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Abstract: Science seeks strategies to mitigate global warming and reduce the negative impacts of
the long-term use of fossil fuels for power generation. In this sense, implementing and promoting
renewable energy in different ways becomes one of the most effective solutions. The inaccuracy
in the prediction of power generation from photovoltaic (PV) systems is a significant concern for
the planning and operational stages of interconnected electric networks and the promotion of large-
scale PV installations. This study proposes the use of Machine Learning techniques to model the
photovoltaic power production for a system in Medellín, Colombia. Four forecasting models were
generated from techniques compatible with Machine Learning and Artificial Intelligence methods:
K-Nearest Neighbors (KNN), Linear Regression (LR), Artificial Neural Networks (ANN) and Support
Vector Machines (SVM). The results obtained indicate that the four methods produced adequate
estimations of photovoltaic energy generation. However, the best estimate according to RMSE
and MAE is the ANN forecasting model. The proposed Machine Learning-based models were
demonstrated to be practical and effective solutions to forecast PV power generation in Medellin.

Keywords: photovoltaic systems; machine learning; supervised learning; prediction; artificial neural
networks; k-nearest neighbors; linear regression; support vector machine

1. Introduction

The increase in the world’s energy demand is evident, creating a threat of a global
energy crisis, which causes adverse environmental effects on our habitat [1]. The efficient
use of energy is a problem that has caused great interest in the world because the raw ma-
terial (fossil fuels) has a significant drop in international reserves, causing severe economic,
political and social problems [2].

The constant technological and social development of humanity implies a progressive
demand for electrical energy. However, the primary energy generation methods used in
the world come from fossil fuels, reaching an annual rate of consumption in oil, gas and
carbon of 3.1 million tons (Mt) [3], representing more than 80% of world consumption [4].
These sources represent a higher demand due to their low cost, but they negatively affect
the environment, considering that they increase carbon dioxide (CO2) and greenhouse gas
emissions [5], contributing to global warming. Figure 1 shows a record and prediction of
the global demand for different types of energy, where the use of fossil fuels undoubtedly
continues to lead.

Non-conventional renewable energies emerged at the end of the 1990s as an alternative
to mitigate the impacts of greenhouse gases. These energy systems have sources that reside
in natural phenomena: processes or materials that can be transformed into energy and
regenerate naturally, so they are available continuously or periodically [6].
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Figure 1. Projected world energy demand.

The importance of renewable energies has been increasing; this can be seen from
their integration into public energy networks [7], to the application of technologies such as
neural networks in the prediction of energy production, as well the application of different
techniques to obtain an optimization in the prediction process [8,9]. The development of
energy prediction models is an important task, allowing optimization and extracting the
most energy production of the system.

Photovoltaic (PV) solar energy systems constitute one of the primary sources of re-
newable energy generation. The PV effect generates electricity from the energy transported
by photons of light when they affect semiconductor materials [10]. The construction of
solar power generation systems depends on the incident radiation (solar irradiance) and
climatic variables in the selected location, such as temperature, relative humidity and
wind speed [11]. The inherent variability of these environmental factors makes the power
generated from a PV system a dynamical variable changing with time. The difficulties
in predicting PV power production cause adverse effects in electric grid aspects such as
reliability, stability, planning and scheduling tasks and market operations [12,13]. Conse-
quently, one of the main topics of interest for research in PV systems lies in forecasting
power generation.

PV power predictions are mainly based on reviewing statistical data over time and
long-term meteorological data [11], providing essential information to determine the ex-
pected behavior in generation systems by different methods. Many reported studies focus
on forecasting solar irradiance by image-based approaches, statistical properties and nu-
merical weather simulations [8,14–16]. The predicted solar radiation and other information
are employed as input data for PV commercial simulation software tools [17] to calculate
PV power output. In addition, various forecasting models are obtained from historical
data, including techniques supported by Machine Learning and Artificial Intelligence
methods [13,15,18–20].

