanations are not included here.

δ =

(
(P∗ − P)

KPF
1 + sTPF

+
(
ω∗ −ωg

))1
s

. (15)
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∣∣∣E f

∣∣∣ = ((Q∗ −Q)
KQV

1 + sTQV
+
(
V∗ −

∣∣Vg
∣∣))(Kp +

Ki
s

)
. (16)

I∗ =
[

i∗d
i∗q

]
=

1
r2 + x2

[
r x
−x r

](
E f − Vg

)
. (17)

Figure 3. Control block diagram of the Kawasaki virtual synchronous generator (VSG).

3.3. Simulation Tests

Numerical simulations were conducted using MATLAB/Simulink based on the con-
nection diagram shown in Figure 2. The SG connected to Bus 1 and the VSGs connected to
Buses 2 and 3 are referred to as SG1, VSG2, and VSG3, respectively. The parameters of each
power supply (KPF, KQV , M = TPF/KPF, TQV , etc.) are indicated by a subscript number
_n (n = 1, 2, 3), and Table 1 lists the parameters for the 20 tests. In the standard tests (3, 8,
13, 18), the VSG3 parameters are almost equivalent to those of the SG1 and VSG2. In all
tests (1–20), Kp and Ki in the PI compensator of the AVR are 10 and 80, respectively. All
analyses were conducted using unit capacitance with the rated capacitance of each power
supply set to 100 MVA at 1 pu. In tests 1–10, an active load of 100 MW was added 15 s after
the simulation onset. Similarly, in tests 11–20, a reactive load of 100 MVar was added.

Table 1. Machine constants and control variables.

Machine Test

P−ωg
Droop

Constant

Unit Inertia
Constant

Q−Vg
Droop

Constant

Measurement
Delay Time of Vg

KPF_n (-) M_n (s) KQV_n (-) TQV_n (s)

SG1 1–20 0.05 12 0.05 0.015

VSG2 1–20 0.05 12 0.05 0.015

VSG3

1

0.05

3

0.05 0.015
2 6
3 12
4 24
5 48

6 0.03

12 0.05 0.015
7 0.04
8 0.05
9 0.1

10 0.2

11

0.05 12

0.01

0.015
12 0.02
13 0.05
14 0.1
15 0.2

16

0.05 12 0.05

0.001
17 0.005
18 0.015
19 0.5
20 1.5
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3.4. Transient and Frequency Response Analyses of Simulation Results

Figures 4–7 show the simulated transient responses of the three power supplies
obtained from tests 1–5, 6–10, 11–15, and 16–20, respectively. In each figure, (a–f) depict
the results for SG1, VSG2, and VSG3, respectively. The left column (a,c,e) and the right
column (b,d,f) present the results of frequencies and voltages measured at the terminal of
each generator. Each observable (system frequency or terminal voltage of N = 3000 points)
was measured for 10 s from the onset time (15 s). A sample rate capable of measuring a
rated system frequency of 50 Hz was required, and in this study, the sample rate was set to
250 Hz (sampling every 4 ms).

In tests 1–10, the system frequency changed according to the drooping characteristics
owing to the addition of the active power load, and transient fluctuations due to the
swing characteristics of the generators were confirmed. The swing characteristics of the
generators reflect the relationship between the rotor angular velocities of the generators
and the input/output torques. Thus, the addition of active power significantly affects
the system frequency (a,c,e). However, the terminal voltage (b,d,f) is also affected. The
high-frequency vibration of the terminal voltages and sudden fluctuations at 15 s are due
to the load switch, the voltage controls, and the phase-locked loops (PLLs) in the VSG
controls that were used to convert the control signals to a dq reference frame.

Conversely, the results of tests 11–20 reveal the voltage drooping characteristic result-
ing from the addition of reactive power. Unlike the system frequency, the terminal voltage
differs for each measurement point. Therefore, the parameter differences among tests 11–20
considerably affected the terminal voltage of VSG3. Simultaneously, transient fluctuations
and accelerations in the system frequencies due to the addition of reactive power were also
confirmed. In tests 16–20, in which the measurement delay times of the terminal voltage
were changed, there was almost no difference in the transient response results.

Figure 4. Transient responses of the frequency and voltage for tests 1–5 in Table 1.
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Figure 5. Transient responses of the frequency and voltage for tests 6–10 in Table 1.

Figure 6. Transient responses of the frequency and voltage for tests 11–15 in Table 1.
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Figure 7. Transient responses of frequency and voltage for tests 16–20 in Table 1.

We applied DFT to the transient response simulation results (Figures 4–7) to confirm
the frequency characteristics. Figures 8–11 show the results of DFT. The tests (1–20),
columns (frequencies/voltages), and rows (SG1/VSG2/VSG3) were organized as shown
in Figures 4–7. DFT is another type of data-driven analysis that is similar to KMD and
can be applied to systems with unknown dynamics. The difference is that KMD can be
used to analyze systems that include both linear and nonlinear dynamics, whereas the
DFT analyzes target systems that are linearized around the equilibrium point. That is,
frequency response analysis using the DFT produces a large error around operating points
with high nonlinearity.

