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Abstract: The accuracy of the electric heating load forecast in a new load has a close relationship with
the safety and stability of distribution network in normal operation. It also has enormous implications
on the architecture of a distribution network. Firstly, the thermal comfort model of the human body
was established to analyze the comfortable body temperature of a main crowd under different
temperatures and levels of humidity. Secondly, it analyzed the influence factors of electric heating
load, and from the perspective of meteorological factors, it selected the difference between human
thermal comfort temperature and actual temperature and humidity by gray correlation analysis.
Finally, the attention mechanism was utilized to promote the precision of combined adjunction model,
and then the data results of the predicted electric heating load were obtained. In the verification, the
measured data of electric heating load in a certain area of eastern Inner Mongolia were used. The
results showed that after considering the input vector with most relative factors such as temperature
and human thermal comfort, the LSTM network can realize the accurate prediction of the electric
heating load.

Keywords: electric heating; load forecasting; thermal comfort; attention mechanism; LSTM neu-
ral network

1. Introduction

Electric heating is a clean, efficient, and flexible form of heating equipment. In recent
years, coal-fired heating has been gradually replaced by electric heating in northern China.
In order to control urban haze pollution and improve the quality of life of residents, in
recent years, the relevant departments of the state have launched the policies of “electricity
instead of coal” and “electricity instead of oil” [1]. These policies promote the process
of clean energy gradually replacing polluting energy and greatly improve the effect of
reducing pollutant emissions. With the continuous improvement of residents’ requirements
for indoor comfort, the scale of electric heating in winter is increasing year by year, and
electric heating is used more and more frequently. Meanwhile, the daily maximum load in
winter is also increasing.

Electric heating equipment can be divided into centralized (direct heating electric
boiler, regenerative electric boiler, etc.) and distributed (heating cable, electric heating film,
carbon crystal heating, etc.). Because electric heating in operation will not produce pollution
gas and noise, it is very clean and environmentally protective. The typical characteristics
of electric heating are high power, concentrated load, easy-to-produce peak load, and large
peak valley difference, and thus it has a great impact on distribution lines [2]. Therefore,
accurate load forecasting of electric heating load has great practical significance.

The influence of meteorological factors on short-term load forecasting cannot be ig-
nored. The relevant literature mainly analyzes the factors such as temperature, humidity,
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wind, and precipitation. The article [3] studies the influence of meteorological time series
characteristics on urban power consumption and proposes a prediction method different
from traditional methods. Articles [4,5] analyzed the prediction model of meteorological
sensitive load under the influence of temperature, humidity, snowfall, and other meteoro-
logical factors, and put forward the strategy of data processing.

Electric heating load is a kind of temperature control load [6]. In recent years, scholars
from all over the world have carried out research work on temperature-controlled load
characteristics. The authors of [7,8] predicted the dispatchable capacity and the ability to
respond to grid dispatching from the perspective of temperature-controlled load providing
auxiliary services for the power system. In the study of [9], the characteristic law of typical
microgrid temperature-controlled load is analyzed, and a physical model and a rough
scheme for optimal scheduling is established. The authors of [10,11] analyzed and modeled
the typical temperature control load characteristics in the centralized area, evaluated the
load more accurately in the multi-state situation, and proposed a real-time management
and control scheme for the temperature control load.

Load forecasting is based on historical load and weather data in order to analyze the
possible influence of historical load data on future load changes, so as to achieve accurate
load forecasting in a certain period of time in the future [12]. Short-term load forecasting
only forecasts the data of each period in the next few days. The classical load forecasting
algorithms generally include artificial neural network (ANN) [13], support vector machine
(SVM) [14], and gray neural network [15]. For the learning of time series data, the long-
short term memory (LSTM) network algorithm is more mature. In the study of [16], the
convergent cross mapping (CCM) method was used to study the internal relationship
between power consumption and temperature, wind speed, and other factors. The LSTM
neural network model was established, and the urban power consumption was predicted.
The results show that the accuracy was good. In [17], different training steps of electric
heating load forecasting are compared on the basis of the LSTM network. The results show
that LSTM network can achieve accurate electric heating load forecasting in different time
scales.