The availability of computational models for practical and effective PV power fore-
casting can decrease the effects of PV uncertainty in the power grid and increase the
deployment of PV systems [19]. Despite the abundant literature on the matter, few studies
report the application of Machine Learning techniques to predict PV power generation
from systems located in the city of Medellín, Colombia. In [16], the authors described a
Markov chain approach for the day-ahead forecasting of the hourly solar irradiance in
Medellín. An Artificial Neural Network was used to evaluate the electrical performance of
two different photovoltaic technologies in Medellin [21]. In this sense, there is a need to
obtain PV power production models to explore the potential of penetration of PV systems
in a city such as Medellín, Colombia.

This work presents a performance comparison of supervised learning algorithms for
PV solar power prediction in Medellín, Colombia. Four different forecasting models are
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generated using the techniques of K-Nearest Neighbors (KNN), Linear Regression (LR),
Artificial Neural Networks (ANN) and Support Vector Machines (SVM). The performance
of these methods is evaluated using data from a PV energy system located in the university
campus of the I. U. Pascual Bravo in Medellin, Colombia. The work is organized as follows.
First, there is a summary of PV solar forecasting methods found in the literature. The
following section describes the PV system and the data collection process. Then, the
selected methods for PV power prediction are presented, with a description of the chosen
performance metrics. Following the methodology description, the proposed algorithms are
evaluated using the collected data. Finally, after the corresponding discussion and analysis
of the results, some conclusions are presented.

2. A Literature Review on PV Power Estimation

Until 2010, research and development of photovoltaic generation prediction models
was minimal. Most of the models were based on predicting the radiation incident on
the photovoltaic solar park, and the electrical power produced was calculated from these
values. The data sources were the curves provided by the PV solar panel manufacturers or
a series of equations or known empirical relationships [22]. However, in the last ten years,
the publication of new prediction models has grown considerably due to the exponential
increase of PV systems worldwide and the studies on the characteristics of this energy
source.

Prediction models usually rely on reviewing statistical data of production over time
and long-term meteorological data [11], providing essential information to determine the
expected behavior in generation systems by a wide variety of methods. There is an active
interest in forecasting energy production in systems with multiple sources assessing the
available power output of each component [23,24]. These predictions make it possible to
identify the amount of energy generated, according to the climatic and operating conditions
of the system, with adequate modeling and analytical treatment [25].

Different methodologies for prediction in photovoltaic energy systems are identified
in the literature. In some studies [15,26,27], the energy generated by photovoltaic systems
is predicted using neural network methods. This type of analysis has also been applied
to predicting the temperature of photovoltaic modules [28]. Estimates of solar radiation
have been determined with statistical tests for percentage errors, mean absolute bias and
squared error. In the works published by Halabi et al. [29] and Yaniktepe and Genc [30],
several methods are proposed to know the global solar radiation by months, based on
historical data from meteorological services [12].

Today, thanks to the development achieved by the different models used for prediction,
several classifications can be made depending on the criteria taken into account [13,18].
Some criteria consider the linearity of the model and classify them as linear and nonlinear.
Others consider the method used for the mathematical development of the model and clas-
sify them into models based on Artificial Intelligence techniques or regressive models [12].
Figure 2 presents a classification of PV Prediction models (adapted from [12,13,18]), with
two main approaches: models based on past values and atmospheric models.

2.1. Models Based on Past Values

These models only use past values as input, which can only be the variable to be
predicted or the variable to be predicted complemented with other variables that may
influence it. These variables can include not only those corresponding to the instant of time
in which they occurred, but they can also be meteorological variables measured locally
in those past instants. As shown in Figure 2, these models can be broadly classified as
described in the next subsections.

2.1.1. Persistence Models

Based solely on historical records, the estimation of the energy production of the PV
system equates to the registered power production around the same time in a previously
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measured day of operation. This prediction technique is used mainly for comparison or
performance benchmarking of other modeling approaches [12].

Figure 2. Classification of PV Prediction models and techniques (adapted from [12,13,18]) .

