
Citation: Albataineh, Z.; Andrawes,

A.; Abdullah, N.F.; Nordin, R.

Energy-Efficient beyond 5G Multiple

Access Technique with Simultaneous

Wireless Information and Power

Transfer for the Factory of the Future.

Energies 2022, 15, 6059. https://

doi.org/10.3390/en15166059

Academic Editors: Saeed

Hamood Alsamhi, Jahan Hassan,

Ammar Hawbani, Santosh Kumar

and Alexey V. Shvetsov

Received: 30 June 2022

Accepted: 19 August 2022

Published: 21 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Energy-Efficient beyond 5G Multiple Access Technique with
Simultaneous Wireless Information and Power Transfer for the
Factory of the Future
Zaid Albataineh 1 , Admoon Andrawes 2 , Nor Fadzilah Abdullah 2,* and Rosdiadee Nordin 2

1 Department of Electronics Engineering, Yarmouk University, Irbid 21163, Jordan
2 Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
* Correspondence: fadzilah.abdullah@ukm.edu.my

Abstract: In the Industrial Internet of Things (IIoT), non-orthogonal multiple access (NOMA) has
emerged as a viable multiple access method due to its superior efficiency. In this paper, a new
power allocation technique for NOMA-enabled IIoT devices is presented with trade-offs between
increasing energy efficiency and decreasing power consumption. We present a joint optimization of
transmission rate and energy harvesting in simultaneous wireless information and power transfer
(SWIPT) NOMA-enabled IIoT devices. With the power splitting (PS) approach, we examine how to
improve overall transmission rate and harvested energy, simultaneously, while fulfilling the minimum
rate and harvested energy needs of each IIoT device in a SWIPT-enabled NOMA system. An objective
function is established by adding transmission rates obtained from information decoding and the
transformed throughput from energy harvesting. The combination of management approaches with
Industry 4.0 technology provides a viable strategy to decrease industrial production’s energy use.
Several performance metrics may be utilized to study manufacturing process optimization. The
efficiency of production equipment may be measured by looking at the overall effectiveness (OE)
of the equipment in use. We divide the non-convex optimization problem into two sub-problems,
based on the Lagrangian duality method, and solve them to find the optimal solution for the non-
convex problem. The approach is validated based on physical layer parameter settings that represent
potential factory of the future scenarios. Simulation results confirm the effectiveness of the presented
method in a SWIPT-enabled NOMA system, provide considerable performance gains over the classic
rate maximization strategy, and demonstrate the energy efficiency of the presented method compared
with the conventional system. The results show huge potential of our solutions to reduce the future
huge energy demand related to factory automation.

Keywords: industrial internet of things (IIoT); non-orthogonal multiple access (NOMA); energy
efficiency; power splitting (PS); simultaneous wireless information and power transfer (SWIPT);
factory of the future

1. Introduction

Every year, the number of Internet-enabled gadgets grows. By 2025, 30 billion con-
nected devices are expected to exist, which means that bandwidth, reliability, and latency
demands will rise accordingly [1,2]. The Industrial Internet of Things (IIoT) is a term that
will be used to describe these connected gadgets in the future. As illustrated in Figure 1,
the IIoT is rapidly evolving and spans several industries and services. Co-channel inter-
ference, connection failures, and long end-to-end delays are all potential problems with
these devices, but their short battery life is the most difficult to overcome [2]. A city-wide
communication network will need advanced power distribution algorithms, due to en-
vironmental concerns and the high expense of battery management/replacement. These
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strategies would help IIoT devices with low power, and they would also make it easier for
people to talk to each other in a smart city [3,4].
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Figure 1. Major businesses and services that use IIoT [3].

The 5G and 6G communication systems will require high spectral efficiency [5] to
set the path for the future IIoT era, which aspires to ultra-reliable low-latency commu-
nications and massive machine-type communication (mMTC). Non-orthogonal multiple
access (NOMA) has become a viable option for IIoT systems owing to its better spectral
efficiency performance [6,7]. This is because standard orthogonal multiple access (OMA)
techniques are unable to fulfill the need for greater SE. The orthogonal multiple access
(OMA) approaches have been widely adopted, where restricted resources, such as spectrum
resources, sub-channels, and resource blocks, are assigned to each user. To a limited extent,
they can reduce the impact of interfering signals in vast and substantial IIoT networks.
However, this does not scale up as the number of IIoT equipment grows. The number of
end users is growing quickly, so future smart cities will need access methods that are both
scalable and efficient with spectrum [8].

