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Abstract: Solar Photovoltaics (PV) is seen as one of the renewable energy technologies that could help
reduce the world’s dependence on fossil fuels. However, since it is dependent on the sun, it can only
generate electricity in the daytime, and this restriction is exacerbated in electricity grids with high PV
penetration, where solar energy must be curtailed due to the mismatch between supply and demand.
This study conducts a techno-economic analysis to present the cost-optimal storage growth trajectory
that could support the dynamic integration of solar PV within a planning horizon. A methodology for
cost-optimal assessment that incorporates hourly simulation, Monte Carlo random sampling, and a
proposed financial assessment is presented. This approach was tested in Japan’s southernmost region
since it is continuously increasing its solar capacity and is at the precipice of high PV curtailment
scenario. The results show the existence of a cost-optimal storage capacity growth trajectory that
balances the cost penalty from curtailment and the additional investment cost from storage. This
optimal trajectory reduces the impact of curtailment on the energy generation cost to manageable
levels and utilizes more solar energy potential that further reduces CO2 emissions. The results also
show that the solar capacity growth rate and storage cost significantly impact the optimal trajectory.
The incorporation of the Monte Carlo method significantly reduced the computational requirement
of the analysis enabling the exploration of several growth trajectories, and the proposed financial
assessment enabled the time-bound optimization of these trajectories. The approach could be used to
calculate the optimal growth trajectories in other nations or regions, provided that historical hourly
temperature, irradiance, and demand data are available.

Keywords: energy storage; solar curtailment; optimization; scenario analysis; cost-optimal; diurnal
storage; high PV penetration; growth trajectory; generation cost

1. Introduction
1.1. Solar Photovoltaic and the Energy Transition

In October 2016, the conditions for the entry into force of the Paris Agreement were
met, and it entered into force on 4 November 2016. Signatories to this agreement agreed
to submit a national climate plan to mitigate climate change by reducing greenhouse
gas emissions. Similarly, one of the United Nations Sustainable Development Goals,
established in 2015, is focused on affordable and clean energy. These two global initiatives
helped promote renewable energy, such as wind, solar, and biomass, in the energy mix of
several nations. Consequently, countries such as Germany and Denmark and subnational
jurisdictions such as California, Scotland, and South Australia, developed and promoted
their “green energy transition” initiatives [1]. Aside from these major players, more than
150 countries have national targets for renewable energy in the power sector [2].

All these initiatives have contributed to the increasing solar photovoltaics (PV) instal-
lation in the world, which grew from 138 GW to 627 GW from 2013 to 2019 [2]. Several
countries have now reached high solar PV penetration, and with it comes the problem of
solar curtailment. In 2008, Denholm et al. [3], researchers from the US National Renewable

Energies 2021, 14, 4496. https://doi.org/10.3390/en14154496 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-8856-1106
https://orcid.org/0000-0003-4841-7932
https://doi.org/10.3390/en14154496
https://doi.org/10.3390/en14154496
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14154496
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14154496?type=check_update&version=2


Energies 2021, 14, 4496 2 of 23

Energy Laboratory, noticed a peculiar impact on the shape of the demand after subtracting
solar generation. The California Independent System Operator later coined the term “duck
curve” to describe this phenomenon given that the shape of the net load resembles a duck
as solar installation increases [4]. This curve highlights the necessary changes that the
flexible generators have to perform. First, the flexible generators should be able to ramp up
and down, and second, the minimum generation of these generators should be lower than
the “belly” of the “duck curve.” Solar curtailment has to be implemented if either of these
conditions is not satisfied. Curtailment generally happens when the flexible load is unable
to reduce production to compensate for the high volume of solar energy.

Several countries with high variable renewable energy installation are already expe-
riencing solar curtailment. The mismatch of PV supply and electricity demand and the
limitation of other sources to respond to rapid changes limits the large-scale integration
of solar PV [5]. Possible solutions involve transmission [1,6], energy storage [5,7], and
demand-side management [8–10]. Alternative solutions involve increasing the flexibility of
other sources [1,5] and installing PV to better match demand [7,11].

In jurisdictions with high PV installation, such as Germany, California, and South Aus-
tralia, there is minimal solar curtailment, but Japan and Hawaii face unique situations [1].
The electricity grid of the former is well-interconnected with neighboring countries and
states [1]; thus, they are capable of trading excess energy to their neighbors. For instance,
Germany can sell their excess solar or buy nuclear energy depending on the needs of their
grid. On the other hand, Japan and Hawaii are isolated island nations and states with
no trading options during peak solar production. In these cases, energy storage plays a
significant role in the continued increase in solar penetration.

1.2. Japan’s Situation

The Japanese government recently reiterated its commitment to the projected energy
mix for 2030, where fossil fuel-based generation will be reduced to 46%, and renewable
energy will comprise 22–24%, to which solar energy will make a 7% contribution [12].
To achieve the solar mix target, Japan promotes innovative research and development,
improvements in the Feed-in Tariff (FiT), and competitive procurement prices using the
Top-Runner method.

The Kyushu region, located on the western tip of Japan, is leading the country’s solar
PV generation. Relative to the rest of the country, the region has higher solar potential
and cheaper land cost, which has driven the growth of solar investment in the region.
As of early 2021, the region has a total installed capacity of 10.1 GW, and construction of
additional plants that will increase this capacity further to roughly 16 GW [13] by around
2027 is already approved. The share of solar PV generation has been steadily increasing. In
2017, 2018, and 2019, solar PV generation accounted for 8.5%, 9.2%, and 10.1% of the total
yearly generation, respectively.

However, Kyushu remains heavily dependent on thermal generation despite the
increased solar and nuclear penetration, as seen in Figure 1. In 2017, 2018, and 2019,
thermal generation accounted for 70%, 61.1%, and 50.9% of the total yearly generation,
respectively. The decrease is mainly attributed to the increase in nuclear generation. As of
June 2018, Kyushu restarted four of its six nuclear power plants (NPP) with a total capacity
of 4.140 GW [14]. The other two power plants were permanently decommissioned. There
is still an increasing need for additional solar investment to further reduce the dependence
on thermal power plants . However, in October 2018, Kyushu was forced to curtail some
solar production for the first time. More curtailment occurred in March 2019.

In order to reduce curtailment, Kyushu utilizes its transmission lines and pumped hy-
droelectric energy storage (PHES). The Kanmon interconnection line connects the Kyushu
region to the rest of the country via a 500 kV, 2380 MW transmission line [15]. The region
also has three hydroelectric power plants (pure pump-storage) with a total generation
capacity of 2.3 GW and 6 h of storage [16]. These were initially designed to store excess
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energy from the nuclear power plant but are now used to store energy during peak solar
production and generate energy to support the ramp rate of the thermal plants.