2.1.2. Statistical Approaches

In these methods of PV prediction, time series analysis can be used to understand
the behavior of an observed data series or to predict future values of these series. These
methods are very useful for short-term estimation of PV power production. The following
are some of the techniques employed for the statistical approaches:

• Regression models: PV power output is considered a dependent variable explained
by the meteorological variables [31]. The usually require mathematical models and
the consideration of explanatory variables.

• Auto-regressive models: ARMA (Auto Regressive Moving Average) and ARIMA
(Auto-Regressive Integrated Moving Average) are commonly employed techniques
for PV prediction using time series. These techniques assume that the past values of
the series, called the history of the series, influence the future of the series through a
combination of Auto-Regressive (AR) and Moving Average (MA) elements. In a pure
auto-regressive process, the future values of the series only depend on past values.
In the process of moving averages, the future values of the series depend on random
variables, independent of each other and which are modeled as white noise [32].

2.1.3. Machine Learning Techniques

These models are based on Artificial Intelligence approaches. Often, these methods
require a large volume of data to offer an accurate estimation of PV energy production.
The following are some of the techniques employed for the Machine Learning approaches:

• Artificial Neural Networks (ANN): Artificial neural networks consist of a mathemati-
cal model based on the biological nervous system. The vast majority of the studies
are carried out with networks of the Multilayer Perceptron type (MLP). An MLP
can approximate nonlinear relationships between input and output data. There is
considerable interest in ANN-based approaches for solar power prediction [15].

• Support Vector Machines (SVM): SVM consists of supervised learning algorithms
related to classification and regression problems. They are employed for PV power
estimation using a time series analysis approach, and the interest in these methods is
growing [13].

2.1.4. Hybrid Models

These models combine physical and statistical models, looking to enhance the ad-
vantages of both approaches to raise accuracy in PV power estimation. For example,
neuro-fuzzy systems combine the supervised learning capacity of a neural network with
the knowledge representation of a fuzzy inference system. A prevalent name for this type
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of system is Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and it has been applied to
PV power estimation [10].

Other cases of hybrid models are the use of neural networks optimized utilizing
genetic algorithms, the use of ARMA models with neural networks, the union of several
types of neural networks and the combination of atmospheric models such as MM5 for the
prediction of radiation with fuzzy logic or neural networks for power prediction [8].

2.2. Atmospheric Models

These models incorporate the prediction values of meteorological variables obtained
by the numerical prediction programs existing in different meteorological institutes. In
addition, these inputs may be complemented by those indicated in the previous group. In
this category, the most widely used models are MM5 (from Pennsylvania University and
National Center for Atmospheric Research) and WRF-NMM (from National Oceanic and
Atmospheric/National Centers for Environmental Prediction) [33].

3. Methodology

As shown in Section 2, there are many strategies based on historical data for PV power
prediction. This paper proposes the modeling of PV power production by computational
methods based on historical data from a generation system located in Medellín, Colombia.
Machine Learning is a wide field of computer science that provides suitable techniques for
making predictions. This work aims to study different Machine Learning techniques and
supervised learning models to identify which one provides the best estimation of power
produced by photovoltaic plants. The performance of the proposed methods was evaluated
from experimental data. The proposed models could be of interest for the simulation and
future implementation of similar PV systems in the region, contributing to the satisfaction
of energy demand.

Usually, Machine Learning algorithms are divided into two main techniques:

• Unsupervised Learning: These models group and interpret data based only on input
data. Clustering techniques are applied to find “natural” groups or patterns in data.

• Supervised Learning: These models develop a predictive model based on both input
and output data, using techniques such as classification and regression.

For this work, four algorithms of supervised learning are employed to estimate PV
power output: K-Nearest Neighbors (KNN), Linear Regression (LR), Artificial Neural
Networks (ANN) and Support Vector Machines (SVM). Figure 3 describes the framework
of the employed methodology. At first, the data collection and preprocessing stage involves
exploring, correcting and normalizing the database and the division into training and
validation sets. The modeling stage intends to train the selected algorithms with the
training data until a suitable model is obtained. The last stage involves evaluating the
models with the testing data, calculating the estimation error and analyzing the results.

