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Abstract: With the development of integrated energy systems (IES), the traditional demand response
technologies for single energy that do not take customer satisfaction into account have been unable to
meet actual needs. Therefore, it is urgent to study the integrated demand response (IDR) technology
for integrated energy, which considers consumers’ willingness to participate in IDR. This paper
proposes an energy management optimization method for community IES based on user dominated
demand side response (UDDSR). Firstly, the responsive power loads and thermal loads are modeled,
and aggregated using UDDSR bidding optimization. Next, the community IES is modeled and
an aggregated building thermal model is introduced to measure the temperature requirements of
the entire community of users for heating. Then, a day-ahead scheduling model is proposed to
realize the energy management optimization. Finally, a penalty mechanism is introduced to punish
the participants causing imbalance response against the day-ahead IDR bids, and the conditional
value-at-risk (CVaR) theory is introduced to enhance the robustness of the scheduling model under
different prediction accuracies. The case study demonstrates that the proposed method can reduce
the operating cost of the community under the premise of fully considering users’ willingness, and
can complete the IDR request initiated by the power grid operator or the dispatching department.

Keywords: community integrated energy system; energy management; user dominated demand
side response; conditional value-at-risk

1. Introduction
1.1. Background and Motivation

The development of energy cogeneration and integration technologies as well as
renewable energies (e.g., photovoltaic (PV)) has attracted many scholars to undertake
research on integrated energy systems (IES). The term IES takes into consideration many
kinds of energy subsystems, e.g., electricity supply, gas supply, heating, cooling [1,2].
Different forms of energy are coupled and closely connected through energy conversion
equipment (e.g., combined heat and power (CHP) unit, electric heating equipment), and can
meet the diverse energy demands of users. However, because of its multienergy coupling
characteristic, it is impossible to design, plan and optimize separately the operation of
various energy supply systems as the traditional distributed energy supply system does [3].
Therefore, how to efficiently deal with the complementarity and substitution between
different energy streams has become a key issue to realize energy cascade utilization and to
improve comprehensive energy utilization efficiency. Additionally, the traditional energy
management system (EMS) framework cannot adapt to the coexistence and interaction
features of centralization and distribution in IES [4,5] (e.g., the energy management policy
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proposed in [6] only considers the electric energy, and cannot be applied to deal directly
with multienergy flow problems). Therefore, it is necessary to study the integrated energy
management system (IEMS) technology for multienergy flow.

The control objects of the IEMS can be divided into three layers. The upper layer is
the system-level multienergy flow transmission network, which involves the production,
transmission and safe operation of energy such as gas, electricity, and heat. The middle
layer is a local microenergy unit, with industrial parks, smart communities, and intelligent
buildings as typical application scenarios, and it involves the coordinated scheduling and
optimized operation of multiple energy sources. The lower layer is the user-level integrated
producer and consumer. The multienergy complementarity and alternative features of
IEMS not only provide users with more options for energy use, but also bring optimization
space for the overall regulation and operation of the system. With the development of IES,
existing studies based on the traditional demand response (DR) technologies for a single
energy source (electric energy) [7–9] can no longer meet users’ actual needs, and there is an
urgent need to study integrated demand response (IDR) technology for integrated energy.
Reasonable use of user-side responsive resources to participate in the IDR of the system
will play an important role in realizing the two-way interaction between the supply and the
demand and the win–win situation [10]. On the other hand, information communication
and engineering measurement and control technology have developed rapidly recently.
Having access to a large number of smart sensors has greatly increased the amount of
multienergy flow information that can be collected by the middle layer and user layer of
IEMS. The IEMS can adjust in time based on the measurement or user feedback information,
and improve energy efficiency and operating economy on the premise of ensuring the
user’s energy comfort.

Thus far, the IDR strategies and mechanisms have been studied for many purposes.
In [11], the concept of IDR was first proposed and gas turbines were introduced to supply
power to the power grid during peak time, converting part of the power load into gas
load. Additionally, the incentive effect of natural gas prices on IDR was analyzed through
Nash game theory. In [12], the physical constraints of the natural gas network and the
heating network were processed by piecewise linearization, and an IDR optimal transaction
strategy model based on the mixed-integer second-order cone programming algorithm and
transaction price incentive was proposed. The authors in [13] summarized the development
of IDR from the aspects of system modeling, optimization strategy and power market
mechanisms, and affirmed the positive effect of IDR on improving the flexibility of IES
load response. In [14], an IDR model based on medium- and long-term time dimensions
considering system dynamics was proposed, and taking flexible loads, energy storage, and
electric vehicles into account, an IES scheduling model was established in order to simulate
the benefits for users participating in IDR. In [15], a day-ahead and intraday optimization
scheduling model based on the demand side response was proposed, and the scheduling
times for different energy subsystems were considered to perform rolling optimization
scheduling.