Figure 1. Energy Production of Kyushu Published by Kyushu Electric Power Company.

Figure 2 shows the curtailment profile of Kyushu in March 2019. The area graph shows
the total generation of the region from various energy sources. Curtailment is necessary
when the overall demand (red line) is below the region’s generation capacity (area graph).
The overall demand includes the local Kyushu demand, the transmission, and the charging
of the pump hydro. The curtailment’s magnitude (yellow line) already reached 1 GW at
peak curtailment during the weekend. Moreover, the figure shows that the pump hydro
storage (dark blue) was charged, the transmission (dark green) was increased, and the
thermal production (brown) was reduced, but these efforts were insufficient to meet the
energy balance. Recent data from October 2019 and March 2020 also show curtailment.
Curtailment will eventually increase in frequency and magnitude since the installed solar
capacity will continually grow based on the approved solar power plant plans.

Kyushu can generate as much as 20 GW at peak generation; thus, its transmission
capabilities to other regions are limited. Kyushu represents island nations with geographi-
cally isolated electrical grids like the Philippines, Indonesia, and Hawaii, or technologically
isolated grids like South Korea. In these situations, transmission to neighboring countries
or grids could not solve the curtailment problem. Storage is the best solution to support
the further increase in solar capacity.

Figure 2. Curtailment Profile in Kyushu in March 2019.
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1.3. Electrical Energy Storage

There are several ways to categorize electrical energy storage (EES) such as stored
energy type [17], energy conversion interface [18,19], storage mechanism [18,20], and
energy storage purpose [21]. Figure 3 categorizes the electrical storage systems based on
the conversion interface. Direct electrical storage mainly stores energy via electric fields
in capacitors and magnetic fields in inductors without the need for conversion [17,18].
Their use is well-known in electronic circuits, but their capacity to store energy is limited.
Electrochemical energy storage utilizes electrochemical reactions to store and produce
energy, and the capacity ranges from 100 W to MW [21]. Mechanical energy storage stores
energy either through kinetic energy or potential energy [17]. This type of storage produces
fewer contaminants throughout its life cycle [20], but its geographical location is its main
limitation [21,22].

Chemical energy storage covers technologies where electrical energy produces chemi-
cal compounds that could later generate electricity [21]. Electricity can be stored through
the production of gas or liquid that could later be used for energy generation or direct
utilization [23]. In contrast to the previous three types, the production plant for chemical
energy storage is often separate from the generation plant. Thermal energy storage stores
energy through temperature change, phase change, or chemical structure change in the
material [21]. This kind of energy storage is often used alongside concentrated solar power
(CSP) plant for dispatchable generation [24]. Similar to chemical storage, the “charging”
and “discharging” interfaces for thermal energy are separate facilities.

Since the theoretical maximum capacity of direct electrical storage is limited, it is
infeasible for grid-level storage. The dynamics between the storage and generation of
chemical electrical storage may prove to be useful for long-term storage, but since it
requires two different facilities, for short-term storage the complexity of the system could
hinder its operation; thus, it will not be explored further in this study. Similarly, thermal
electrical storage will not be explored further since the current application is limited to CSP.
Mechanical and electrochemical electrical storage provides a straightforward conversion
between electricity and storage, which is appropriate for diurnal storage. These kinds
of storage are essentially built and then cycle through charging and discharging. The
capacities of such electrical storage systems are limited mainly by the area and the cost of
the installation. The study will mainly focus on these two types of electrical storage.

Figure 3. Types of Electrical Storage Systems based on the energy conversion interface. Adapted from [17–21,23].

Pumped hydroelectric energy storage (PHES) requires two reservoirs. It stores en-
ergy by pumping water uphill and generates electricity by releasing the water downhill
like a typical hydropower plant [21]. It is the most mature and widely used large-scale
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energy storage technology, but it is limited by several natural geological features, includ-
ing adequate elevation and sufficient water supply [21]. Compressed air energy storage
(CAES) stores energy by compressing air to high pressures using electrically driven com-
pressors [22]. It generates electricity by allowing the air to expand and mixing the air with
fuel in a combustor to drive the turbines [22]. Usually, the compression cycle requires
cooling, and the expanding cycle needs preheating [22]. Although it is already considered
a developed technology, it suffers the same geographical restrictions of PHES since it
requires access to large underground cavities, aquifers, and caverns [22]. Flywheel energy
(FES) storage stores electrical energy in the form of rotational energy, but it is designed
to deal with short-term voltage disturbance to improve power quality [21]. Liquid air
energy storage (LAES) stores energy by storing liquefied cool air in tanks [25]. Electricity
is generated by allowing the air to evaporate and drive the turbine [25]. Since it utilizes
tanks designed for liquefied air, it does not have geographic restrictions, but its efficiency
is low [25].

Lead-acid (PbO2) battery, although considered to have lower efficiency and energy
density, is still used because of its low cost, high reliability and technological maturity [21].
This technology also has a short lifetime at a high depth of discharge, and it requires
periodic water maintenance [18]. Sodium sulfur (NaS) battery is one of the batteries used
for commercial electrical energy storage in electric utility distribution due to its high energy
density, energy efficiency and long cycle capability [21]. However, high capital cost, high
operational temperature requirement and high operational hazard limit its application [21].
The increasing number of portable electronic devices has placed a spotlight on Lithium-ion
(Li-ion) batteries. Li-ion’s high power, energy density, and efficiency make it a potential
solution for grid-level storage [19]. However, depending on lithium alone might lead to
insufficient supply in the future [26]. Recently, there is an increasing interest in the redox
flow battery (RFB) due to its low maintenance cost, overcharging tolerance, and deep
charging capability [21], but this technology is still in the development phase [27].

Several studies have summarized the technical and economic properties of existing
and potential ESS [18,19,21,28–30]. A recent review by Borri et al. [25] summarizes recent
trends in LAES. From these sources, Table 1 summarizes some of the parameters crucial in
understanding mechanical and electrochemical storage. Each technology has a different
round-trip efficiency, which has an impact on the discharge capacity of the system. To
ensure a longer lifetime for some of the batteries (LAB, NaSB, and LIB), they are not
completely discharged; thus, only a fraction of their actual capacity is usable. This drawback
is not present in mechanical energy storage.

Table 1. Electrical Storage System (ESS) Parameters.