Figure 3. Framework of the proposed methodology.

The algorithms were developed using Matlab R2021a , a robust technical calculation
and programming language developed by The MathWorks Inc. (Natick, MA, USA) for
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algorithm development, data analysis, visualization, and numerical computation. In
addition, Matlab counts with special customized packages or toolboxes for specialized
topics. The Neural Network Toolbox supported the design, training and validation of the
ANN. The remaining methods were implemented with the Statistics and Machine Learning
Toolbox. The following subsections describe the four methods and the error metrics.

3.1. Artificial Neural Networks (ANN)

Artificial Neural Networks consist of a mathematical model based on the biological
nervous system, made up of many simple elements that process information through
their dynamic state in response to external inputs [34]. The basic units of the model are
neurons. Each of these neurons interconnects with the inputs and the different elements of
the model with an associated weight. The main stages of neural network-based modeling
are: choice of input variables, network type and the number of layers, dataset preparation,
neural network creation, neural network training and validation. The time series of electric
power are usually nonlinear functions of external variables. Therefore, due to this non-
linearity, Artificial Neural Networks receive significant attention in solving problems of
this type [15].

Figure 4 shows a standard representation of an ANN. The mathematical expressions
for the neural network are shown in Equations (1) and (2), with xj being the input variables
to the neuron k weighted by the synaptic coefficients wkj. The weighted sum of inputs is
added to bk, a bias factor (negative or positive). This total sum uk is applied to the activation
function ϕ to produce an output yk. This output can be an input for another neuron or the
output of the full neural network.

uk =
m

∑
j=1

wkjxj. (1)

yk = ϕ(uk + bk). (2)

Figure 4. A standard schematic representation of an Artificial Neural Network.

Supervised ANN learning requires a training dataset with both vectors of inputs
and the corresponding outputs. In the training stage, synaptic weights of the neurons are
adjusted to minimize the error signal: the difference between model predicted values and
observed data. Usually, error derivatives back-propagate to each neuron layer to change
the parameters. A widely employed method for ANN training is the Levenbeg–Marquardt
algorithm, which calculates weights according to the following rule:

wk+1 = wk − (JT
k Jk + µI)−1 Jkek. (3)

In Equation (3), ek is the error, J denotes the Jacobian matrix of ek and µ is a parameter
increasing or decreasing with each step. The iteration process finishes when a stop condition
is reached, such as a given number of cycles (epochs) or predefined error value. When
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designing an ANN, both the number of hidden layers and neurons in each layer must be
selected. As the number of layers and neurons grows, the ability of the ANN to adjust any
function also grows. However, the training time increases, and there is a greater risk of
overtraining the network. Often, these parameters are defined by a heuristic process of
trial and error.

3.2. K-Nearest Neighbors (KNN)

The K-Nearest Neighbors (KNN) algorithm is a non-parametric approximation method,
which allows solving classification and regression problems. KNN is based on the assump-
tion that an object corresponds to the same class as its closest neighbors. At first, the method
requires the specification of a positive integer k. The algorithm identifies the k points on
the dataset with a similar pattern to the sample (the so-called K-Nearest Neighbors) for any
sample [20]. This selection process requires knowing the distance between all the samples
in the database and the newly analyzed sample.

When used in forecasting applications, the KNN technique finds the neighbors: the
elements from the training set matching the reference conditions according to some prede-
termined features [35]. In this work, the features are the historical data of input variables
and PV power. These data are assembled in a matrix Xij, where each row denotes a feature
vector for a particular time in the estimation. The nearest neighbor for a new data point at
time t, characterized by the feature vector yj, is compared with all the rows in Xij and the
value is stored in the vector of Euclidean distances di:

di =
√

∑
i
(Xij − yj)2. (4)

The distance values are sorted in ascending order, and the first k matches are identified.
The numerical value for yj is the average of all the variable numerical values of the K-
Nearest Neighbors.