The research on the influence of absolute temperature on power load forecasting has
been relatively mature. Few studies have considered the influence of users’ thermal com-
fort temperature in different environments, taking the difference between users’ thermal
comfort temperature and air temperature as the input of load forecasting model.

On the basis of the analysis of electric heating load characteristics in distribution
network, this paper focused on the analysis of meteorological factors and the comfort
temperature of a main crowd. Firstly, the interfering factors of electric heating load were
studied by gray relational analysis method. Then, the thermal comfort temperature model
of residents was constructed. Finally, the historical data of electric heating load were
connected with the traditional influencing factors and the difference between thermal
comfort temperature and air temperature, and the electric heating load was predicted by
the improved LSTM network. Meanwhile, the proposed model was compared with other
models. The results showed that the prediction effect of the proposed method was better.

This paper proposes an electric heating load forecasting method based on improved
human thermal comfort model and improved LSTM neural network. The main contribu-
tions of this paper are as follows:

1. Modeling the thermal comfort of the human body.
2. The difference between the user’s thermal comfort temperature and the temperature

is introduced, rather than the absolute temperature value as the input in the network
model.

3. On the basis of LSTM network, we added attention mechanism and dropout layer.

2. Thermal Comfort Model of the Human Body

The use of electric heating devices in heating areas in China (such as eastern Inner
Mongolia) has gradually become mature, and its comfort is very important to the user
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experience. In the use of decentralized electric heating, human thermal comfort will affect
the heating time, heating temperature, and other factors, thus affecting the electric heating
load data. As the most important driving force of user response, thermal comfort should
be considered in load forecasting.

Indoor environment quality will directly affect the physical and mental health and
work efficiency of human body. It is very important and fundamental for people in a heated
area to achieve a comfortable indoor temperature. Thermal comfort is used to indicate
that most people are satisfied with the objective thermal environment, both physically and
psychologically. It is mainly affected by physical conditions, physiological conditions,
and psychological conditions [18]. The physical conditions include the heat transfer
performance and shading coefficient of the walls and windows of the building where
people live, the internal disturbance of lighting and equipment, the growth rate of indoor
microorganism, and so on, which are not affected by the human body’s own activities.
Physiological conditions include the change of perspiration rate caused by the roughness
or cracking of human skin, the intensity of exercise when carrying out routine activities,
and the regulation of local or overall sensation of radiation temperature. Psychological
conditions refer to the deviation between the factors and psychological expectation in the
thermal environment, which are closely related to subjective feeling.

At present, the thermal comfort of people’s environment is usually analyzed accord-
ing to the ISO 7730 thermal comfort model [19], which is proposed by the international
standards organization. The calculation results are expressed by predicted mean vote
(PMV), and the formula is as follows [20,21]:

PMV =
[
0.303× e−0.036M + 0.028

]
×
{
(M−W)− 3.05× 10−3×

[5733− 6.99× (M−W)− Pa]− 0.42× [(M−W)− 58.15]
−1.7× 10−5 ×M× (5867− Pa)− 0.0014×M× (34− ta)−
3.96× 10−8 × fcl × [(tcl + 273)4 − (tr + 273)4]− fcl × hc×
(tcl − ta)}

(1)

where M is metabolic rate of human body, W/m2; W is the mechanical power consumed
by the human body, W/m2; Pa is partial pressure of water vapor in ambient air around
human body, Pa; ta is air temperature around human body, ◦C; tr is average radiation
temperature, ◦C; fcl is the ratio of clothing area covered by human body to bare area; tcl
is the temperature of outer surface for clothing, ◦C; and hc is the heat transfer coefficient,
W/(m2·K).