Parameters Unit LAB NaSB LIB RFB PHES CAES FES LAES

Round-trip
Efficiency % 75 80 90 80 75 60 88 50

Discharge
Duration m-h m-h m-h m-h m-h m-h s-m m-h

Depth of
Discharge % 50 80 80 100 100 100 100 100

Cycle Life cycle 2000–4500 2500–4500 1500–4500 10,000–
13,000

20,000–
50,000 >13,000 20,000–

100,000 -

Calendary
Life years 5–15 10–15 5–15 5–15 40–60 20–60 15 30–40

Reference [18,19,28,29] [18,21,28,29] [18,21,28,29] [18,21,28,29] [18,19,21,28] [18,19,21,28] [18,21,28,30] [25]

The cost of ESS is highly contentious. There are various ways to compute capital
expenses and operational expenses. Some authors focus on both the power delivery cost
and energy capacity cost [19,21,29,30], while some authors mainly focus on the energy
capacity cost and assume a particular duration for the power delivery [31–33]. The former
allows more flexibility in the calculations, but the latter simplifies the assumptions in
the calculations. Since the focus of this paper is on diurnal storage, the focus will be
on the cost of the energy capacity. Schmidt et al. [31] concluded that the capital cost of
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ESS systems is on a trajectory towards 340 USD/kWh and 175 USD/kWh for stationary
and battery pack storage, respectively, once the total installed capacity reached 1 TWh.
They estimated that the storage cost by 2030 would be between 290 USD/kWh to 520
USD/kWh, where PHES and Li-Ion represent the lowest and highest costs, respectively.
These conclusions are relatively higher than the projections of Cole and Frazier [32]. After
analyzing 25 publications, they concluded that the capital cost of a 4-h battery system would
be between 124 USD/kWh and 301 USD/kWh. In Lazard’s 2020 Levelized Cost of Storage
Analysis [34], they mentioned in their assumption that they used 475 USD/kWh and 102
USD/kW as their ESS cost for utility-scale PV + storage system. These assumptions are
closer to the cost projections of Cole and Frazier for 2020, albeit a pessimistic assumption.

1.4. Economic Assessment

Levelized Cost of Energy (LCOE), calculated by dividing the life cycle cost of the sys-
tem by its lifetime energy production, is one of the most commonly used economic metrics
in comparing energy generators [33]. Early literature stated that it allows the comparison
of alternative technologies despite the difference in operational scale, investment, and oper-
ating periods [35]. It has become one of the standard economic metrics used in comparing
technology, especially in comparing renewable energy with conventional energy (such as
coal and Liquefied Natural Gas (LNG)) [36–38]. LCOE is not directly applicable in assessing
storage cost since energy storage does not generate its energy. Adapting the basic idea
behind LCOE, Jülch et al. [29,39] defined Levelized Cost of Storage (LCOS) as the sum of all
the annual expenses (such as operational cost and charging cost) and capital cost divided
by the sum of delivered energy over the lifetime of the storage. The approach is relatively
similar to LCOE, but instead of generating the energy, LCOS purchases electricity and the
delivered energy incorporates the cycle lost (charge and discharge). After examining the
LCOS for several ESS technologies, the author highlighted that LCOS is influenced by the
design of the storage plant, cost of electricity, and operating hours [29].

Lai and McCulloch [33] focused on a mathematical approach to isolate the LCOS,
where storage was seen as separate from the system, and introduced the idea of Levelized
Cost of Delivery (LCOD) that provided the relationship between LCOE and LCOS. Schmidt
et al. [30] provided a comprehensive analysis of nine storage technologies for several
applications and concluded that Li-Ion batteries are the most competitive, and PHES,
CEAS, and hydrogen are best for long discharge application.

Storage is starting to be financially viable, and several studies have explored the idea
of identifying appropriate storage allocation. Li et al. [40] conducted a technical-economic
assessment of large-scale PV integration with PHES in the Kyushu region. PHES was
chosen in their study because they evaluated that the topography and geology in the area
are favorable to the development of PHES. Their results showed that the additional income
from the PV surplus was not enough to cover the additional investment in PHES, but it
could offset the initial investment. Anagnostopoulos and Papantonis [41] investigated the
performance of pumped storage to support large-scale variable renewable energy in Greece.
The authors used the internal rate of return in their economic evaluation and concluded
that the project’s viability is significantly dependent on the curtailed energy’s magnitude
and distribution. Liu et al. [42] wrote a review article on energy storage for the electric grid,
and in their economic subsection, they mentioned that utility-owned storage provides an
excellent opportunity to implement energy arbitrage. Their study highlighted the case of
California, but the exact details of the costs and benefits were not disclosed. Nonetheless,
the study mentioned that the utility-owned storage systems were making a profit.

1.5. Objective

Most studies consider storage as an additional cost that must be recovered by storing
excess solar energy. However, as solar penetration increases further, the cost penalty to
solar PV owners due to solar curtailment increases to a point where solar might no longer
be economically competitive. At this point, storage is no longer an additional cost but a
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necessary infrastructure to maintain solar energy’s competitiveness. Consequently, ESS
planning should be considered in regions with imminent curtailment issues. There is a need
for an optimization approach that provides a target value for the optimal complementary
storage capacity in each year, which minimizes the generation cost of renewable energy.
This optimization should consider the changes in the cost of ESS and PV and the continuous
growth of solar PV. To date, most studies primarily focus on the optimal value for the
project and not for the whole system nor for a specific planning horizon. LCOE, LCOS,
and LCOD mainly focus on the project’s profitability, making it challenging to analyze
the impact of additional investments on the existing system. These approaches are well-
suited for individual projects but inappropriate for analyzing the whole system, where the
capacity of solar and ESS are dynamically changing over several years. Furthermore, these
financial assessments are unsuitable for optimization that considers the impacts of early
or delayed investments. To the best of the authors’ knowledge, an ESS growth trajectory
optimization has not previously been explored.

Therefore, this study conducts a techno-economic analysis to present the cost-optimal
storage growth trajectory that could support the dynamic integration of solar PV through
a particular planning horizon. The optimization aims to balance the cost penalty from
curtailment and the additional investment cost of storage. The technical analysis focuses
on the energy balance changes due to the increasing solar PV and storage capacity. The
economic analysis looks into the changes in the energy generation cost due to solar panel
price, storage price, and the utilization rate of the system. A methodology for the cost-
optimal assessment is proposed to tackle the time-bound optimization of storage capacity
that complements the increasing solar capacity. The proposed approach utilizes a two-step
optimization process that performs (a) a technical optimization that maximizes the PV and
ESS utilization while ensuring hourly energy balance and (b) an economic optimization that
identifies the ESS growth trajectory with the lowest generation cost within the planning
horizon. The Kyushu region in Japan was used as a case study since it continuously
increases its solar capacity and is at the precipice of high PV curtailment.