Current research mostly focuses on the impact of market price mechanisms and the re-
fined modeling of IES equipment and networks on IDR [16,17]. It is assumed that users will
continue to participate in IDR events satisfactorily under certain price incentives, or users
will maximize their responsive load during IDR events. Additionally, users are assumed
to allow their own load equipment to be adjusted by EMS or energy service providers.
However, most research ignored users’ willingness to participate in DR programs. In fact,
users are not necessarily willing to give the control of the equipment to EMS or energy
service providers underprice incentives [18]. Users may not provide the maximum re-
sponsive load during IDR due to privacy reasons. In [18], a survey was conducted on
the willingness of 1499 households from a state in Australia to participate in a direct load
control (DLC) plan, and the results showed that only about 13% of customers accepted the
DLC plan. For users, the main reason for reluctance to participate in the DLC program is
that users have low trust in energy companies. At present, there are very few studies on the
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relationship between user satisfaction with participating in IDR events and response load
capacity. In [19], a user dominated demand side response (UDDSR) scheme that allows
energy users to dynamically choose to join or withdraw from DR events was put forward.
In this scheme, users can submit flexible DR bids to community EMS for participating
in DR events. That is, users can flexibly choose the working hours of each household
device. However, this scheme only focuses on electric load, and fails to consider the overall
optimization within IES.

1.2. Novelty and Contribution

In this paper, an energy management optimization method for community IES based
on UDDSR is put forth, where users can submit the day-ahead IDR bid for load responses
that fully meets their own comfort, and respond to the IDR requests issued by the power
grid operator or dispatching department according to the planned capacity of the IDR bid
on the next day. Additionally, an aggregated buildings thermal model is introduced to
establishe the adjustable thermal load model, and the user’s power load adjustable time,
power load adjustable capacity, thermal load adjustable time and heating temperature
are set as optimized parameters to establish a day-ahead scheduling model. Considering
the uncertainty of PV output, user load, outdoor temperature, and user actual UDDSR
response capacity in the community IES, a penalty mechanism is introduced to punish
the participants making imbalanced response against the day-ahead IDR bids, and the
conditional value-at-risk (CVaR) theory is introduced to enhance the robustness under
different prediction accuracy.

The contributions of this paper are summarized as follows:

(1) The interruptible power load, shiftable power load, and adjustable thermal load are
modeled, respectively, and are optimized by UDDSR scheme in order to obtain the
aggregated IDR bids.

(2) An aggregated buildings thermal model is introduced to measure the temperature
requirements of the entire community of users for heating. The adjustable thermal
loads of the IDR bids submitted by users are modeled within the context of air
temperature, and can be optimized by regulating the indoor temperature of users.

(3) From the overall perspective of system operation, a day-ahead scheduling optimiza-
tion model for the community IES based on UDDSR is established, and the CVaR
theory is introduced to deal with the uncertainties in IES.

2. Demand Response Load Modeling Based on UDDSR

In this paper, the detailed UDDSR optimization approach is based on the mechanism
described in [19]. This mechanism allows users to submit flexible bids for DR events and
achieves the optimal aggregation of these bids within the DR events. However, it only
considers electric equipment including interruptible appliances (e.g., heating systems) and
shiftable appliances (e.g., electric vehicles). In this section, the UDDSR optimization with
adjustable thermal loads is further studied within the IDR events.

2.1. UDDSR Optimization with Adjustable Thermal Loads

In this paper, thermal loads of the aggregated buildings are modeled within the
context of air temperature, and can be adjusted by regulating the indoor temperature of
end users. Regarding the adjustable thermal loads of the IDR bids, the maximum and
minimum of the heating temperature, the maximum adjustable temperature for heating,
and the adjustable time period for heating can be set by users. Since this paper studies
the centralized temperature regulation in the case of central heating, the community
energy management system (CEMS) will first classify users according to the maximum
adjustable temperature for heating in the IDR bids. For users who have the same adjustable
temperature, CEMS will select as many users as possible who are willing to adjust the
heating temperature within the IDR request period to participate in the UDDSR thermal
load response according to (1). Additionally, CEMS will select the minimum of the highest
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temperatures and the maximum of the lowest temperatures submitted by all users in the
IDR bids as the temperature constraint range of the central heating, as demonstrated in (2).

min
t∈T

VAR(Mt
u) (1)


Tinmin =

Numax
i=1

{
Tl,i
}

Tinmax =
Nu

min
i=1
{Tu,i}

(2)

where Mt
u is the total number of users willing to participate in UDDSR thermal load

response at time t; Tinmin/Tinmax is the minimum/maximum indoor temperature that
costumers are willing to accept, respectively; Tl,i/Tu,i is the minimum/maximum heating
temperature submitted by the user i.

2.2. Adjustable Thermal Loads Model Based on UDDSR

According to [20], the thermodynamic model of the aggregated buildings can be
formulated as the RC equivalent circuit model, as demonstrated in Figure 1, where R is
the equivalent thermal resistance of the house shell; Cair is the air specific heat; Lt

AC is the
adjustable thermal load at time t; Tt

in and Tt
out are the indoor and outdoor temperature at

time t.
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Figure 1. Thermodynamic model of the aggregated buildings.

Therefore, the relation equation between indoor temperature and adjustable thermal
load is as follows:

dTt
in

dt
= − 1

R · Cair
· Tt

in +
1

Cair
·
(

Lt
AC +

1
R
· Tt

out

)
(3)

The discrete model of (3) is

Tt
in = Tt−∆t

in · e−
∆t

R·Cair +
(

R · Lt
AC + Tt

out
)
·
(

1− e−
∆t

R·Cair

)
(4)

where e is a constant; ∆t is the scheduling interval and is assumed to be 1 h in this paper.
Then, the adjustable thermal load Lt

AC is calculated from:

Lt
AC =

1
R
·

Tt
in − Tt−∆t

in · e−
∆t

R·Cair

1− e−
∆t

R·Cair

− Tt
out

 (5)