3.3. Linear Regression (LR)

Multiple LR constitutes one of the most widely employed algorithms in supervised
learning. This statistical technique looks for the weighted linear combination of input
variables that better fits an output variable [31]. The formula for the calculation of multiple
LR is:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + ε (5)

In Equation (5), yi is the estimated output, xi are the input variables, β0 is a constant
term, βi are the slope coefficients for each input variable and ε denotes the model’s error
term (residuals).

3.4. Support Vector Machines (SVM)

They are a set of supervised learning algorithms developed by Vladimir Vapnik and
his team at the AT&T Labs. These methods are appropriately related to classification and
regression problems. Given a set of training patterns, a set of classes can be labeled, and
an SVM can be trained to build a model that predicts the class from a new sample [31].
Intuitively, an SVM is a model that represents the sample points in space and separates the
classes by as wide a space as possible. When the new samples are in correspondence with
the model, they can be classified depending on their class proximity.

SVM can also be used as a regression method without changing the main character-
istics of the algorithm, performing a regression from the classifier [19]. Consider a set of
data {(x1, y1), (x2, y2), . . . , (xl , yl)}, where xi ε Rn represent the input variables and yi ε R1

is the PV power output. The prediction function g(x) is presented in Equation (6):

yi = g(x) = w× ψ(x) + b (6)
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where ψ(x) is the nonlinear mapping function of input x, w ε Rn denotes a weight vector
and b represents the bias value [19]. Regression is done through a nonlinear mapping of
the training data to a higher-dimensional space over a kernel, where linear regression can
be applied. The efficiency of the model depends on the kernel selection [31].

3.5. Evaluation Metrics

Performance measurement approaches, such as the Square Root of the Mean Square
Error (RMSE) and the Mean Absolute Error (MAE), were applied to evaluate the ability
of the proposed models to predict the PV power production in the system. Both MAE
and RMSE are commonly used metrics to calculate the differences between measured and
estimated values. The RMSE is calculated as the sum of the individual squared errors,
while the MAE involves the sum of the magnitudes (absolute values) of the errors to obtain
the ’total error’ and then dividing by the number of errors [36]. Equations (7) and (8)
describe the formulas for the selected performance measurements, where yi is the the
observed experimental data, ŷi is the estimated data, N is the total number of data and i
denotes an index from 1 to N.

RMSE =

√√√√ N

∑
i=1

(yi − ŷi)2

N
. (7)

MAE =
N

∑
i=1

|yi − ŷi|2
N

. (8)

4. Description of the PV Power Plant and Data Recollection

This work presents a performance comparison of data-based forecasting models for
PV solar power prediction in Medellín, Colombia. As shown in Section 2, these approaches
require historical data for applying a computational or statistical technique to develop a
proper estimation of PV power production. To achieve this, the model that best represents
the power generation system is evaluated, starting from the physical principles that provide
the basis of studied phenomena and the historical meteorological and power generation
data over a particular time. According to the literature [9,12,34], the study and analysis of
the input data constitute a necessary previous stage to recognize the variables and correctly
identify inputs and outputs of the process to model [15].

In this case, the output variable is the power generated from the PV array. Production
of PV power generation systems is closely linked to incident solar radiation and climatic
variables in the region where the system is implemented, such as temperature, relative
humidity and wind speed [14,17]. Thus, these are the input variables considered for
the system:

• Solar Irradiance: It is the energy emitted by the sun propagated by electromagnetic
waves reaching the Earth’s surface with different intensities classified according to its
wavelength. This energy is measured per unit area of radiation that strikes a terrestrial
surface for one unit of time [14]. This radiation is classified as direct, diffuse, reflected
and global, the latter being the sum of the initial three. Direct radiation comes directly
from the sun and only occurs when the sun is visible, while diffuse radiation occurs
when the solar radiation disperses when going through the Earth’s atmosphere. The
reflected radiation is the part of solar radiation reflected by the Earth’s surface.