The proposed methodology is further discussed in detail in Section 2, including the
linear optimization for the hourly energy balance and the Monte Carlo random sampling
and financial evaluation for the ESS growth trajectory optimization. The results for the
case study are then presented in Section 3, and the implications are discussed in Section 4.
Finally, the conclusions are drawn in Section 5.

2. Methodology

Figure 4 shows the overview of the proposed cost-optimal storage capacity assessment,
where three process clusters are highlighted. First, the technical optimization focused on
maximizing the utilization of the additional ESS from a purely technical perspective.
Python for Power System Analysis (PyPSA) Modeling Framework (v0.17.1) [43], which
formulates and solves a linear programming problem for optimal power flow, was used
to optimize the hourly energy balance. The optimization calculated the energy balance
based on various ESS and solar PV capacity scenarios. This calculation was used in the
economic optimization, which focused on calculating the optimal growth trajectory. Using
the information about the maximum ESS that could support the specified scenarios, the
growth trajectory candidates were generated manually and through a Monte Carlo random
sampling. The proposed Levelized Cost of Generation (LCOG) was used to provide a
financial index for each growth trajectory using financial data about ESS and solar PV and
the pre-computed energy balance. The optimal ESS growth trajectory is the trajectory with
the least LCOG within the planning horizon. Finally, a sensitivity analysis was conducted
to assess the parameters that could affect the trajectory, and an impact analysis was carried
out to understand the impact of following the trajectory on the electricity grid.
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Figure 4. Proposed Cost-Optimal Storage Capacity Assessment using Hourly Simulation, Monte Carlo Sampling, and
Levelized Cost of Generation. Blue parallelograms represent the input of the system such as the ESS and PV capacity for the
scenarios and the ESS and PV cost projections for the financial calculation. Green parallelograms represent the intermediate
output of the processes.

2.1. Technical Optimization

The hourly simulation used Python for the Power System Analysis (PyPSA) Mod-
eling Framework (v0.17.1) [43]. The PyPSA environment provides a framework for the
buses, lines, loads, generators, storage, and units, among many other parameters. In
this simulation, Kyushu was modeled as a single point, but additional sub-buses were
added to monitor the changes in the energy balance due to the additional ESS, as seen
in Figure 5. The coal generator was connected directly to the main bus B0 to prevent it
from charging the ESS. Since there are still instances when the existing ESS capacity is
charged by the other generators, albeit minimal, sub-bus B1 was provisioned to monitor
this power flow. B2 was provisioned to monitor the interaction between the PV and ESS.
Sub-bus B3 serves as the input for solar and the other generator for the ESS through lines
L2 and L3, respectively. Solar has a direct connection to the main bus through line L1,
while the delivered energy from ESS goes through L5. For this study, the synthetic load
and solar generation profile for the average year (2018) generated in a previous [44] study
was used for the optimization. Similarly, the generator parameters seen in Table 2 that
were used in that previous study were also used in this study. These generator properties
were consolidated based on various sources [45–47]. This study’s solar capacity followed
the solar capacity growth in Kyushu from 2012 to 2020, which was detailed in [48]. From
the latest published capacity of around 10 GW in 2021 [13], the simulation incremented
the PV capacity by 600 MW, 800 MW, and 1 GW per year for the next ten years. The ESS
capacity was incremented by 1 GWh from the current 13 GWh capacity until 80 GWh. A
preliminary analysis determined 80 GWh as the terminal ESS capacity for the 20 GW solar
capacity.

Figure 5. Configuration of the grid used in the optimization.
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Table 2. Generators in Kyushu as of FY2019.

Generator Power [MW] Carrier Outputmin [%] Ramp Limit [%]

Coal 7037 Coal 30 1
LNG 5250 Gas 15 40
Geothermal 160 Renewable 100 0
Biomass 450 Renewable 100 0
Solar 9000 Renewable 0 100
Nuclear 4140 Non-GHG 100 0
Wind 355 Renewable 15 40
Hydro 4000 Renewable 15 40

For the optimization, the system prioritizes solar while ensuring energy balance and
satisfying the minimum operating output or ramp limit seen in Table 2. Although the
nuclear, geothermal and biomass could change within the year, as baseload, it was fixed
to its respective maximum capacities to provide consistency throughout the years under
simulation. Hydropower generation is based on the daily dispatch capacity calculated
using the total daily dispatch in 2019. The simulator allocates the hourly dispatch based on
the optimization. However, minimum and maximum dispatch is still considered based on
the actual data. The LNG was capped at 10 TWh since this was determined as the current
budget in the region in a previous study [44]. Since the analysis focuses on a period of one
year, the resulting hourly simulation was consolidated into yearly statistics, which will be
used in the economic optimization.

2.2. Economic Optimization
2.2.1. Growth Trajectory Generation

The optimal growth trajectory of ESS is difficult to ascertain due to the enormous
amount of potential paths that it could reach. Testing all the paths, even at wide-ranging
intervals, seems to be a daunting task. Therefore, this is where Monte Carlo random
sampling can be applied. Essentially, this random sampling provides a statistical sample of
the available solution space that can identify the optimal solution.

Figure 6 shows the overview of the growth trajectory generation. An initial range of
final values was predefined. In this study, the evaluation started from 7 GWh until 67 GWh
with intervals of 2 GWh. All these final values go through the manual and random case
generation. As outlined in Figure 7, the manual generation, which covers the extreme cases,
provides the growth trajectory for single hop, surge, and delay. Single hop focuses on the
idea that the planning for the whole duration is conceived at the start, which will dictate
the growth trajectory from beginning to end. The surge is similar to the single hop, but
the final value is achieved early (e.g., 30 GWh by 2025) and will stay there. On the other
hand, the delay scenario will delay the start of the planning (e.g., 0 GWh until 2025) and
grow from there. The surge and delay cases were generated from 2021 until 2031 with a
2 year interval. Using these targets, the values in between were interpolated using linear,
logarithmic, and exponential growth.

Figure 6. Overview of the growth trajectory generation.



Energies 2021, 14, 4496 10 of 23

Figure 7. Manual Generation to handle the extreme cases.