Tinmin − Tadj · Tt

DRH ≤ Tt
in ≤ Tinmax − Tadj · Tt

DRH∣∣∣Tt
in − Tt−∆t

in

∣∣∣ ≤ ∆Tmax

Tinmin, Tinmax, Tadj ≥ 0
(6)

where Tadj is the maximum adjustable indoor temperature allowed by end users during
IDR event; Tt

DRH , determined by IDR bids, is the adjustable time of thermal load allowed
by users, and if Tt

DRH = 1/Tt
DRH = 0, the thermal load can/cannot be adjusted; ∆Tmax is the

maximum indoor temperature variation during ∆t, and it should be less than 2 ◦C in order
not to affect the comfort of users.
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2.3. Electric Loads Model Based on UDDSR

In the community CHP system, the electric loads includes interruptible power loads
and shiftable power loads. Based on the aggregated IDR bids obtained from UDDSR
optimization in [19], the total response power of the interruptible appliances during the
IDR event should be less than the maximum interruptible power at the same time after the
aggregated IDR bid. Thus the interruptible power load is expressed as

0 ≤ Lt
DRE,int ≤ Lt

DRE,intmax (7)

where Lt
DRE,int is the interruptible power load at time t; Lt

DRE,intmax is the maximum
interruptible power load at time t, which can be obtained from aggregated IDR bid of
end users.

The shiftable load model is expressed as

Lt
DRE,sh f = Lt

DRE,sh f ,out − Lt
DRE,sh f ,in (8)

T

∑
t=1

Lt
DRE,sh f ,out =

T

∑
t=1

∣∣∣Lt
DRE,sh f ,in

∣∣∣ (9)

{
0 ≤ Lt

DRE,sh f ,out ≤ Lt
DRE,sh f ,outmax

Lt
DRE,sh f ,inmax ≤ Lt

DRE,sh f ,in ≤ 0
(10)

where Lt
DRE,sh f is the total shiftable power load at time t; Lt

DRE,sh f ,out and Lt
DRE,sh f ,outmax

are the load and the maximum load shifted from time t to other time; Lt
DRE,sh f ,in and

Lt
DRE,sh f ,inmax are the load and maximum load shifted to time t, respectively; T is the opti-

mized scheduling cycle; Lt
DRE,sh f ,outmax and Lt

DRE,sh f ,inmax can be obtained from aggregated
IDR bid of end users.

3. Distributed Generator and Co-Supply Equipment Model
3.1. PV Model

PV is a common distributed generation device in the community, and can be mod-
eled as:

Pt
PV = Pstc ·

Gt

Gstc
· (1 + ε(Tt

s − Tstc)) (11)

where Pt
PV is the PV output power; Pstc is the maximum PV output power under standard

test conditions; Gt is the light intensity and Gstc is that under standard test conditions; ε
is the PV power temperature coefficient; Tt

s is surface temperature of PV and Tstc is that
under standard test conditions.

3.2. Power Supply Equipment Model
3.2.1. Microgas Turbine (MT) Model

MT is an important CHP equipment in community CHP system, and its model is as
follows: {

Pt
MT = Vt

MT · Hng · ηMT
Qt

MT = Vt
MT · Hng · (1− ηMT − ηloss)

(12)

where Pt
MT is the MT output power at time t; Vt

MT is the MT gas consumption at time t; Hng
is the calorific value of natural gas; ηMT is the MT power generation efficiency; Qt

MT is the
MT output heat power at time t; ηloss is the MT power loss efficiency.

3.2.2. Gas Boiler (GB) Model

GB burns natural gas to provide heat for community users and can be modeled as:

Qt
GB = Vt

GB · Hng · ηGB (13)



Energies 2021, 14, 4398 6 of 22

where Qt
GB is the GB output heat power at time t; Vt

GB is the GB gas consumption at time t;
ηGB is the GB heat production efficiency.

3.2.3. Waste Heat Recovery (WHR) Device Model

WHR can recover the flue gas waste heat after MT power generation to improve the
energy utilization efficiency, and can be modeled as:

Qt
WHR = Qt

WH · ηWHR (14)

where Qt
WHR is the WHR recovered heat power at time t; Qt

WH is the MT waste heat at
time t; ηWHR is the WHR heat recovery efficiency.

3.2.4. Heat Exchanger (HE) Model

HE can convert the heat of hot stream into hot water to provide heating for community
end users, and is modeled as:

Qt
HE = Qt

HE,in · ηHE (15)

where Qt
HE/Qt

HE,in is the HE heat power output/input at time t; ηHE is the HE heat
exchange efficiency.

3.3. Energy Storage Equipment Model
3.3.1. Battery (BT) Model

The charging and discharging of BT can greatly improve the utilization rate of the
response load on the user side, and the model of BT is:

Wt
BT = Wt−∆t

BT · (1− ηBT,loss) +

(
Pt

BT,ch · ηBT,ch −
Pt

BT,dis

ηBT,dis

)
· ∆t (16)

where Wt
BT represents the stored energy in BT; ηBT,loss is the power loss rate of BT; Pt

BT,ch
and Pt

BT,dis are the charging and discharging power of BT, respectively; ηBT,ch and ηBT,dis
are the charging and discharging efficiency of BT, respectively.