• Temperature: It is a variable defined as the internal energy of a body. In the context
of solar generation, the temperature has an essential effect on the value of the gen-
erated voltage [14]. For the analyzed system, temperature is measured in degrees
Celsius (◦C).

• Relative Humidity: It is defined as the amount of water vapor present in the air and is
directly related to temperature. This variable is highly sensitive to changes, and its
measurement is a percentage value from 0 and 100.
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• Wind speed: Wind is the directional volumetric movement of the air, with an energy
content dependent on its speed. For this system, wind speed is measured in meters
per second.

4.1. PV System Description

For this analysis, statistical data were registered for six months of operation from a
solar energy generation system connected to the electrical network (Grid Tied) in Medellin
(Colombia). The plant consists of 52 poly-crystalline solar panels, each of 250 Watts of
nominal power with a total nominal capacity of 13 kWp. Figure 5 shows an actual picture
of the system.

Figure 5. Photovoltaic (PV) plant located in Institución Universitaria Pascual Bravo at Medellin,
Colombia: a picture of the PV panels (a); and the panel array on the library rooftop (b), with
dimensions in meters.

4.2. Meteorological Variable Measurement

Another data collection stage involved capturing the information of solar irradiance,
temperature, relative humidity and wind speed. For this task, we used the measurement
stations of the environmental monitoring and attention system of Medellin (SIATA, the
Spanish acronym). SIATA disposes of several monitoring stations dispersed around the
city, equipped with multiparametric sensors providing minute-by-minute information
of temperature, relative humidity, precipitation, atmospheric pressure, wind speed and
wind direction [37]. Figure 6 depicts the SIATA Tower Meteorological Station, located
approximately 3.2 km away from the solar plant.

4.3. Data Collection and Pre-Processing

The power generation database of the solar plant consists of the PV power plant output
measured every 5 min for a six-month window between 1 January 2020 and 30 June 2020.
Then, inconsistent values due to failures in the system’s measurement devices were filtered
and removed from the database. Figure 7 presents the PV power measurement for a
one-week operation. The power profile is pretty stable, as Medellin weather tends to be
relatively fixed and consistent, a behavior attributed to Colombia’s closeness to the equator.
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Figure 6. A picture of the Siata Tower Meteorological Station at Medellin, Colombia. Taken from [38].
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Figure 7. PV power output for the period between January 8 and January 15 2020.

The meteorological station database registered the minute-to-minute information of
relative humidity, solar radiation, temperature and wind speed for the same observation
period. The complete system database involves 50,198 samples in 5 min intervals with
information of one output variable (PV power) and four input variables (relative humidity,
solar radiation, temperature and wind speed). A correlation analysis using the Pearson
coefficient (r) [39] was performed to corroborate the influence of input variables on the
output, and the results are shown in Table 1.



Energies 2021, 14, 4424 11 of 16

Table 1. Values of Pearson coefficient between output variables and each on the input variables.

Relative Humidity Solar Radiation Temperature Wind Speed

PV Power −0.0692 0.9122 0.0329 −0.0303

Pearson’s correlation coefficient is a measure of linear dependence between two
quantitative random variables [39]. The r values show a clear dependence between PV
power and solar irradiance, making the latter the most significant input variable affecting
the system’s power generation. A r value close to zero is observed between PV power
output and the other inputs. Although this indicates a weak linear relationship, it this does
not necessarily imply that the variables are independent: nonlinear relationships may still
exist between the variables. Thus, relative humidity, temperature and wind speed remain
as input variables for the proposed models despite the small correlation values.