Figure 8 outlines the random sampling for the middle cases. The solution space
in between the extreme cases is vast, and random sampling reduces the computational
requirement of the analysis. However, to ensure that the sampled values represent the
whole solution space, it is necessary to approach the sampling methodologically. Similar to
the manual generation, the random generation starts with the final value. From this value,
planning hops were generated from 2021 until 2031 with a 2 year interval. Table 3 shows
the combination of the hops. The sampling rate was identified for each hop length. The
number of potential permutations are calculated using the final value and the length of each
combination. The growth trajectories were then randomly selected using the target number
of samples. Similar to the manual case, the values in between were interpolated using
linear, logarithmic and exponential growth. Figure 9 shows a sample growth trajectory
using manual generation and random sampling.

Using the specified intervals for the ESS capacity and planning hops, it was determined
that there were around five million possible growth trajectories. Following the sampling
rate in Table 3, around 430,000 were evaluated. Since there is a possibility of overlap during
the generation, the sample size varies depending on the random seed.

Table 3. Planning Hops.

Hops Number of Hops Sample [%]

2021, 2023, 2031 3 50
2021, 2025, 2031 3 50
2021, 2027, 2031 3 50
2021, 2029, 2031 3 50
2021, 2023, 2025, 2031 4 10
2021, 2023, 2027, 2031 4 10
2021, 2023, 2029, 2031 4 10
2021, 2025, 2027, 2031 4 10
2021, 2025, 2029, 2031 4 10
2021, 2027, 2029, 2031 4 10
2021, 2023, 2025, 2027, 2031 5 5
2021, 2023, 2025, 2029, 2031 5 5
2021, 2023, 2027, 2029, 2031 5 5
2021, 2025, 2027, 2029, 2031 5 5
2021, 2023, 2025, 2027, 2029, 2031 6 1

Figure 8. Monte Carlo random sampling for the middle cases.
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Figure 9. Sample growth trajectory generation using (a) manual generation to handle the extreme cases and (b) Monte
Carlo random sampling to provide the random samples in the middle. (a) shows the filling process between planning years,
where black, blue, and green represent linear, logarithmic, and exponential growth, respectively. (b) represents one of the
planning hops (2021, 2025, 2031) and the filling process as shown in (a).

2.2.2. Financial Evaluation

The proposed Levelized Cost of Generation (LCOG) shown in (1) is used in the finan-
cial evaluation of the optimal growth trajectory. The formula is a slight modification of the
annuitized Levelized Cost of Energy (LCOE) formula discussed by Lai and McCulloch [33].
Although they did mention that the present value approach is more appropriate in calculat-
ing LCOE, to identify the optimal capacity for a particular planning horizon, as is the goal
of this work, the annuitizing method is more appropriate since it has to consider additional
installation as time progresses. They also emphasized that the variability of solar makes
the annuitized formula less appropriate. However, this particular issue is essential in this
particular calculation because not only is the energy production variable, with curtailment
it is also dependent on the total PV capacity for that particular year. Using LCOE as a
foundation, LCOG was formulated by taking into consideration the time component. In
contrast to LCOE, which focuses on a unit of energy’s production cost for the whole lifetime
of the energy generator, the LCOG focuses on a unit of energy’s generation cost throughout
the planning horizon. This notion facilitates the ability to assess the system as a whole at a
certain point in time or a specific period.

LCOGPV+ESS
yR

=
∑

yRn
yr=yR0

(
∑

yn
yi=y0

(
CPV

yi ,yr + CESS
yi ,yr

))
∑

yRn
yr=yR0

EPV+ESS
yr

. (1)

LCOG levelizes the cost of generation within the planning horizon by dividing the total
annuitized cost by the total energy generated throughout that period, as seen in the outer
summation of the numerator and the denominator. yR refers to the period under evaluation
that begins from yR0 until yRn . In this study, yR is 2022–2031, as shown by the bounded box
in Figure 10. The inner summation in the numerator represents the cost per year, which is
the summation of the annuitized cost of PV and ESS. Since the capital cost changes every
year, the annuitized cost will depend on the capacity and annuity in that particular year.
The cost is calculated using (2) and (3), where annuity is computed using (4). Japan’s
interest rate (r) of 3% was used in the calculation. The lifetime of PV and ESS was estimated
to be 20 and 15 years, respectively, in this study. Each box in Figure 10 represents an annuity
cost either from PV or ESS. The sum of the boxes with the bounding box represents the
total cost for the duration of the planning horizon.

CPV
yi

= CapPV
yi

A
PV
yi

(2)
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CESS
yi

= CapESS
yi

A
ESS
yi

(3)

Ay = Py

[
r(1 + r)n

(1 + r)n − 1

]
(used for both PV and ESS). (4)

Figure 10. Visualization of the elements of the LCOG. Each box represents an annuity cost either
from PV (yellow) or ESS (green). The bounded box represents the planning horizon in this study.

The cost projections for PV and ESS can be seen in Figure 11. The unit cost of solar
for each year was used to compute for the annuity (APV

yi
) from the principal cost (PPV

yi
)

using (4). In the case of Japan, aside from the panel, there are minimal cost changes; thus,
the projection focused on the reduction in PV panel price. A 10% learning curve per year
was used since this is the current cost reduction trend. The study assumed that this would
continue until 2031. The unit price or principal cost of ESS (PESS

yi
) was taken from Cole

and Frazier [32], since their projections already considered several publications and they
provided the corresponding values for each year while other references only focused on
specific years. For the initial calculation, the middle projection for the ESS unit cost (ESSmid)
was used. Since the computation used JPY, this was converted from USD to JPY using the
current conversion of 1 USD = 110 JPY.

Figure 11. Cost projections for the unit cost of (a) solar PV and (b) ESS. In (a), * is the historical data from Japan’s Ministry
of Economy, Trade and Industry [49], where the unit cost is disaggregated into land, design and construction, miscellaneous,
and panel price. For the projected values (labeled with **) from 2021 onwards, the land, design and construction, and
miscellaneous fees (combined as miscellaneous **) were expected to have minor changes, while the solar panel would
continuously decrease by 10% per year. The value for 2012 was also extrapolated since the available historical data started
in 2013. (b) shows the cost projections of Cole and Frazier [32] for battery storage with three cost reduction scenarios.
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2.2.3. Levelized Cost of Generation (LCOG) Evaluation

At this stage, the LCOG of the candidate growth trajectories were evaluated to extract
the optimal growth trajectory. Primarily, the goal was to identify the growth trajectory that
yields the minimum LCOG. Secondarily, the variations against the other potential solutions
were analyzed to assess the impact of not achieving the optimal target. Preliminary analysis
showed that several growth trajectories have a relatively similar LCOG compared to the
optimal growth trajectory. It was also observed that, for each ESS capacity by 2031 (ESScap