The effectiveness of the suggested strategy is emphasized through extensive simu-
lations, highlighting that the proposed technique greatly outperforms the unsatisfactory
NOMA scheme for IIoT devices. The following are the primary contributions of this work.

We consider a SWIPT NOMA-enabled IIoT network, in which a single base station
(BS) supports N IIoT devices, in a future autonomous factory through M sub-channels for
each device, as shown in Figure 2. A unique optimum power allocation technique has been
developed to increase the overall EE of IIoT devices.
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We used a multi-objective model for a SWIPT NOMA-enabled IIoT network with
the purpose of simultaneously maximizing total harvested energy and total transmission
rate. Using the Shannon formula, we translate the gathered energy into throughput. The
analyzed MOO model is, then, turned into a single-objective model using the scalarization
method. The associated non-convex issue entails joint optimization of power allocation and
splitting control; hence, we propose decoupling the problem into two sub-problems and
solving them using the Lagrangian duality technique. Numerical results show that applying
the proposed methods in the factory of the future provides considerable performance gains
in energy efficiency.

The remainder of this work is structured as follows. Section 2 briefly offers some back-
ground information and literature review. Section 3 outlines our contributions. Section 4
briefly explains the research directions in energy IIoT systems for the factory of the future.
Section 5 describes the system model and the problem formulation. Section 6 introduces the
derivation of the SWIPT-NOMA System. The simulation results are reported in Section 7,
and the conclusions are presented in Section 8. Throughout the paper, Scalar and vector are
represented by non-bold and bold case characters, respectively.

2. Literature Review

Cellular traffic now employs OMA mechanisms for devices to connect to the Internet,
which is common practice. Using NOMA approaches can aid in the provision of services
such as massive machine-type communications (mMTC) and ultra-reliable low latency
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communications (URLLC) [9,10]. After the development of (IIoT) devices, mobile traffic
will occupy a significant chunk of the spectrum. As a result, the use of NOMA approaches
for bandwidth and resource distribution becomes even more critical [11,12]. With NOMA,
non-orthogonality is usually achieved by power domain modifications. Through the power
domain, transmitted data can be multiplexed in frequency, time, and code domains [13].

In contrast to OMA, the primary notion of NOMA is to serve numerous IIoT devices
in the same resource block. This enhances SE [14] by taking advantage of the recourse gain
difference, which allows multiple users to be scheduled on a single spectrum resource. With
user fairness in mind, NOMA systems outperform OMA systems in terms of optimum sum
rate performance. The authors demonstrated and explored the advantages of NOMA over
OMA in actual Rayleigh fading channels. To make things more feasible, the authors in [15]
examined dynamic traffic arrival, for geographically random users, in the downlink NOMA
transmission system. They demonstrated that the suggested NOMA technique yields bigger
stable throughput zones than OMA, utilizing tools from queueing theory and stochastic
geometry [16]. NOMA research has also been expanded to include systems with multiple
inputs and outputs (MIMO) [17], millimeter-wave communications (mmWave) [18], and
mobile edge computing (MEC) [19].

An end-to-end detection technique for multiple users can then be utilized at the
receiver, e.g., successive interference cancelation (SIC) [20]. As a result, the same spectrum
may be utilized at both the transmitter and reception ends, thanks to superposition-coding
at the former and SIC at the latter [21]. To put it simply, this occurs because the receiver
initially decodes the strongest users first and regards the others as noise and interference.
After that, the strongest signal is removed. There is no end in sight to this process of
removing unintended/interference messages [22]. One can also say that the innovative
aspect of NOMA is intelligently allocating transmitting power to various IIoT devices. This
becomes much more crucial in the case of low-powered micro IIoT devices with limited
energy sources.

Meanwhile, energy efficiency (EE) strategies have been studied in a traditional NOMA
system [23]. The authors of [24] presented a multi-user downlink NOMA approach. They
covered several applications of coordinated multipoint NOMA algorithms for signal down-
link transmission. The authors of [25] employed Alamouti codes. Their goal was to deliver
a decent data rate for the edge user without sacrificing the near user. They presented a
group-based approach for edge users [26]. As a result, they present a closed-form solu-
tion, for outage probability in an opportunistic NOMA system, with power optimization
for multi-cell users. Similarly, the authors of [27] offered a poor scheduling technique,
whereas the authors of [20] used the relaying signal to distribute power among several
cells. The authors of [28] addressed the topic of dynamic power regulation in order to
increase the cumulative capacity of consumers while reducing total transmission power.
Additionally, they investigated a communication environment in which NOMA users form
two-user groups.