Figure 8. DFT analysis of the system frequency/voltage for tests 1–5 in Table 1.
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Figure 9. DFT analysis of the system frequency/voltage for tests 6–10 in Table 1.

Figure 10. DFT analysis of the system frequency/voltage for tests 11–15 in Table 1.
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Figure 11. DFT analysis of the system frequency/voltage for tests 16–20 in Table 1.

As evident in the transient responses in Figures 4–7, natural vibrations occurred in the
low-frequency bands (0.1–10 Hz) and high-frequency bands near the system frequency of
50 Hz in most of the tests. The 50 Hz vibration could be confirmed by the terminal voltage
of each generator and by the system frequencies in tests 11–20. Spectral peaks exist in
the ranges of 0.5–0.8 Hz, 1.0–2.0 Hz, 2.0–10.0 Hz, and 50.0–60.0 Hz. Due to the sampling
theorem and DFT calculation method, there are large errors in the bands exceeding 1/2 of
the sampling frequency (250 Hz) and near 0 Hz.

4. Koopman Mode Decompositions (KMDs) of Power System Observables

The system frequencies and terminal voltages (Figures 4–7) measured at the out-
put terminals of each power supply shown in Figure 2 were used as the observables
{g(x0), · · · g(xN)}, to which the Arnoldi algorithm described in Section 2.3 was applied to
perform KMD. Subsequent analyses were performed assuming that the terminal voltages
and system frequencies, which are the observables of the target power system, can be
represented as shown in Equation (7). There were N = 3000 measurement points (sampled
every 4 ms for 12 s), and at each measurement point, the observable vector g(xj) (0 ≤ j ≤ N)
consisted of the components g1(xj), g2(xj), and g3(xj), which were the measurement values
of SG1, VSG2, and VSG3, respectively. Using Equations (13) and (14), we calculated KE
λj, KM vj, and the vibration frequency corresponding to each KE λj at each measurement
point (0 ≤ j ≤ N). KEs λj were complex scalars from which the arguments and vibration
frequencies could be obtained, whereas KMs vj were complex vectors, where the KM com-
ponents v1j, v2j, and v3j corresponded to g1(xj), g2(xj), and g3(xj), respectively. Hereafter,
by specifying “SG1”, “VSG2”, and “VSG3”, the subscripts 1, 2, and 3 will be omitted.

Figures 12–15 illustrate the relationship between the vibration frequency and absolute
value of KM components (

∣∣vj
∣∣) of SG1, VSG2, and VSG3. The absolute values of the

KMs represent the power spectrums in the frequency domain. Figures 12–15 represent
the frequency response analyses of the KMs calculated from the observables in tests
1–5, 6–10, 11–15, and 16–20, respectively. Remarkably, all the results exhibit the same
characteristics: the absolute values of the KM components are divided into four different
groups: Group 1 with the strong spectrum around 50 Hz, Group 2 with large spectrum
in the band of approximately 3 Hz to 50 Hz, Group 3 with small spectrum in the band
below approximately 5 Hz, and Group 4 with an intermediate spectrum in the band of
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approximately 1 Hz to 20 Hz. The different test results confirmed that the strong power
spectrum in Group 1 is due to the observables measured by using PLLs in the VSGs. The
results will be reported in another article. Figures 12B, 13B, 14B and 15B show enlarged
versions of the Group 3 shown in Figures 12A, 13A, 14A and 15A.

Figure 12. (A) Frequency response of the KMs of the system frequency/voltage for tests 1–5 in Table 1. (B) Frequency
response of the KMs of the system frequency/voltage (enlarged |vi|) for tests 1–5 in Table 1.
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Figure 13. (A) Frequency response of the KMs of the system frequency/voltage for tests 6–10 in Table 1. (B) Frequency
response of the KMs of the system frequency/voltage (enlarged |vi|) for tests 6–10 in Table 1.
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Figure 14. (A) Frequency response of the KMs of the system frequency/voltage for tests 11–15 in Table 1. (B) Frequency
response of the KMs of the system frequency/voltage (enlarged |vi|) for tests 11–15 in Table 1.
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Figure 15. (A) Frequency response of the KMs of the system frequency/voltage for tests 16–20 in Table 1. (B). Frequency
response of the KMs of the system frequency/voltage (enlarged |vi|) for tests 16–20 in Table 1.
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In Figure 8a,c,e and Figure 12B(a,c,e), the characteristic natural frequencies in Group 3
are confirmed. Conversely, the KMs in Group 2 which are evident in Figure 12A(a,c,e) do
not appear in Figure 8a,c,e. It was also confirmed in other tests that the power spectrum
belonging to Group 2 was caused by the discontinuous changes of the observables due to
the disturbance (load power addition) that occurred 15 s after the start of the simulation. As
described in the previous section, the difference can be attributed to the fact that Figure 8
represents a system that is linearly approximated around the equilibrium point using the
DFT, whereas in using KMD, Figure 12A,B represent the exactly equal (not approximate)
system containing both linear and nonlinear elements.