2031),
there is a local optimal value. Looking into the 100 samples with the lowest LCOG, it
was also observed that the candidates have relatively similar growth trajectories. These
trajectories with the lowest LCOG per ESScap

2031 were selected as representatives, and a
trend line was created using these values. The final goal of the economic optimization is
the identification of the trajectory with the minimum LCOG as shown in (5). This goal
is achieved at this stage by selecting the candidate trajectory with the lowest LCOG. The
ESS capacity trajectory is considered the exogenous variable in this optimization since the
model predetermines the other variables.

min
(

LCOGPV+ESS
yR

(CapESS
yi ,yr )

)
(5)

2.3. Analysis & Recommendation
2.3.1. Financial Sensitivity Analysis

A sensitivity analysis was conducted to assess the impact of the solar growth rate
and ESS unit cost projection on the optimal growth trajectory. For PV, the growth rate was
varied under the assumption that larger PV capacity leads to larger curtailment that will
require more ESS. In the past three years, PV was increasing by around 1 GW, but it slowed
down due to curtailment; thus, 800 MW/year was seen as the realistic case. However, it is
ideal to reduce it further to 600 MW/year to slow down the curtailment rate. Consequently,
maintaining the 1 GW/year growth is undesirable since it will have the reverse effect. For
the ESS unit cost, the projections in Figure 11b were explored to test the robustness of the
optimal growth trajectory against the unit cost of storage.

2.3.2. Impact on the Grid

The LCOG for the whole grid includes the other generators. These were treated as
dispatchable generations, and the cost was calculated based on the generated amount and
the estimated cost as seen in Table 4. It is assumed that there will be minor changes in the
price of the other generators in the next decade.

Table 4. Cost of Electricity Generation [Yen/kWh].

Technology METI 2014 METI 2030 MOFA 2018 * Applied **

Nuclear 10.1 10.1 - 10.1
Coal 12.3 12.9 6 12.3
LNG 13.7 13.4 10 13.7
Wind 21.9 13.9 10–22 (15) 17.9
Geothermal 19.2 19.2 - 19.2
Hydro 11.0 11.0 - 11
Biomass 12.6 13.3 - 12.6

* Values in parentheses are the average values, ** Used in the calculation.

For the CO2 emission analysis, the study mainly focuses on the CO2 emission from fuel
consumption, which does not cover the CO2 emission during the construction, maintenance,
and disposal of the system. The calculation assumes that nuclear, geothermal, hydro,
solar, and wind does not generate CO2 and biomass has a net-zero CO2 emission during
electricity generation. According to Japan’s Ministry of Environment [50], depending on
the technology, coal and LNG has a CO2 emission of 0.95 kgCO2/kWh to 0.83 kgCO2/kWh
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and 0.51 kgCO2/kWh to 0.36 kgCO2/kWh, respectively. The average emissions for coal
(0.89 kgCO2/kWh) and LNG (0.44 kgCO2/kWh) were used in the analysis.

To compute the annual generation cost, (1) is slightly modified to incorporate the cost
of the other generators. Since the focus is on a particular year, instead of a range (yR), the
focus is on a particular year (yr). The cost and energy calculations for the combined PV and
ESS system are the same, but the calculation now includes the cost and energy from the
other technology that contributes to the grid as shown in (6). Since the other technologies
are treated as dispatchable energy sources, the cost is computed based on the technology’s
LCOE and the actual generation that year as shown in (7). The Levelized CO2 emission
was calculated using (8) and the CO2 emission per technology.

LCOGgrid
yr =

∑
yn
yi=y0

(
CPV

yi ,yr + CESS
yi ,yr

)
+ ∑techn

techi=tech0
Ctechi

yr

EPV+ESS
yr + ∑techn

techi=tech0
Etechi

yr

(6)

Ctechi
yr = Gentechi

yr LCOEtechi . (7)

Levelized CO2 Emissions =
∑techn

techi=tech0

(
Gentechi

yr

)(
Emissiontechi

yr

)
∑techn

techi=tech0
Gentechi

yr

. (8)

3. Results
3.1. Energy Change

Figure 12 shows the changes in the solar energy delivered to the grid. It can be seen
that, aside from the stored solar, the delivered solar also increased because of the flexibility
afforded by the storage. Similar to LNG, it is shown that storage can provide flexibility
that could help reduce the ramp rate of the other energy sources. The figure also shows
the energy loss due to the charging and discharging cycle (cycle loss), which increases as
the amount of ESS capacity increases. The figure also served as a preliminary insight into
the maximum ESS capacity for the simulation, since it shows that curtailment will become
minimal once 80 GWh was reached.

3.2. Optimal Growth Trajectory

The initial exploration of the sampled growth trajectories showed that the first 100,000
samples have a marginal difference with the minimum LCOG. The calculation showed
that, depending on the ESS capacity by 2031 (ESScap

2031), there is a growth trajectory that
could yield a relatively similar LCOG, which shows that there is a range of acceptable
growth trajectories. Figure 13a shows the 100 trajectories with the lowest LCOG for several
ESScap

2031 and it can be observed that, for ESS capacities greater than 15 GWh, the LCOG
of the trajectories are almost the same. The trajectories with the lowest LCOG for each
ESScap

2031 are also shown in the figure. Within this trend line, the optimal growth trajectory
has the lowest LCOG and is marked as the minima.

Figure 12. Changes in the total contribution of energy from the combined solar and ESS system.
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Figure 13. (a) Minimum LCOG per max ESS capacity in 2031. (b) Growth trajectory of the samples with the lowest LCOG
sorted according to the ESS capacity by 2031 (ESScap

2031). In (b), the minima’s (optimal) trajectory is shown as a dashed line
and the representative trajectories are shown as faded solid lines.

Figure 13b shows the representative trajectories and the optimal growth trajectory,
where it could be seen that the optimal growth trajectory follows an almost linear trend.
The representative trajectories generally follow the optimal trajectory until the maximum
ESS capacity for that trajectory is reached. The representative trajectories mainly follow
the optimal path until it faces a restriction, which in this case is the maximum assigned
capacity for that trajectory. The behavior signifies that the initial goal is to reach the optimal
trajectory and retain that capacity until further funding is available. It also shows that
investing higher than the optimal trajectory is counter-productive.

3.3. Sensitivity Analysis

The sensitivity of the LCOG and the optimal growth trajectory to the growth rate of
solar and changes in ESS unit cost can be seen in Figure 14. As seen in Figure 14a, in all
cases, the LCOG gradually decreases but the change for the ESShigh is minimal. In contrast,
the LCOG for the ESSlow drops until it reaches 30 GWh. The minima for lower solar growth
rate (e.g., PV600) occurs earlier since there is less curtailment to store. On the other hand,
since higher solar growth rates (e.g., PV1000) lead to higher curtailment, the minima are
higher since the utilization rate of the ESS remains high, even at these capacity ranges.