The authors of [29] explored resource management issues in multi-cell MIMO systems.
In [30], the authors presented a suboptimal approach to optimize the cumulative capacity
of the users. Their findings show that even adopting inferior procedures may result in
considerable increases in NOMA system user capacity. The authors of [31] evaluated
outage probability, EE, and system effective capacity. Similarly, the authors in [32] offered a
suboptimal strategy for dealing with the non-convex optimization issue. The authors of [33]
also investigated the difficulty of managing resources in heterogeneous communication
networks based on NOMA.

In [34], the authors presented an efficient power allocation method to optimize the EE
of small cells. They derived an efficient solution using a closed-form expression. Authors
in [35] investigated the power distribution and the sub-channel assignment to increase the
EE of small cells. They presented a new suboptimal strategy of dual decomposition.

EE approaches in NOMA-enabled IIoT networks were also investigated. The dynamic
user scheduling and power control in IIoT networks, for example, were examined by the au-
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thors [36]. The task was given as a stochastic optimization with the purpose of minimizing
network power consumption. Using a branch and bound technique, the authors found the
most efficient power allocation in [37]. They investigated an efficient resource management
challenge to optimize the energy efficiency of a NOMA-enabled IIoT system based on
energy harvesting. In [38], the authors presented an effective approach to identify the
optimal solution using a mesh adaptive direct search. Moreover, wirelessly powered IIoT
networks, supported by power domain NOMA, are described in [38]. The authors of [39]
investigated the problem of resource allocation for EE, using nonlinear energy harvesting,
in machine-to-machine communication. The objective was to reduce total network power
consumption by integrating transmit power and temporal resource management. To arrive
at an efficient solution, the authors altered the problem before employing a strategy for effi-
cient time allocation and power control in [40]. They first created an efficient technique for
combining time allocation and rate allocation task offloading for a specific task edge-server.

The authors of [41] improved the mMTC system’s energy efficiency by combining
resource management with computation resources. They made a closed-form formula for
suboptimal power control and used matching theory to make sure that sub-channels were
given to the right people.

Nevertheless, to address the requirement for high data rate services, 5G application
possibilities, including blockchain-based IIoT ecosystems and smart cities, require long-
life batteries [42]. Recent developments in wireless power transfer research indicate that
the lifetime of energy-constrained wireless devices may be increased [43]. Furthermore,
since radio frequency (RF) signals may transport both information and energy, wireless
power transfer and wireless information transfer can be integrated into communication
networks. Therefore, simultaneous wireless information and power transfer (SWIPT)
has recently evolved with the objective of accomplishing simultaneous information and
energy transmission. However, the authors in [44] conducted the first information-theoretic
investigation into SWIPT. Despite being insightful, present energy harvesting devices are
not yet capable of directly decoding the transported information since the sensitivity of
receivers differs substantially, so theoretical restrictions of this kind are not feasible. As a
result, two new receiver structures, the time-switching (TS) scheme and the power-splitting
(PS) scheme, were created in which information decoding (ID) and energy harvesting (EH)
were separated via the time domain and the power domain, respectively [44].

The authors of [45,46] suggested a power allocation-based SWIPT approach with
independent splitting control, assuming that the digitally modulated subcarriers are segre-
gated into two classes of ID and EH. They investigated the SWIPT method for a small-cell
communication system, addressing the combined optimization of time scale ratios and
spatial precoding to collect energy from all UEs [46]. They investigated the maximization
of EH efficiency, in multi-cell MISO techniques, for both linear and non-linear systems.
The SWIPT-enabled NOMA system has grabbed the interest of many because of its huge
potential. In [47], the authors investigated the cooperative design of uplink information
transmission and downlink energy transfer in a wireless-powered NOMA communication
system. Two ways were proposed for improving operational fairness and individual op-
timization: “time sharing” and “fixed decoding order.” The combination of SWIPT and
NOMA suggested that system performance might be considerably improved. Given the
vulnerability of wireless powered networks to the cascading near-far problem, the authors
in [48] employed matching priority weights to optimize the downlink/uplink user rate.
Furthermore, in the SWIPT-enabled NOMA system, the cooperative NOMA scheme was
extensively adopted, with near-NOMA users near the source acting as energy harvesting
sources to aid distant NOMA users with poor channel conditions. Additionally, an iterative
optimization method was made to get the best possible sum rate in a NOMA mmWave
massive MIMO system with SWIPT. Table 1 summarizes recent works on SWIPT-aided
energy harvesting.
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Table 1. Summary of recent works on SWIPT-aided energy harvesting.