3.3.2. Thermal Storage Tank (TST) Model

When the output thermoelectric power ratio of MT does not match the thermoelectric
load ratio of community users, TST can compensate for the difference of thermoelectric
ratio through heat storage and release behavior, and improve the utilization efficiency of
user-side response heat load. TST can be modeled as:

Wt
TST = Wt−∆t

TST · (1− ηTST,loss) +

(
Qt

TST,ch · ηTST,ch −
Qt

TST,dis

ηTST,dis

)
· ∆t (17)

where Wt
TST is the amount of heat stored in TST at time t; ηTST,loss is the energy loss rate of

TST; Qt
TST,ch is the heat storage power of TST; ηTST,ch is the heat storage efficiency; Qt

TST,dis
is the heat release power; ηTST,dis is the heat release efficiency.

4. Community CHP System Model Based on UDDSR

In this paper, the community CHP system consists of MT, GB, WHR, HE, PV, BT and
TST, and its structure diagram is shown in Figure 2.
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Then, an energy hub model based on the bus bar form [21] is adopted to model the
community CHP system. The bus bar structure of the community system is shown in
Figure 3, and the flow relations of electricity, gas and heat energy are marked by arrows.
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4.1. Day-Ahead Energy Optimization Model

In the community system studied in this paper, by participating in the UDDSR re-
sponse arranged by CEMS, users can submit the day-ahead IDR bid of load response that
fully meets their own comfort, and respond to the IDR request issued by the power grid
operator or dispatching department the next day according to the planned capacity of
IDR bid. For users, they can reduce or transfer unnecessary loads during the IDR event,
and at the same time receive the subsidy of IDR response from the grid operator. For the
entire community energy system, CEMS can schedule the user loads to the greatest extent
according to the IDR bid plan of users, and thus achieve “peak clipping and valley filling”
in energy use. Meanwhile, on the basis of ensuring the stability of the system operation, the
overall operation cost of the system can also be reduced, and the economy of the system
operation can be improved.

The goal of system optimization is to minimize the total cost of system operation
and the temperature change caused by the thermal load response adjustment within the
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allowable range of users, so as to ensure their satisfaction with energy use as much as
possible. This can be described as the objective function below:

min

{
Ctotal +

N

∑
t=1

δt ·
(

Tt
in − Tre f

)2
}

(18)

where Ctotal is the total cost of system operation; Tref is the national standard indoor
optimum temperature; δt is a time-varying parameter that measure the thermal comfort of
users, and during the UDDSR event, δt is relaxed to achieve the purpose of temperature
regulation and consumption reduction, while in other moments δt plays the role of making
the indoor temperature close to the optimal temperature; N is the optimal scheduling cycle.

The total cost of system operation is calculated by the following function:

Ctotal = Cgrid + Cng + Com + CUDDSR (19)

where Cgrid is the cost of electricity purchasing from the grid; Cng is the cost of natural gas;
Com is the cost of equipment operation and maintenance; CUDDSR is the total subsidy for
UDDSR participation given to users by the operator.

Cgrid and Cng can be calculated as:

Cgrid =
N

∑
t=1

et
P · Pt

grid (20)

Cng =
N

∑
t=1

egas ·
(
Vt

MT + Vt
GB
)

(21)

where Pt
grid is the power purchased from the grid; et

p is the market price; egas is the price of
natural gas.

Com can be calculated as:

Com =
N

∑
t=1

(
Com,MT · Pt

MT + Com,GB ·Qt
GB + Com,PV · Pt

PV
)

(22)

where Com,MT, Com,GB and Com,PV are the unit power operation and maintenance costs of
MT, GB, and PV, respectively.

CUDDSR can be calculated as:

CUDDSR = Cu + Ces (23)

Cu =
N

∑
t=1

et
DRE ·

(
Lt

DRE,int +
∣∣∣Lt

DRE,sh f

∣∣∣) + et
DRH · Lt

DRH (24)

Ces =
N

∑
t=1

eBT · (Pt
BT,ch − Pt

BT,dis) + eTST · (Qt
TST,ch −Qt

TST,dis) (25)

Lt
DRH =

1
R
· ∆Tt

1− e−
∆t

R·Cair

(26)

∆Tt = max
{

Tt
in0 − Tt

in, 0
}

(27)

where Cu is the load response subsidy for users; Ces is the energy storage subsidy; et
DRE

is electric load response compensation per unit power; et
DRH is the thermal load response

compensation per unit power; Lt
DRH is the change of thermal power caused by lowering

the room temperature ∆Tt within the range allowed by users at time t; Tt
in0 is the indoor

temperature before UDDSR event; eBT is the unit power subsidy for the charging and
discharging behavior of BT; eTST is the unit power subsidy for heat storage and release
behavior of TST.

The operation constraints are described as follows.
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1. Energy balancing constraints

Pt
grid + Pt

MT + Pt
PV − Pt

BT,dis = Lt
AE − Lt

DRE,int − Lt
DRE,sh f + Pt

BT,ch (28)

(Qt
GB + Qt

MT · ηWHR) · ηHE −Qt
TST,dis = Lt

AH + Lt
AC + Qt

TST,ch (29)

where Lt
AE and Lt

AH are the basic electrical load and basic hot water load at time t after
load aggregation, which cannot be scheduled during the UDDSR event.

2. Energy supply constraints

Pt
grid ≤ Pgridmax (30)

PMTmin ≤ Pt
MT ≤ PMTmax (31)

0 ≤ Qt
GB ≤ QGBmax (32)

where Pgridmax is the maximum interactive power between the community system and the
power grid per unit time; PMTmax and PMTmin are the maximum and minimum generating
power of MT; QGBmax is the maximum heating power of GB.