In the controls of the SG and VSGs, the active power and system frequency exhibit a
control loop with the same mechanism as in Equation (15), and the control loops between
the reactive power and terminal voltage can be expressed by Equation (16). Furthermore,
these control loops cross-interfere, as shown in Equation (17). In tests 1–20, the effects of the
active power change on the terminal voltage and of the reactive power change on the system
frequency, which correspond to the cross-interference, were also confirmed in Group 4.
The cross-interference in Group 4 does not appear when using the DFT, but appears when
using the KMD; this can be reasonably confirmed in the right columns (b,d,f) for tests 1–10
(Figures 12A and 13A) and in the left columns (a,c,e) for tests 11–20 (Figures 14A and 15A).
These tendencies indicate that KMD can express the interference between cross-loops
relatively clearly.

When the values of the main control parameters change, the amounts of vibration of
the observables change slightly. In particular, for tests 16–20, no significant differences in the
characteristics were observed within the range of parameters listed in Table 1. Furthermore,
the system operated stably in all tests and did not collapse. In future research, it will be
important to increase the parameter ranges and to perform a sensitivity analysis.

5. Conclusions

As the introduction of DERs using REs is accelerating, the analysis of power system
dynamics is becoming increasingly complicated due to the following factors:

• The inverters that connect DERs to power grids comprise control loops for active/reactive
power and frequency/voltage, and thus interfere with each other and exhibit nonlinear
characteristics.

• The system stability contribution function for the synchronization power of a smart
inverter is an interference factor between power supplies, and it is difficult to perform
mathematical analyses for complicated connection configurations.

• Functions such as the fault ride-through (FRT) in the grid code require fast responsive-
ness from the grid-connected inverters, which depends on the detailed data acquisition
and accurate numerical analysis of these operations.

Expectations have been increasing for data-driven analyses and control using data
measured in real time. Therefore, to develop future data-driven control, we developed
a new analysis method for the nonlinear dynamics of a power system using offline data.
Frequencies and voltages, which are the observables of the main control loops, were
obtained from simulation results obtained using MATLAB/Simulink and the IEEE nine-
bus system. By applying linear KOs to these observables, we could analyze the nonlinear
dynamics of the power system. The simulation system included two VSG inverters, which
are classified as smart inverters, and one conventional synchronous generator as the main
power source. The vibration frequencies were calculated from the KEs, and the frequency
responses were confirmed through comparison with the DFT, which is a conventional
analysis method that linearly approximates a system. The following conclusions are drawn
based on this comparison:

• The KMs calculated by using the Arnoldi algorithm in this study are approximations
of the eigenfunctions of the KO. That is, when a system is series-expanded using the
KEs and KEFs of the KO as the base, there are series terms represented by specific KEs
and KEFs.
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• Even if the frequency bands of the KEs are almost identical, the absolute values of the
KM components tend to be divided into large and small groups. The absolute values
of both differ by several orders of magnitude.

• The results obtained from the KMD method have KMs with large absolute values that
cannot be confirmed by the DFT. Such power spectrum that does not appear in the
DFT but appears only in the KMD can be considered to represent the nonlinearity
in the dynamics. The simulation results indicate the power spectrum contained in
the observables (frequency and voltage) that fluctuate discontinuously when the load
power added.

• The AC power system is generally controlled in the dq reference frame. Therefore, the
cross-couple effect due to the asymmetric term, which causes interference between
the d-axis and q-axis control, must be determined. Although it is generally difficult
to formulate the nonlinearity in the dynamics and analyze the control crossloops,
KMD can clearly reveal these effects in the frequency bands at particular KEs. In the
simulation tests of this study, it was confirmed that changes in active power affect not
only system frequency but also terminal voltage by changing the control parameters
of the inverter. Similarly, changes of the reactive power effect the system frequency as
well as the terminal voltage.

When KMD is utilized in a power system, it can be applied for fault prediction and
control stability by focusing on new phenomena that are not addressed by conventional
approximation methods. However, the following tasks remain:

• Confirmation of how KMs with large absolute values behave in actual systems;
• Indexing of the magnitudes of the absolute values of the KM components;
• Quantification of the errors caused by observable measurement delays and sam-

pling cycles;
• Sensitivity analysis with KMs comprising a wider range of control parameters, com-

pared to this study; and
• Comparison of the computer load and calculation time with those of conventional

methods such as DFT.

We will address these challenges in our future work.
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