Reference Title Focus Limitations

[14] (Xu 2019)
Resource allocation in OFDM-based
wireless powered communication

networks with SWIPT

Propose a suboptimal resource
allocation scheme to maximize the

weighted downlink and uplink sum
rate by optimizing the time,

subcarrier and power allocation

Do not consider NOMA

[17] (Zhou 2019)
Secure SWIPT for Directional

Modulation-Aided AF
Relaying Networks

Formulate an optimization problem
based on maximizing the signal-to-

leakage-artificial-noise-ratio
criterion, and transform it into a

semidefinite relaxation (SDR)
problem for

amplify-and-forward relaying

Do not consider NOMA

[26] (Hu 2019)
SWIPT-enabled relaying in IoT
networks operating with finite

blocklength codes

Propose a power splitting (PS) and
time switching (TS) protocol to

improve SWIPT reliability,
combined with blocklength

allocation optimization between
relaying hops

Do not consider NOMA

[31] (Jang 2018) Energy efficient SWIPT systems in
multi-cell MISO networks

Propose optimal beamforming
methods based on the semidefinite
relaxation (SDR) and the successive

convex approximation (SCA)
technique for multi-cell multi-user

MISO SWIPT systems

Do not consider NOMA

[32] (Xiang 2018)

Energy efficiency for SWIPT in
MIMO two-way

amplify-and-forward
relay networks

Propose joint sources and relay
precoding matrices, and the PS ratio
to maximize the EE of the network,

under the transmit power
constraints and the minimum

SE requirement

Do not consider NOMA

[8] (Tran 2021)

SWIPT Model Adopting a PS
Framework to Aid IoT Networks

Inspired by the Emerging
Cooperative NOMA Technique

Apply SWIPT considering power
splitting (PS) factors to harvest

energy for half-duplex and
full-duplex relaying and combat

eavesdroppers

Do not consider spectrum
or energy efficiency as

performance evaluation

[29] (Xu 2017)
Joint beamforming and

power-splitting control in downlink
cooperative SWIPT NOMA systems

Propose a cooperative SWIPT-aided
NOMA using a golden section

search (GSS) algorithm for a global
optimal solution.

Do not consider spectral
or energy efficiency as

performance evaluation

[48] (Rauniyar 2021)
Ergodic sum capacity analysis of

NOMA—SWIPT enabled IoT
relay systems

Propose the use of IoT node for the
dual role of relaying the source

node data and offloading data to its
own destination based on TS and

PS relaying

Do not consider spectral
efficiency as

performance evaluation

[34] (Tang 2020)
Joint Power Allocation and

Splitting Control for
SWIPT-Enabled NOMA Systems

Propose a joint optimization on
transmission rate and harvested

energy to be solved using iterative
convex subproblems

Do not consider specific
IoT use case

[25] (Andrawes 2020)

Energy-Efficient Downlink for
Non-Orthogonal Multiple Access

with SWIPT under
Constrained Throughput

Propose use of genetic algorithm to
optimize power splitting ratio
power allocation coefficients

towards improving
the outage probability

Do not consider specific
IoT use case
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3. Our Contributions

This paper sheds light on the power optimization framework for NOMA-enabled
IIoT devices, which is motivated by the aforementioned advancements. The goal is to
reduce the total transmitted power of IIoT devices and improve their energy efficiency.
The combination of NOMA and SWIPT is envisioned as an enabling technology for the
future 5G/6G network. As a result, jointly maximizing the total transmission rate and
total captured energy in a SWIPT NOMA-enabled IoT network is presented. We use a
multi-objective optimization (MOO) model for a SWIPT NOMA-enabled IIoT network, in
which we investigate the most efficient resource allocation strategy by jointly optimizing
power allocation and splitting control, all while meeting certain QoS requirements in terms
of transmission rate and harvested energy. To tackle the non-convex power optimization
problem for a specific sub-channel assignment, we use a novel technique based on the
Langrangian duality method [48]. The effectiveness of the proposed strategy is emphasized
through extensive simulations, highlighting that the proposed technique greatly outper-
forms the unsatisfactory NOMA scheme for IIoT devices. The following are the primary
contributions of this work:

1. We consider a SWIPT NOMA-enabled IIoT network, in which a single base station
(BS) supports N IIoT devices, in a future autonomous factory through M sub-channels.
A unique optimum power allocation technique has been developed to increase the
overall EE of IIoT devices. The problem is described with constraints such as the
individual QoS requirements, the maximum transmitting power, and the minimum
harvested energy for each IIoT device on each sub-channel.