ISO 7730 thermal comfort model has a high accuracy in obtaining the user comfort
temperature range, but it is difficult to obtain the real-time environmental data required by
the model. Therefore, the ISO 7730 model can be simplified properly without affecting the
accuracy. In [22], the Rohles simplified model was improved, and the results were extended
to a wider range of clothing insulations. Only the indoor air temperature and relative
humidity in the test environment were used as the input parameters, and therefore the
thermal comfort parameters can be easily evaluated. The results show that the method is
very close to ISO 7730 thermal comfort model and is easy to operate and greatly enhanced.
The simplified and improved model is as follows:

IPMV = aTa + bPv − c (2)

where IPMV is index value of PMV; Ta is indoor temperature; Pv is relative humidity, %;
and a, b, and c are known parameters.

When the indoor temperature and relative humidity are on the high side or on the
low side, they will interfere with people’s core temperature. At present, people’s heating
temperature is increasing day by day, and therefore the temperature of people’s thermal
comfort zone will also rise as a whole, and the regulation ability of cold and heat stimulation
of people who stay in the thermal comfort zone for a long time will be weakened. In the
end, peoples’ sensitivity and reaction time to adjust the temperature will become longer.
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When the indoor temperature is not the expected thermal comfort temperature, people
will adjust the temperature setting to achieve the expected value. Therefore, in order to
consider the impact of users’ thermal comfort temperature, we used the difference between
the air temperature and human thermal comfort temperature to improve the input data of
LSTM neural network prediction model.

3. Analysis of Factors Affecting Electric Heating Load
3.1. Load Characteristics of Electric Heating

Electric heating load is different from general electric load, and it has obvious seasonal
climate characteristics. Taking the electric heating data of a certain year in eastern Inner
Mongolia as an example, from the change trend of annual load curve, we found that the
electric heating load in northern region is more intensive in winter (December to March
of the next year), in which December to January are the months with the lowest average
temperature. From the daily load curve, we found that electric heating load also has
obvious characteristics of daily type. From Monday to Friday, the load of office buildings is
higher, while the load of weekends and holidays is lower, but the load of commercial and
residential electric heating is higher, and the overall trend of daily change is not large. It can
be seen from Figure 1 that the typical daily load curve of electric heating in eastern Inner
Mongolia presents the characteristics of morning peak, afternoon trough, and evening
peak. In terms of electricity consumption, this is mainly due to the start-up of industrial
and commercial electric heating in the morning, the general rise of temperature in the
afternoon, and the start-up of residential load gathering in the evening.
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Figure 1. Typical electric heating load curve of a coal to electricity area in eastern Inner Mongolia. Figure 1. Typical electric heating load curve of a coal to electricity area in eastern Inner Mongolia.

The key areas of electric energy substitution in eastern Inner Mongolia are distributed
electric heating and centralized electric heating, and electric heating accounts for more
than 50% of the proportion of electric energy substitution in eastern Inner Mongolia. With
the increasing application of electric heating and large-scale access to the power grid, the
impact on the operation of the power system is to further narrow the gap between the
winter and summer load.

3.2. Correlation Analysis of Electric Heating Load and Influencing Factors

The idea of association analysis is to compare the similarity degree of data series, so as
to clarify the association degree and regular pattern between each series. It belongs to an
effective and practical method of gray system theory to analyze the correlation degree of
various factors in the research object system [5,23]. In order for the variation characteristics
of electric heating load in winter in eastern Inner Mongolia to be studied, the relationship
between the meteorological factors such as temperature difference (the difference between
human thermal comfort temperature and actual temperature), relative humidity, wind
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speed and snow falling, and electric heating load should be analyzed. The calculation steps
of correlation analysis method are as follows:

Step 1: Construct electric heating load characteristic sequence and influence factor
sequence. The electric heating load sequence is expressed as X0, and the related influencing
factor sequence is expressed as Xi; the complete sequence is as follows:

X0 = (x0(1) x0(2) · · · x0(k) · · · x0(n)) (3)

Xi = (xi(1) xi(2) · · · xi(k) · · · xi(n)) (4)

where k is serial number; n is number of samples, k = 1, 2, · · · , n; and i is the number of
related factors, i = 1, 2, · · · , m.