The literature recommends a stage of data normalization, transforming the input
and output variables into a fixed range, generally between 0 and 1. This step intends to
handle the different measurement scales better and to improve the computational methods’
performance [15]. Thus, the database was normalized using Equation (9), where xi denotes
a variable, xi,min and xi,max are the minimum and maximum values of xi and xi,norm is the
normalized value of xi. The index i denotes the number of variables in the system.

xi,norm =
xi − xi,min

xi,max − xi,min
. (9)

After normalization, the data were ready to be applied to the selected Machine Learn-
ing algorithms, as described in the next section.

5. Results and Discussion

Based on the analysis carried out in the previous sections, we compared four selected
Machine Learning techniques to predict electricity generation from the PV power gener-
ation system of Institucion Universitaria Pascual Bravo. The techniques are K-Nearest
Neighbors (KNN), Linear Regression (LR), Artificial Neural Networks (ANN) and Support
Vector Machines (SVM). The developed models use input variables such as solar irradiance,
temperature, relative humidity, wind speed and the historical data of PV power to estimate
future PV generation. Solar irradiance in Medellín is available from 06:00 to 18:00 during
almost the entire year.

Data were divided into training and evaluation subsets. Training data provided the
first training of the algorithms, with a series of inputs (predictors) and known results
(output), and the model used these data to relate the predictors with the results. The
following are some considerations about the process of building the models:

• About 70% of data were used for the training stage, roughly corresponding to the
data from January to April 2020 (35,138 samples). That left the data from May and
June (the remaining 30%) to validate each method. The maximum PV power output
recorded in the database was 937.67 W.

• ANN: The selected neural network is the feed-forward back-propagation type. After
many tests with different network architectures, we found a configuration with four
neurons in the input layer, fifteen neurons in the hidden layer and one output that
offered the best results. The training involved the Levenberg–Marquardt Algorithm.

• KNN: The KNN algorithm was used as a regressor in this case, with k = 5 neighbors
and Euclidean distance as the metric.

• LM: A linear model was developed from the training data, using Matlab function
“fitlm” with five K-Fold for Cross-Validation.

• SVM: We used the Support Vector Machines as a regressor, employing Matlab function
“fitrsvm” with a linear Kernel function and five K-Fold for Cross-Validation.
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If the obtained relationship is not accurate enough, the model can be retrained until
the process reaches adequate results. After that, the algorithms are validated with the
testing portion of the data. In this step, the algorithm only receives the input data to test if
the model can correctly make predictions. Once the predictions are made, the predicted
data and actual observed data are compared to evaluate the better model.

Figure 8 displays the comparison graphs between the actual electrical energy gen-
eration and the prediction made by the Machine Learning techniques. These figures
correspond to about four days from the months chosen to carry out the testing. As can
be seen, the actual generation graph (blue color) and the prediction graph (orange color)
almost overlap for all days analyzed with the different methods, which shows that the
prediction made captures the trends in the actual data. Although all estimations look
roughly the same, the SVM method is the only one whose estimation surpasses the peak
values of actual data for each observed day.
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Figure 8. A 1000 sample graph of actual PV power data (blue) versus the estimation with each one of
the techniques (orange): Linear Regression (a); Support Vector Machines (b); K-Nearest Neighbors
(c); and Artificial Neural Networks (d).

Figure 9 shows one-day comparison graphs between the actual electrical energy gener-
ation and the prediction made by the Machine Learning techniques. The actual PV profile
depicts a day with a high variation in the power production, probably due to a cloudy
day. This causes a high variability of the power generated by the photovoltaic installation,
which could add uncertainty in the prediction. From the curves, it is striking how the
methods on the left side (LR and KNN) show a more variable (or distorted) prediction than
those on the right side (SVM and ANN), whose estimations are much smoother.
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Figure 9. A one-day graph of actual PV power data (blue) versus the estimation with each one of the
techniques (orange): Linear Regression (a); Support Vector Machines (b); K-Nearest Neighbors (c);
and Artificial Neural Networks (d).

From these images, it is hard to judge which method performed better. Thus, the
prediction error must be determined to assess the quality of the predictions made. Table 2
presents the values of RMSE and MAE for the compared methods.