Cross-referencing with the corresponding growth trajectory of each minimum shown
in Figure 14b, it can be seen that initially, the growth trajectory is the same, but it diverges
around 2024. There are points of intersection for the growth rate, but the solar capacity and
ESS cost significantly affect the slope of the growth trajectories. Figure 14b also shows that
the trend flips around in 2023 and 2024. Initially, the optimal trend for ESShigh is higher
than the other cases, but its overall slope is less steep. In contrast, the other cases have
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lower initial values, but, given their higher slopes, these cases reached higher values by
2031. These trends show that, for instances where the cost reduction is minimal (ESShigh),
it is best to invest early and immediately reduce the impact of curtailment. However, for
instances where cost is seen to drastically reduce in the future (ESSlow), it is best to delay.
It can also be observed that higher solar capacity growth rates lead to higher required
ESS since more curtailment should be recovered. This insight is already intuitive, but it is
difficult to assess the capacity and duration of the delay. The optimal growth trajectory
presents the capacity to be installed at the minimum to balance the loss and additional
investment.

3.4. Impact on the Grid

The analysis of the impact on the grid focused on the average case using the optimal
ESS capacity in Figure 14. Since the focus of the optimization is financial, there will still
be some curtailment. However, as shown in Figure 15a, the curtailment rate, which is
expected to increase continuously, could be kept at around 5–12% through the optimal
growth trajectory. It can be observed that the curtailment rate immediately dropped to 12%
for ESShigh and remained there. In contrast, the curtailment rate gradually reduced to 5%
in ESSlow and settled there. This observation shows that (a) the lower the cost, the more
curtailment can be absorbed and (b) the acceptable curtailment rate will depend on the
cost of storage.

Figure 15b shows the annual LCOG using the optimal ESS growth trajectory. It can be
seen that the ESS can reduce the curtailment penalty by up to 4–6 JPY/kWh by 2030. The
annual LCOG trend follows the trend of the curtailment rate. The LCOG quickly dropped
in ESShigh and remained relatively high compared to the slower but continuous drop for
ESSlow.

Figure 14. Impact of the solar capacity growth rate and ESS unit cost on (a) LCOG trend line and
(b) the cost-optimal growth trajectory. Convention: the color of the line represents the solar capacity
growth rate, while the line style represents the project ESS unit cost.



Energies 2021, 14, 4496 17 of 23

Figure 15. (a) Curtailment rate of solar and (b) Levelized Cost of Generation of the business as usual (BAU; no change in
ESS capacity) and the optimal ESS scenario.

The total annual cost of electricity generation for the whole of Kyushu is shown in
Figure 16a. Immediately, the impact of additional solar capacity on the annual generation
cost is noticeable. It can be observed that, in all cost scenarios, additional storage was able
to reduce the annual generation cost. Interestingly, the cost reduction for the three ESS cases
is relatively similar. This observation shows that the optimization mainly focuses on the
overall impact on the cost reduction. For ESShigh, the reduction to a 10% curtailment rate
was sufficient to almost match the 5% reduction of ESSlow. However, it can be seen that the
impact on the CO2 emissions is more significant, as seen in Figure 16b. Intuitively, higher
PV capacity will lead to lower emissions and, since the delivered solar could increase with
the aid of ESS, the emissions decrease further. As previously highlighted in Figure 12, aside
from the energy delivered through the ESS, the ESS also provides additional flexibility to
the grid. These two benefits of ESS reduced the need to generate energy from coal, which
leads to a reduction of CO2 emissions. With the help of ESS, 2–6 million tons of CO2 could
be avoided per year by 2030.

Finally, Figure 17 shows the relationship of the annual LCOG and the levelized CO2
emissions. As previously highlighted, ESS could slightly reduce the LCOG, but it greatly
helps in reducing the CO2 emissions. By focusing only on solar, the levelized CO2 emissions
could go down to 0.3238–0.3342 kgCO2/kWh, but with the aid of ESS, this could go down
further to 0.2753–0.2825 kgCO2/kWh. The figure also shows the complementary benefit
for PV and ESS in reducing curtailment. A higher solar growth rate and lower ESS unit
cost generally lead to lower CO2 emissions, leading to higher costs. Therefore, a policy
decision must be made to balance the power generation’s economic and environmental
impacts on the island.

Figure 16. (a) Total annual cost and (b) CO2 emissions of the electricity generation for the whole Kyushu grid of business as
usual (BAU; no change in ESS capacity) and the optimal ESS scenario.
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Figure 17. Ratio of the annual Levelized cost of generation and levelized CO2 emissions for the various scenario. The CO2

emissions (abscissa) are formatted in decreasing order to emphasize the trend. The additional blue markers show the values
for 2025 and 2030 for the different scenarios.

4. Discussion
4.1. Ensuring Continuous Competitiveness of Solar

Curtailment is inevitable under high PV penetration; thus, additional precautions
and planning are necessary to minimize its economic impact, which might hinder further
deployment of PV. The results show a cost-optimal storage capacity that could reduce the
curtailment rate to acceptable levels. Furthermore, results show that there is an optimal
growth trajectory for reaching the optimal capacity. By following this growth trajectory, the
curtailment rate, which grows larger and larger as the PV penetration rate increases, could
be reduced to around 5–10%. Since the optimization focuses on the financial objective, the
5–10% curtailment rate seems acceptable and should be part of the initial cost calculation
for new projects. Beyond this curtailment rate, it is financially sound to invest in ESS.

4.2. Solar Energy and Its Impact on CO2 Emissions

The results also show that, although solar alone can reduce CO2 emissions, curtailment
hinders it from having a more significant impact since the effective delivered energy is
reduced. With the aid of ESS, the delivered energy increases and solar could help in
reducing CO2 emissions by displacing coal. The results emphasized that ESS was also
able to provide additional flexibility that enabled direct solar utilization. The flexibility of
the grid is vital for solar energy since it is a variable source of energy. It is also essential
that ESS can provide this since the charging and discharging cycle introduces energy loss,
reducing the total delivered solar energy. Furthermore, it is essential to highlight that these
additional CO2 emissions were achieved with a lower annual generation cost.