Step 2: Obtain the correlation degree.
(a) Each sequence is dimensionless as the initial value, as shown in the following

formula:
X′ i =

Xi
xi(1)

=
(
x′ i(1)x′ i(2) · · · x′ i(n)

)
(5)

where i = 1, 2, · · · , m, and X′ i is initial value after processing.
(b) Determine the difference between electric heating load sequence and each influ-

encing factor ∆i.
∆i(k) =

∣∣x′0(k)− x′ i(k)
∣∣ (6)

∆i = (∆i(1) ∆i(2) · · ·∆i(k) · · ·∆i(n)) (7)

Record the minimum value of all sequence differences as a, the minimum range is b.
a = min{∆i(1), ∆i(2), · · · , ∆i(k), · · · , ∆i(n)}
b = max{∆i(1), ∆i(2), · · · , ∆i(k), · · · , ∆i(n)}

i = 1, 2, · · · , m
(8)

(c) Find the correlation coefficient of each sample in the sequence γi(k).

γi(k) =
a + εb

∆i(k) + εb
(9)

where γi(k) is the correlation coefficient between the k-th parameter of the i-th subse-
quence and the k-th parameter of the electric heating load sequence, and ε is the resolution
coefficient, usually 0.5.

(d) Calculate the average correlation coefficient as the following:

γi =
1
n

n

∑
k=1

γi(k) (10)

where i = 1, 2, · · · , m.
Step 3: Analyze the correlation coefficient.
Obtain the correlation coefficient between the electric heating load data series X0 and

each related factor series Xi. The larger the correlation coefficient, the greater the influence
of the factor series on the electric heating load data series. Therefore, the correlation
coefficient between electric heating load and various factors can be calculated, as shown in
Table 1.

It can be seen from the data in Table 1 that temperature difference and humidity are
the most influential factors on electric heating load data, while snowfall and wind speed
are relatively less influential. This is mainly because temperature difference and humidity
will affect human thermal comfort to a greater extent. Although snowfall and wind speed
will also affect people’s psychological expectation and feeling of temperature and humidity,
their influence is relatively small relative to temperature difference and humidity.
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Table 1. Coefficient of correlation between electric heating load and meteorological factors.

Influence Factor Correlation
Coefficient Influence Factor Correlation

Coefficient

Temperature difference 1 0.9601 Snowfall 0.8326
Humidity 0.9416 Wind speed 0.7952

1 Table notes: In this paper and Table 1, “temperature difference” refers to the difference between human thermal
comfort temperature and actual temperature.

After the most relevant factors of electric heating load are analyzed, in addition to the
historical electric heating load data, temperature difference data and humidity also become
the main source data of electric heating load prediction.

4. Improved LSTM Neural Network Prediction Model
4.1. Long Short-Term Memory Network

Due to the inherent time series of load data, the selected forecasting model must have
a good ability to express the time series characteristics. In this paper, the long short-term
memory network (LSTM) was taken as the main body and improved as the model to study
its applicability for short-term load forecasting modeling of electric heating load in eastern
Inner Mongolia.

LSTM is a kind of special recurrent neural network (RNN). It can use the information
learned at the last moment to learn at the current moment and can set gradient threshold
to prevent the gradient disappearing or exploding in RNN training. LSTM algorithm adds
cell state C to the original RNN hidden layer to keep the long-term state, thus solving
the long-term dependence problem of RNN. Therefore, LSTM is superior to other neural
network models. Figure 2 is the schematic diagram of LSTM expansion structure.
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In Figure 2, the input of LSTM consists of three parts: the input value at the current
time xt, the output value at the previous time ht−1, and the cell state at the previous time
ct−1. The output of LSTM consists of the output unit state ct and the output value of hidden
layer ht.