3. Energy storage constraints

For BT, the constraints are:

0 ≤ Pt
BT,ch · S

t
BT,ch ≤ PBT,chmax (33)

PBT,dismax ≤ Pt
BT,dis · S

t
BT,dis ≤ 0 (34)

St
BT,ch + St

BT,dis ≤ 1 (35)

WBTmin ≤Wt
BT ≤WBTmax (36)

where St
BT,ch and St

BT,dis are 0–1 variables representing the charging and discharging state
of BT; PBT,chmax and PBT,dismax are the maximum charging and discharging power of BT;
WBTmax and WBTmin are the maximum and minimum energy storage capacity of BT.

For TST, the constraints are:

0 ≤ Qt
TST,ch · S

t
TST,ch ≤ QTST,chmax (37)

QTST,dismax ≤ Qt
TST,dis · S

t
TST,dis ≤ 0 (38)

St
TST,ch + St

TST,dis ≤ 1 (39)

WTSTmin ≤Wt
TST ≤WTSTmax (40)

where St
TST,ch and St

TST,dis are 0–1 variables representing the heat storing and releasing state
of TST; PTST,chmax and PTST,dismax are the maximum heat storing and releasing power of
TST; WTSTmax and WTSTmin are the maximum and minimum heat storage capacity of TST.

4.2. CVaR-Based Energy Optimization Model

The day-ahead energy optimization model mentioned in the above section is based
on the accurate prediction of the basic electric and heat loads, PV output, and outdoor
temperature. It ignores the error between the predicted value and actual value, and
assumes that users will maximize the UDDSR response according to the response load
capacity of the IDR bid. However, actually, the prediction error may have a significant
impact on the optimization results, and users may not respond according to the maximum
capacity after UDDSR bid, which must be taken into consideration. In order to solve the
above questions, CVaR is applied.
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4.2.1. CVaR Model

CVaR theory was firstly used to solve the optimal portfolio problem of investment
risk related to financial hedging. It is mainly used to measure the investment loss when
the investment loss exceeds the expected maximum loss (i.e., Value-at-Risk (VaR)) under a
given confidence level. The CVaR model is shown as follows.

CVaRcon = E[ f (X, γ)| f (X, γ) > VaRcon] (41)

where CVaRcon is the average excess loss under a given confidence level; con is the confi-
dence level; f (X, γ) is the loss function; X is the investment portfolio; γ is the risk variable;
VaRcon is the expected maximum loss under the con; E[.] expresses the expect function.

If the probability of γ in different scenarios is known, the formulation of discrete CVaR
can be expressed as follows.

CVaRcon = VaRcon +
1

1− con

N

∑
t=1

pt
γmax{ f (X, γ) − VaRcon, 0} (42)

where pt
γ is the probability of γ occurring at time t; N is the number of discrete time

intervals.
However, (42) needs to obtain VaR at the same confidence level first, which complicates

the computing process. To increase the computing speed, the relaxation method in [22]
is applied to solve CVaR and VaR simultaneously. The relaxed CVaR discrete function is
converted into a common optimization problem, and its calculation formula is expressed
as follows.

min g(X, α) = α +
1

1− con

N

∑
t=1

pt
γmax{ f (X, γ) − α, 0} (43)

where CVaRcon is the minimum value of g(X, α); α is the intermediate variable after relax-
ation of VaR, and when g(X, α) goes to the minimum, α is equal to VaRcon.

4.2.2. Day-Ahead Energy Optimization Model Based on CVaR

In the community CHP system, the uncertainties include the prediction errors of elec-
tric and heat load, PV output and outdoor temperature, and the response load fluctuation
of UDDSR. In this section, the random simulation algorithm is used to generate a set of
uncertinty scenarios. It is assumed that the probability distribution of forecast errors and
load response fluctuation obeys the normal distribution with the mean value being the
forecast, i.e., γ~N(rforecast, σ2), and the probability distribution formula is:

h(r) =
1√
2πσ

· e
−(r−r f orecast)

2

2σ2 (44)

where r is the uncertainty variable; σ is the standard deviation of r; rforecast is the forecast
value of r.

According to (43), the day-ahead energy optimization model based on CVaR is formu-
lated as follows.

CVaRcon = minα +
1

M(1− con)

M

∑
i=1

φi (45)

{
φi ≥ Ctotal,i − E[Ctotal,i] − α
φi ≥ 0(i = 1, 2, . . . M)

(46)

where Ctotal,i is the total cost of system operation in scenario i; E[Ctotal,i] is the expected
cost of system operation in all simulated uncertainty scenarios; φi is the middle variable in
scenario i; M is the total number of uncertainty scenarios.
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Then, after considering the uncertainties of forecast error and response fluctuation,
the total cost of system operation can be converted into:

Ctotal = Cgrid + Cng + Com + CUDDSR − Cpunish (47) Cpunish =
N
∑

t=1
et

punish ·
∣∣Lt

DRE − Lt
DRE0

∣∣
Lt

DRE = Lt
DRE,int + Lt

DRE,sh f

(48)

where Cpunish is the penalty fee when users do not respond according to the response
load optimized by day-ahead UDDSR; Lt

DRE is the total actual response load; Lt
DRE0 is the

response load optimized by day-ahead UDDSR.
Additionally, according to (18), the objective function can be converted into

min

{
E[Ctotal,i] + β · CVaRcon +

1
M
·

M

∑
i=1

N

∑
t=1

δt ·
(

Tt
in,i − Tre f

)2
}

(49)

where β is the uncertainty factor, i.e., the willingness of the community system to take risks,
and β Є[0,1].