4.3. Important of Investment’s Timing

The results highlighted the importance of investment timing. As solar capacity grows,
so does the expected curtailment, and with it, the need for additional ESS capacity. The
analysis explored several logarithmic, linear and exponential growth strategies, and the
results show that a gradual increase is still the cost-optimal approach rather than a sudden
followed by a slow installation (logarithmic) or a slow followed by a sudden installation
(exponential). Hypothetically, the logarithmic growth could be beneficial if the grid is
severely lacking in ESS capacity. Nonetheless, it should grow until reaching optimal
capacity, following the optimal growth trajectory, and continue a linear growth afterwards.
On the other hand, exponential growth might be beneficial if a sudden price drop is
anticipated in the future. However, as shown in this study, if the curtailment rate is not
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yet severe and the price decrease of ESS is gradual per year, then a gradual increase is the
financially sound decision.

4.4. Deployment Responsibility

As shown in the optimal growth trajectory, the ESS capacity should be increased
by around 30 GWh within the next 10 years to minimize the curtailment cost penalty.
This study is limited by the assumption that the whole system will share the benefit of
ensuring the competitiveness of solar energy. Further study is necessary to understand the
responsibility of the government and existing market players in ensuring the viability of
future solar and storage investments. The support given to initial solar investors should
also be given to storage investors. The situation of new solar investors should also be
considered since they will be more affected by the curtailment because they are entering
the market at a point when curtailment is already expected. One potential solution would
be to encourage new solar investors to include storage into their system by providing more
subsidies or incentives to complementary solar storage plants.

4.5. Implications for Other Isolated Grids

Kyushu’s 2 GW transmission line to the rest of Japan is insufficient for solving the
curtailment problem in the region. Therefore, Kyushu could represent island nations with
isolated electrical grids such as the Philippines, Indonesia, and Hawaii. The results in
this study have shown that curtailment will drastically increase the cost of solar once the
curtailment rate reaches 10%, and storage should be strongly considered to mitigate its
financial impacts. This insight could serve as a precaution for energy planners since ESS
represents an additional investment, which could be prevented by limiting the capacity of
solar generation. This approach might be counter-intuitive in the effort to green the grid,
but it is crucial to prevent wastage of solar energy, as it impacts its profitability.

However, it should be noted that the difference in solar irradiation and demand
profiles have a huge impact on the cost of solar generation. For instance, the Philippines
and Indonesia have minor variations in temperature, which could result in stable demand.
Both countries also have higher solar irradiance that could offset some of the losses. The
proposed cost-optimal storage capacity assessment methodology could be adapted for
these territories since the storage cost and installed solar capacity are barely affected by
changes in territory.

4.6. Importance and Limitation of the Proposed Approach

The proposed cost-optimal storage capacity assessment revealed the ESS growth
trajectory that could minimize the cost of electricity generation from the combined PV and
ESS system. Since there are a lot of potential growth paths, the computational requirements
are enormous. A significant number of samples were used to find the optimal growth
trajectory through the Monte Carlo random sampling approach. The proposed formulation
for the LCOG was able to calculate the cost of generation as time progresses, as it is geared
towards the actual generation per year. In contrast, the standard LCOE mainly focuses on
the lifetime of the project. Through the LCOG, the growth trajectory was analyzed to find
the set of cost-optimal growth trajectories.

Since the approach optimizes a certain planning horizon, it is only optimal within
that period. It does not look further beyond this period. A longer planning horizon could
be explored, but this will further increase the computational requirement. One way to
handle this is to reduce the yearly intervals and assume minor changes within 2–3 years.
By reducing the intervals, the analysis could also be used for 20–30 years. It might not be
logical to increase this further since the difference in installed capacity beyond three years
could significantly impact the results.
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5. Conclusions

The proposed cost-optimal storage capacity assessment was able to identify the com-
plementary ESS growth trajectory that could support rapid PV capacity growth. By sep-
arating the optimization process into a two-step process, the first step ensured that the
optimization is technically viable, while the second step identified the ESS growth trajectory
with the lowest generation cost. Levelized Cost of Generation (LCOG) was introduced as
it could provide the ability to tackle the time-bound optimization of the installed storage
capacity. The cost-optimal ESS growth trajectory has the lowest LCOG within the planning
horizon. The incorporation of the Monte Carlo sampling significantly reduced the com-
putational requirements of the analysis while ensuring the appropriate representation of
the growth paths. In addition, the proposed LCOG calculation was able to incorporate the
gradual growth of PV capacity and the changes in the cost, which enabled the optimization
within the planning horizon. The results showed that there could be several paths to
follow in installing ESS, but there is an optimum growth trajectory that could minimize
the generation cost. Regardless of the existing storage capacity, the results showed that the
complementary capacity should rapidly increase until the optimal growth trajectory and
then continuously follow the trajectory. Investing higher capacity reduces the utilization
rate of the ESS, which leads to higher LCOG. The approach effectively identified the ap-
propriate amount and timing for the storage capacity, thereby reducing early or delayed
investment repercussions. These insights are essential considerations for energy planners
and other stakeholders as it provides target values for each year.

As intended, following the optimal growth trajectory resulted in a decrease in cur-
tailment; however, from a financial perspective, eliminating curtailment is infeasible. In
Kyushu’s case, the results show that the curtailment could be reduced to around 5–12% by
following the optimal growth trajectory. The Levelized CO2 emissions could decrease from
0.3238–0.3342 kgCO2/kWh with only PV, to 0.2753–0.2825 kgCO2/kWh with PV and ESS,
by 2030. These results show that once curtailment reaches more than 10%, to maximize
solar PV’s potential in reducing CO2 emissions, storage must be included in the energy
transition plan. The proposed approach can help identify the optimal ESS growth trajectory,
which could balance the acceptance of a certain percentage of solar energy wasted as
curtailment and investment in ESS to absorb the curtailment.

Since the proposed approach mainly depends on the hourly simulation, it could
be replicated in other territories, provided that the hourly data on demand and solar
generation are available. Storage will be crucial in ensuring the competitiveness of solar,
especially in isolated territories such as the Philippines, Indonesia, and Hawaii. The
approach presented in this study could be used to evaluate the growth trajectories for these
territories as well.
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Abbreviations
The following abbreviations are used in this manuscript:

CAES Compressed air energy storage
CSP Concentrated Solar Power
EES Electrical Storage System
ESScap

2031 ESS capacity in 2031
LCOD Levelized Cost of Delivery
LCOG Levelized Cost of Generation
LCOS Levelized Cost of Storage
LAES Liquid Air Energy Storage
LNG Liquefied Natural Gas
Li-ion Lithium-ion
NaS Sodium Sulfur
NPP Nuclear Power Plant
PHES Pumped Hydroelectric Energy Storage
RFB Redox Flow Battery
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