Compared with RNN, LSTM redesigns the internal memory unit while maintaining
its basic structure. The architecture diagram of each unit of LSTM is shown in Figure 3.
The key of every LSTM cell is the control of cell state c. There are three control gates in the
unit state, which are forgetting gate ft, input gate it, and output gate ot. Through these
gates, information can be filtered or added to achieve a new unit state.

According to Figure 3, from left to right, it can be seen that the unit state of the
previous time ct−1 and the output value of the hidden layer of the previous time ht−1
together memorize the historical information of the sequence data. Step-by-step analysis of
LSTM architecture can be divided into three parts.
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The first step is to filter the information selectively. The forgetting gate removes the
information in the last unit according to ht−1 and xt, that is, it removes the useless part of
the information learned at the last moment. The forgetting gate is as follows:

ft = σ
(
wf·[ht−1, xt] + bf

)
(11)

where σ(·) is Sigmoid activation function, wf is the weight of forgetting gate, and bf is the
bias of forgetting gate.

The second step is to generate new information that needs to be updated. This part
is combined by input gate it and candidate value C̃t. ht−1 and xt use sigmoid function to
obtain the data that need to be input into the cell state (i.e., input gate) and create a new
candidate state through tanh layer. The formula is as follows:

it = σ(wi·[ht−1, xt] + bi) (12)

C̃t = tanh(wc·[ht−1, xt] + bc) (13)

where it is information to memorize, that is, input gate; C̃t is the candidate value to
update the original cell state; wi and wc represent the weight of input gate and candidate
value, respectively; and bi and bc represent the bias of input gate and candidate value,
respectively.

The third step is to generate new cell state ct and hidden layer outputs ht. By multi-
plying the input gate it and the candidate value C̃t and adding them to the forgetting gate
ft, one can obtain the updated cell state value ct, as shown in the following formula:

ct = f·ct−1 + it·kt (14)

The new cell state ct is processed by a tanh function, and then multiplied by the
output gate ot to obtain the output value of the hidden layer ht:

ot = σ(wo·[ht−1, xt] + bo) (15)

ht = ot·tanh(ct) (16)

where wo is the weight of output gate, and bo is the bias of output gate.
Through the analysis of LSTM structure system, we can see that using LSTM to

replace neurons in RNN to build load forecasting model can solve the problem of long-
term dependence and we can learn the hidden historical operation law in power load
forecasting.
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4.2. Improved LSTM with Attention Mechanism

For different times, the brain will focus on the areas that need to be focused on and
reduce or ignore the attention to other areas. This kind of attention allocation mechanism
can help people to obtain important and detailed information and reduce the influence of
other irrelevant information.

Attention mechanism refers to the idea of human brain attention resource alloca-
tion [24]. By assigning different probabilities to generate different attention distribution
coefficients, the model can better learn the information in the input sequence and improve
the accuracy of the model.

The attention structure is shown in Figure 4, where xt(t ∈ [1, n]) is the input to the
hidden layer of the LSTM model, ht(t ∈ [1, n]) is the hidden layer output through the
LSTM corresponding to each input, αt(t ∈ [1, n]) is the probability distribution value of
the attention mechanism output to hidden layer, and y is the LSTM output value with
attention mechanism.
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The formulas of attention weight matrix and eigenvector in attention mechanism are
as follows:

et = ustanh(wsht + bs) (17)

αt =
exp(et)

t
∑

n=1
en

(18)

V =
n

∑
t=1

αtht (19)

where et is the non-normalized weight matrix, and ws, bs, and us represent randomly
initialized attention mechanism weight matrix, bias vector, and time series matrix, respec-
tively.