Meanwhile, the purpose of the energy optimization based on CVaR is to meet the
operating conditions in all uncertainty scenarios, thus the bus balancing constraints can be
converted into:

Pt
grid + Pt

MT + Pt
PV,i − Pt

BT,dis ≥ Lt
AE,i − Lt

DRE,int,i − Lt
DRE,sh f ,i + Pt

BT,ch (50)

(Qt
GB + Qt

MT · ηWHR) · ηHE −Qt
TST,dis ≥ Lt

AH,i + Lt
AC,i + Qt

TST,ch (51)

5. Case Study

The proposed model is conducted on a community IES modified from a central
neighborhood in Anhui province in China. The community structure diagram is presented
in Figure 2. The forecast curves of electricity load, hot water load, PV output and outdoor
temperature of the system on a typical winter day is shown in Figure 4. In the appendix,
the peak-valley time-of-use electricity price, the subsidy for users participating in UDDSR
and the gas price are shown in Table A1, the equipment operating parameters are shown
in Table A2, and the equipment cost and subsidy parameters are shown in Table A3, which
are all modified from [23]. The cases were compiled with Python 3.7, and solved by
Gurobi solver.
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5.1. Day-Ahead Energy Optimization Based on UDDSR

In order to verify the impact of the UDDSR mechanism on the whole community
system, the outputs of the system equipment before and after the UDDSR response were
analyzed.

5.1.1. Energy Optimization Results without UDDSR Response

When users do not participate in the UDDSR response, the community CHP optimizes
energy consumption according to the prediction values of electric and heat loads, PV
outputs, and outdoor temperature. The optimization results of equipment outputs are
shown in Figure 5. It can be seen that during the valley period of the electricity price, since
the cost of purchasing electricity from the grid is lower than that of MT generation, the
electrical load is almost entirely satisfied by the power supply from the grid. Meanwhile,
since the cost of heat production per unit power of GB is lower than that of MT, and the heat
load at this time is higher, GB gives priority to full power to ensure heat supply. During
the peak period of the electricity price, the cost of power supply from MT is lower than
the electricity price, thus the power supply of MT increases significantly. At this time, the
remaining heat load is supplemented by GB.

On the other hand, due to the CHP characteristics of MT, after complementing the
heat load, MT has excess power. BT charges at the time of 04:00–05:00 and 15:00–16:00 to
dissipate the excess power, and discharges during the peak period of power consumption,
which improves the energy utilization rate and operating economy of the system. Similarly,
when MT produces too much heat, TST uses the heat storage and release characteristics to
meet the thermal load demand.
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The change of indoor heating temperature is depicted in Figure 6. It can be observed
that the indoor temperature is always maintained near the optimal room temperature, and
the heating needs are met.
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Figure 6. The change of indoor heating temperature without UDDSR response.

5.1.2. Energy Optimization Results with UDDSR Response

When users participate in the UDDSR response, they submit a flexible IDR bid to
CEMS according to their own energy demand. The bid content includes the interruptible
load, the shiftable load, the time and capacity of the adjustable load and the CEMS aggre-
gates and optimizes the responsive loads of the users. Based on the aggregated results
of the responsive loads, the energy use of the community CHP system is optimized. The
UDDSR bid results are shown in Figure 7. In this figure, the green curve indicates the
adjustable time of the heating temperature allowed by users. When L_DRH State >0, the
upper and lower limits of the heating temperature are allowed to be reduced by Tadj, i.e.,
the heating range is changed into Tinmin- Tadj ≤ Tt in ≤ Tinmax- Tadj; when L_DRH State
< 0, the heating temperature cannot be reduced, i.e., the thermal load cannot be adjusted.
In this case, it is assumed that Tadj = 1, Tinmin = 18, Tinmax = 26. It can be seen that the
operating costs of the community CHP system are lower when users perform UDDSR
based on the optimized IDR response load, compared with performing UDDSR according
to the maximum response capacity of the aggregated IDR bid.
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The optimization results of the equipment output after the UDDSR response are shown
in Figure 8. Figure 8a indicates that after the UDDSR response, the power purchasing from
the grid during the peak load period is significantly reduced, since part of the unnecessary
load is interrupted or shifted. Figure 8b indicates that during the period of 00:00–05:00 and
21:00–23:00, the MT heat supply is significantly reduced, and the heat load of the users has
been adjusted.

Figure 9 represents the comparison of the electric heating load before and after the user
response. It can be observed that the UDDSR mechanism has an obvious “peak-shaving
and valley-filling” effect on the community system, and can successfully complete the
demand response events initiated by the grid operator or dispatching department.

Figure 10 displays the indoor heating temperature changes before and after UDDSR
response. After the UDDSR response, the heat load during the period of 00:00–05:00 and
21:00–23:00 has been reduced to a certain extent. Although the actual room temperature
has been lowered, it is still higher than Tinmin- Tadj. This means the community system
does not operate according to the minimum heating temperature, which guarantees the
energy satisfaction of users to the greatest extent, and verifies the accuracy and validity of
the heating temperature constraint in (18)
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The comparison of system operating costs before and after UDDSR response is shown
in Table 1. It can be seen that after participating in the UDDSR response, users can directly
receive a load response compensation of RMB 250.49 (including power load and thermal
load response compensation). The total daily operating cost of the community system
is reduced by RMB 543.75, and the saving rate can reach 3.09%. The results verify the
effectiveness of the proposed UDDSR mechanism.