Table 2. Values of error metrics for the validation of the compared methods. Units in Watts (W).

KNN LR SVM ANN

RMSE 92.857 94.583 93.644 86.466
MAE 8.8279 8.9632 9.6209 8.409

As observed in the table above, the values of RMSE and MAE for each of the proposed
Machine Learning techniques are small (the maximum PV power production was 937.67 W),
which shows that the prediction made for the test dataset is adequate. Both metrics show
that the minimum estimation error is reached with the ANN model. On the other hand,
the LR method produces the highest value of RMSE, while, according to MAE, the worse
estimation performance belongs to the SVM model. The errors obtained for all the methods
are very similar in magnitude. This could be attributed to the lack of drastic variations in
the meteorological conditions of Medellín.

According to the figures and tables presented in this section, the four evaluated models
produced adequate estimations of photovoltaic energy generation. In a previous study
for Medellín [21], the electrical characteristics of a single 55 W-mono-crystalline silicon PV
panel were modeled using ANN, reporting an average error of 1.6 W with a 50% confidence
in the results. These values come from a different metric and experimental setups not
entirely comparable with our study. Despite the lack of similar studies using Machine
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Learning for PV power estimation in Medellín, the results can be compared with previously
reported works found in the literature. In [9], a season-customized ANN is proposed
to forecast the PV power of a system in Italy, with an average MAE of 17 W. The work
of Das et al. [19] reports average MAE values of 33.63 W for SVR and 50.69 W for ANN
estimation of PV power output in Malaysia. Values reported in Table 2 are at worst on the
same level of the reported values, if we consider the different geographical conditions.

The modeling process involved data measured over six months, due to the restrictions
in the availability of PV power measurements. This database size limits the prediction
horizon of the models. Despite this, the validation results of the proposed Machine
Learning based models for the PV plant in Institución Universitaria Pascual Bravo are
also congruent with values previously reported in the literature. Although from different
locations, those works also demonstrate the application of Machine Learning techniques
to estimate PV power production and their importance in the increased usage of these
resources around the world.

6. Conclusions

This work presents a performance comparison of supervised learning algorithms for
PV solar power prediction in Medellín, Colombia. Four different forecasting models were
generated using the techniques of K-Nearest Neighbors (KNN), Linear Regression (LR),
Artificial Neural Networks (ANN) and Support Vector Machines (SVM). The performance
of these methods was evaluated using data from a PV energy system located on the
university campus of the I. U. Pascual Bravo in Medellin, Colombia.

The different methods used to predict electrical energy generation in photovoltaic
solar parks are described by reviewing the international bibliography related to the subject.
The analysis carried out shows that most of the studies recommend using Machine Learn-
ing methods to carry out this type of study due to their effectiveness in estimation and
prediction tasks. Non-conventional power generation systems present a wide variation
due to meteorological conditions, making supervised learning algorithms a valuable tool to
predict the power generated from meteorological variables. As there is a need to obtain PV
power production models to explore the potential of penetration of renewable systems in a
city such as Medellín, Colombia, this study demonstrated Machine Learning techniques as
practical and effective solutions to forecast PV power generation in Medellin.

The actual electricity generation values in the photovoltaic installation were compared
with the predictions made by different methods (ANN, KNN, LR and SVM) for two months,
reaching similar values in the comparison of error metrics. The comparison with reported
studies showed a performance at worst on the same level if the different geographical
conditions are considered. However, Artificial Neural Networks showed error values of
86.466 in RMSE and 8.409 in MAE, outperforming the techniques of K-Nearest Neighbors,
Linear Regression and Support Vector Machines for PV power forecasting in Medellin.
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Abbreviations
The following abbreviations are used in this manuscript:

PV Photovoltaic
ANN Artificial Neural Network
KNN K-Nearest Neighbors
LR Linear Regression
SVM Support Vector Machine
RMSE Root Mean Square Error
MAE Mean Absolute Error
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