To sum up, the structure of the improved LSTM electric heating load forecasting
model designed in this paper is shown in Figure 5, which is mainly composed of input
layer, LSTM layer, attention layer, dropout layer, and output layer. The function of dropout
layer is to prevent over learning and set the discard rate, so that some neurons extracted
from the model can be “discarded” (do not participate in network training).
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Considering the climate characteristics of northern China, according to the results of
correlation analysis, we took the historical electric heating load data from January to March
l, the difference between human thermal comfort temperature and air temperature ∆t, and
relative humidity pv as the original sample set of the prediction model. The sample data
were standardized by 0-1 as the input matrix Xs of the model. The data of temperature and
relative humidity were from the National Meteorological Data Center.

The input data Xs of the input layer was simply extracted with feature vectors, and
the neural network unit was controlled by three “gates” structures. The output data of
LSTM layer was the matrix H = [h1 · · · hi · · · hn], which represents the output value of
electric heating load of this layer. The input of attention mechanism was the output matrix
H of LSTM layer, and the feature vectors V were obtained by different attention weights.

5. Case Study
5.1. Date Preprocessing

The data used in this paper are the historical data of 66 days of electric heating load
from January to the first week of March in 2018 in an area of eastern Inner Mongolia. At the
same time, the thermal comfort of 300 individuals of different ages was investigated, and
the model parameters were fitted by Equation (2), and the thermal comfort temperature
of the main population was obtained. Among the 300 individuals, there were 150 men
and 150 women, mainly young people aged about 20 years old and middle-aged and old
people aged about 60 or 70 years old.

The thermal comfort questionnaire survey was conducted on the subjects, and the
temperature and relative humidity during the survey were investigated. The model
parameters of the same user under different clothing and activity intensity were obtained
by fitting (see Table 2).

It can be seen from Table 2 that users had different adaptability to temperature under
different clothes and different activity intensities. In order to make the model more
universal, we took the average value of 23.275 ◦C as the thermal comfort temperature of
the human body.
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Table 2. Thermal comfort model parameters of users.

Clothing
Fever/clo

Activity
Intensity/met a b c Thermal Comfort

Temperature/◦C

0.5
Weak 0.6 0.263 0.456 6.576 26.5
Strong 1.2 0.267 0.378 6.243 23.7

1
Weak 0.6 0.145 −0.127 2.823 22.6
Strong 1.2 0.114 −0.135 2.211 20.3

5.2. Parameter Setting and Analysis

The input data were divided into training set and test set. The first 90% of the input
samples were taken as the training set for the data samples of model fitting; the last 10%
of the input sample was taken as the test set to evaluate the accuracy of the final model,
that is, the training prediction of the prediction day. We set the initial learning rate as 0.05,
learning decay rate as 0.6, and data training cycle as 250. In addition, the dropout layer
discard rate was set to 0.25.

The number of hidden layers of the LSTM network and the number of LSTM units
in each hidden layer had an impact on the accuracy of electric heating load forecasting.
Under-learning or over-learning will affect the accuracy of the model. The enumeration
method was used to record the training effect of different hidden layers and different
number of neurons in each layer, so as to determine the optimal network structure. Firstly,
the number of hidden layers was set to 1, and different numbers of neurons were set one
by one to train and record MAPE; then, we kept the optimal number of neurons in the first
layer, set the number of hidden layers to 2, continued to set the number of different units
one by one for training, and so on. In this paper, the maximum number of hidden layers
was set to 3, and the performance of each training is shown in Table 3.

Table 3. Forecasting performance of different LSTM network structures.