Table 1. System operation costs before and after UDDSR response.

Before UDDSR After UDDSR Saving (%)

Electricity purchasing cost (RMB) 7344.90 6715.64 8.57%
Gas purchasing cost (RMB) 9153.34 9001.82 1.66%

Operation and maintenance (RMB) 1122.07 1108.60 1.20%
Power load response compensation (RMB) 0 205 /

Thermal load response compensation (RMB) 0 45.49 /
BT subsidies (RMB) 0 5.70

Adjustable temperature (◦C) 0 1 /
Total cost (RMB) 17,620.31 17,076.56 3.09%

5.2. CVaR-Based Energy Optimization

In this subsection, the random simulation sampling method based on (44) is used to
model the uncertainties that the community system may face. Four scenarios where the
maximum prediction error and maximum load response fluctuation (maximum uncertainty
fluctuations) are not more than 5%, 10%, 15% and more than 15% are set for comparison.
Among them the maximum prediction error of outdoor temperature is set to be not more
than 2 ◦C. The number of subscenarios in the uncertainty scenario set for each scenario is
100. The influence of different confidence levels con and different uncertainty coefficients β
on the system optimization results is analyzed.

5.2.1. Energy Risk Optimization Results Based on CVaR

Scenario 2, where the maximum uncertainty fluctuation does not exceed 10%, is
taken as an example to analyze the optimization results when con = 0.95, β = 1. A set of
uncertainty scenarios is depicted in Figure 11.
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The electrical load response is assumed to fluctuate below the optimal response
obtained by day-ahead optimization based on UDDSR, i.e., the case only considers the
situation where the actual response of users does not meet the standard. The adjustable
thermal load is allowed to be regulated at 00:00–05:00 and 21:00–23:00, and this setting has
a certain logical consistency with the heating needs of users.

The system energy optimization results of scenario 2 are depicted in Figure 12. From
Figure 12a, it can be observed that when β = 1, the power supply of the community
system is greater than the predicted electric load in most periods. In Figure 12b, L_AC0
is the thermal load of users before the UDDSR response, and the heating power of the
community system during 00:00 and 06:00–13:00 is greater than the predicted heating load.
The community system adopts a completely conservative risk avoidance strategy, i.e., to
make the system operate normally under the interference of any risk fluctuations in the
second scenario, the system equipment output as much power as possible to meet the
electric and heating demand of users.

Figure 13 shows the changes in indoor temperature in the four scenarios. It can be
seen that the greater the risk fluctuation, the greater the indoor temperature variation.
However, the change of the indoor temperature remains within 2 ◦C per unit time, and the
indoor temperature is kept within the upper and lower limits allowed by users.
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equal to 10%, the expected cost of the community system operating in the second scenario 
is RMB 212.33 higher than that without UDDSR response. The system only needs to pay 
1.21% more in operating expenses to deal with the impact of 10% risk fluctuation. When 
the maximum risk fluctuation is larger than 10%, the expected cost of system operation 
will continue to rise as the risk fluctuation becomes larger. Once the prediction error is 
large, the system must pay high costs in order to avoid operational risks. On the other 
hand, the average excess loss of the system increases with the increase in risk fluctuations, 
indicating that the system needs to increase investment to better deal with risks, which 
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The comparison of system operating costs in the four scenarios is shown in Table 2.
When the maximum risk fluctuation is less than or equal to 5%, the expected total cost of
system operation is reduced by RMB 158.7 compared with the total cost without UDDSR
response, that is, a saving of 0.9%. When the maximum risk fluctuation is less than or
equal to 10%, the expected cost of the community system operating in the second scenario
is RMB 212.33 higher than that without UDDSR response. The system only needs to pay
1.21% more in operating expenses to deal with the impact of 10% risk fluctuation. When
the maximum risk fluctuation is larger than 10%, the expected cost of system operation
will continue to rise as the risk fluctuation becomes larger. Once the prediction error is
large, the system must pay high costs in order to avoid operational risks. On the other
hand, the average excess loss of the system increases with the increase in risk fluctuations,
indicating that the system needs to increase investment to better deal with risks, which
verifies the rationality of the algorithm proposed in this paper.
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Table 2. System operation costs in different scenarios (con = 0.95, β = 1).

Scenarios Before UDDSR 1 2 3 4

Maximum risk fluctuation 0% ≤5% ≤10% ≤15% >15%
Electricity purchasing cost (RMB) 7344.90 6889.18 7293.46 8048.00 11529.32

Gas purchasing cost (RMB) 9153.34 9208.27 9177.42 9338.93 9765.28
Power load response subsidies (RMB) 0 203.25 200.87 196.98 183.88

Thermal load response subsidies (RMB) 0 37.32 45.13 26.54 20.97
BT subsidies (RMB) 0 5.70 5.70 5.71 5.93

Imbalance response penalty (yaun) 0 3.77 8.81 17.21 46.23
Adjustable tmperature (◦C) 0 1 1 1 1

Total expected cost of operation (RMB) 17,620.31 17,461.61 17,832.64 18,739.14 22,662.36
CVaR (RMB) 0 4.13 5.21 17.45 41.01