Number of Hidden Units 1 Hidden LayereMAPE/% 2 Hidden LayerseMAPE/% 3 Hidden LayerseMAPE/%

5 4.2486 8.5961 7.3803
10 8.5121 7.607 5.0794
15 6.7676 6.4442 10.6352
20 4.4361 5.0683 9.1701
25 7.5099 7.4918 9.3492
30 6.7286 9.7442 9.7862
35 8.7444 5.6755 6.7193
40 10.7386 10.2154 8.7017

According to the results in Table 3, when the number of hidden layers was 1 and
the number of neurons in each layer was 5, the minimum eMAPE was 4.2486%; when the
number of hidden layers was 2, the number of neurons in the first layer was fixed to 5, and
the number of neurons in the second layer was set to 20, and the minimum eMAPE was
5.0683%. When the hidden layer was 3, the first two layers were fixed with the optimal
number. When the number of neurons in the third layer was 10, the minimum eMAPE was
5.0794%.

5.3. Test Results and Analysis

In order to verify the performance of the thermal comfort model and the improved
LSTM neural network method proposed in this paper, we selected the optimal prediction
model (one hidden layer, five neurons per layer). In addition, the hourly load from January
to early March 2018 was used as the dataset to test the prediction performance of the model,
which was compared with the other three cases.

Figure 6 shows the mean absolute percentage error (MAPE) of the prediction results
of the proposed method. Figure 7 shows the comparison curve between the actual electric
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heating load and the load predicted by each method. The curve LSTM-T-A represents
the prediction result of the LSTM model with thermal comfort temperature and attention
mechanism added, the curve LSTM-T represents the prediction result with thermal comfort
temperature added only, and the curve LSTM-A represents the prediction result with
attention mechanism added only. The curve LSTM represents the LSTM prediction results
without thermal comfort temperature and attention mechanism. It can be seen from
Figure 7 that compared with the other three methods, LSTM-T-A had little change in
amplitude compared with the real value, and the curve characteristics were closest to the
real value.
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Figure 7. Forecast results of electric heating load.

The MAPE (Mean Absolute Percentage Error), MAE (Mean Absolute Error), and
RMSE (Root Mean Square Error) of the above four models are shown in Table 4. In addition
to comparing the improved part of LSTM, the errors of SVM and ANN are also compared.
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Table 4. Prediction performance comparison of different neural network algorithms.

Models eMAPE/% eMAE/MW eRMSE/MW

LSTM-T-A 4.2486 109.3525 141.2577
LSTM-T 9.5517 228.4801 297.6025
LSTM-A 11.3527 293.5961 358.2558

LSTM 12.7182 311.0858 399.6952
SVM 13.6543 346.7190 424.6283
ANN 14.7216 384.1764 457.4381

It can be seen from Figure 7 and Table 4 that for the LSTM model, the improvement af-
ter adding human thermal comfort temperature and attention mechanism will significantly
improve the prediction accuracy of electric heating load. LSTM-T-A prediction curve fitted
the real value best, and the selected error index values were the smallest, which showed a
better prediction effect.

6. Conclusions

According to the load of electric heating in northern China, we analyzed the load
characteristics of electric heating in winter and constructed the thermal comfort temperature
model of the human body. The main meteorological factors affecting electric heating load
were screened out by the gray correlation analysis method. Meanwhile, the difference
between thermal comfort temperature and actual temperature of main users was analyzed
and considered. Attention mechanism and dropout layer were added to improve the
LSTM neural network, and the optimal number of hidden layers and hidden neurons were
obtained.

The actual electric heating load data were used to verify the model and were compared
with several models. The results show that:

1. Comprehensive historical data showed that the shape of the typical daily load curve
of electric heating load fluctuated greatly, and the peak valley difference was large.
Moreover, the electric heating load had a strong time correlation, which was closely
related to temperature, relative humidity, and thermal comfort temperature.

2. It is necessary to find the optimal number of hidden layers and neurons in order to
mine more data information and improve the prediction accuracy of improved LSTM
network.

3. As far as the improvement of LSTM prediction method is concerned, considering
human thermal comfort temperature and attention mechanism accuracy, the training
effect is the best. When considering the difference between thermal comfort tempera-
ture and air temperature in the model input, we found that the conclusion was more
accurate and performed better than SVM, ANN, and other algorithms, and thus it is a
more suitable electric heating load forecasting method.
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