Total cost savings ratio / 0.90% −1.21% −6.34% −28.61%

5.2.2. Impact of Confidence Level and Uncertainty Coefficient of CVaR on Energy
Use Optimization

To further study the impact of confidence level con and uncetianty coefficient β (the
risk preference of system operators) on the system optimization results, scenario 2 is used
as an example to construct the following test set.

con = {0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0} (52)

β = {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0} (53)

The performance of the expected cost of community system operation on the test set
under scenario 2 is shown in Figure 14. The expected cost of system operation decreases as
the confidence level decreases. This is because the predicted value of the uncertainty vari-
able is used to generate the scenario. The lower the value of con, the lower the probability
that the predicted value of the uncertainty variable is included in the uncertainty scenario
set (i.e., the closer the uncertainty variable is to the predicted value). On the other hand, β
represents the weight of CVaR in the optimization objective function. The larger the weight,
the more the system tends to avoid uncertainties. Therefore, when con is determined, the
expected cost of the system increases with the increase of β.
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Figure 15 shows the average excess loss CVaR that the community runs under uncer-
tainty on the test set. The average excess loss of the system decreases with the increase in
the CVaR weight. The larger the CVaR weight, the more prone the system is to uncertainties,
and the system will try to reduce possible uncertainty-induced losses even if this results in
of higher operation costs. On the other hand, when β is determined, the average excess loss
increases with the rise of con. This is because CVaR measures the tail uncertainty outside
the confidence interval. The larger con is, the greater the deviation between the uncertainty
variables and the predicted value in the uncertainty scenario, and the greater the possible
uncertainty loss is.

To more clearly show the relationship between CVaR and the expected cost of system
operation, a case where con = 0.95 is analyzed. In this case, the uncertainty variables
contained in the uncertainty scenario set are more volatile, and the system is faced with
greater possible uncertainties. The results are shown in Figure 16. When β increases, the
expected cost of the system continues to increase, while the average excess loss of the
system continues to decrease. This is because the greater β is, the more the system prefers
to avoid uncertainties, and the system is willing to pay higher operating costs in exchange
for lower excess losses.

Figure 14. The changes of expected cost of system operation with con and β (maximum uncertainty
fluctuation ≤10%).

Figure 15. The changes of CVaR with con and β (maximum risk fluctuation ≤10%).
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6. Conclusions

This paper proposes an energy optimization method for community IES based on
UDDSR. The thermal model of aggregated buildings is introduced to measure users’
adjustable thermal load, and the responsive loads including power loads and thermal
loads are aggregated and optimized through UDDSR optimization. Then, a day-ahead
scheduling model is proposed to optimize the energy management for the community
IES, and CVaR theory is introduced to deal with the volatility of PV output, user load,
outdoor temperature, and user actual UDDSR response load. The case study shows
that the proposed UDDSR mechanism can effectively reduce the operating costs under
the premise of fully considering the willingness of users to participate in IDR events.
Additionally, the optimization method based on CVaR enables the community system to
pay less than 2% in additional operating costs to deal with the energy deviation caused by
the maximum uncertainty of 10%, thus verifying the correctness and effectiveness of the
method presented in this paper. For further study, the relationship between user energy
consumption behavior and response capacity can be explored, so as to construct a reward
and punishment mechanism that is more suitable for the energy needs of users.
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Appendix A

Table A1. The electricity price, subsidy for UDDSR participators and gas price.

Time period Electricity Price
(RMB/kWh)

Power Load
Response Subsidy

(RMB/kWh)

Thermal Load
Response Subsidy

(RMB/kWh)

Imbalance
Response Penalty

(RMB/kWh)

Gas Price
(RMB/m3)

Peak time
((09:00–13:00],
[17:00–20:00))

1.19 0.3 0.2 0.6 3

Normal time
((06:00–08:00],
[14:00–16:00))

0.75 0.1 0.2 0.4 3

Valley time
((00:00–05:00],
[21:00–23:00))

0.36 0.05 0.2 0.18 3

Table A2. The equipment operating parameters.

Parameter Value Parameter Value

MT generating efficiency 0.36 TST heat releasing efficiency 0.95

MT maximum output power 500 kW TST self-loss rate of thermal energy 0.04

MT minimum output power 10 kW TST maximum capacity 100 kWh

GB heat production efficiency 0.85 TST minimum capacity 0 kWh

GB maximum thermal output power 600 kW TST maximum heat storage/release power 50 kW

GB minimum thermal output power 0 kW Maximum power purchased from the grid 1000 kW

BT charging efficiency 0.95 Minimum power purchased from the grid 0 kW

BT discharging efficiency 0.95 Maximum power of interruptible power load Lt
DRE,intmax

BT self-loss rate of electrical energy 0.04 Maximum power of shiftable power load Lt
DRE,sh f ,outmax/Lt

DRE,sh f ,inmax

BT maximum capacity 100 kWh Maximum indoor temperature 26

BT minimum capacity 0 kWh Minimum indoor temperature 18

BT maximum charging/discharging power 50 kW Optimum indoor temperature 21

TST heat storing efficiency 0.95 Maximum adjustable temperature Tadj

Table A3. The operation and maintenance cost of equipment and subsidy parameters.

Equipment Operation and Maintenance Cost (RMB/kWh) Equipment Subsidy (RMB/kWh)

MT 0.075 BT 0.01

GB 0.08 TST 0.01

PV 0.01
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