2. We used a MOO model for a SWIPT NOMA-enabled IIoT system with the goal of
maximizing both total transmission rate and total gathered energy at the same time.
Next, we convert the harvested energy into throughput using the Shannon formula.
Then, the examined MOO model is turned into a single-objective optimization (SOO)
model by using the scalarization method.

3. The corresponding problem, which involves joint optimization of power allocation
and splitting control, is still non-convex and, thus, we propose decoupling the problem
into two sub-problems to solve them iteratively via the Langrangian duality method.

4. Research Directions in Energy IIOT Systems for Factory of the Future

In the past few years, smart manufacturing systems have advanced in many develop-
ment domains to improve productivity and effectiveness, where intelligent manufacturing
IIoT in a future autonomous factory, such as drones and manufacturing lines, interact with
one another and with workers.

4.1. 5G Systems and Beyond

Various kinds of technological tools are collaborating to create conditions that foster
exchange and intelligent features, which is speeding up the development of the intelligent
Industrial Internet-of-Things (IIOT). This type of automation system is needed to handle
enormous amounts of information and manage complex cyber–physical aspects, facilitating
autonomous manufacturing. For precise instrument control, autonomous manufacturers, as
well as crisis preparedness and prevention, a great proportion of sensing devices are helpful
for gathering actual information for quick turnaround during the production process [49].
The 3GPP has identified the most important aspects of industrial automation, including
automated testing, which necessitates telecommunications for monitoring, fully accessible
system control, and processing remote monitoring functions within a manufacturing build-
ing. This demands a wide range of devices and processors [50]. Production automation
technology needs incredibly low connectivity on the user’s end, such as 10 ms E2E duration
and (1–10) dependability. For the last several, typical confined movement management and
remote surveillance applications, a much more extreme E2E duration of 1 ms is required,
as well as more stringent dependability of (1–10–8) or above. In the same way, some of the
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biggest problems with automobile IIoT have been identified, by the Clear 5G initiative, as
requirements for maximum load capacity [51].

According to the Clear 5G objective, the biggest hurdles are resolving the lack of
real-time control over a number of wireless internet services, including mobile network
layout, throughout radio communication systems and frequency equilibrium. Industrial
Internet of Things are also limited by issues such as how much power they can use and
how much computing power they can have [52]. When complex computing tasks are done
on mobile devices (MDs), their limited use cases could have a huge effect on QoS.

4.2. Mobile Edge Computing

By bringing system resources nearer to the equipment, the Mobile Edge Computing
(MEC) innovation brings a different solution to these problems. The MEC scheme could
also provide a quality service with a fast response time, high throughput, and network data
storage. All of these features were made to fit a wide range of URLLC situations, such as
real-time surveillance and software products, for industrial automation [53].

The Clear5G project is focused on the potential of a multi-RAT scenario to manage
the enormous number of visitors at a sophisticated factory site. Companies are frequently
using the unauthorized spectrum, in addition to the formal frequency, to minimize wireless
demand on the formal frequency. Numerous novel unlicensed frequency techniques have
converged and are now being researched, notably including LTE on Unauthorized, LTE
Certified Accessibility, and LTE-WLAN Amplification [54]. The above access network
innovations have led to the establishment of a new type of communication environment,
which is essential to increasing wireless coverage and available bandwidth [55]. In recent
years, the integration of 5G Different Broadcasting in Unapproved Spectral Range and MEC
has emerged as a viable solution for meeting the demanding IIoT usage scenarios [56].

4.3. Mobile Device Description

An MD is furnished with just one—or maybe more—lenses that capture legitimate
broadcasting for environmental control at the relevant factory of the future (FoF). MDs have
the capacity to maintain a careful eye on their ability to respond appropriately based on
what they observe [57]. Contrarily, unprocessed videos should be analyzed with computer
vision applications to discover knowledge, including movie labels or object identification.
Nevertheless, we suppose that the MDs seem unable to accomplish the duties through
their own associated physical and mechanical limitations, so they would always transfer
significant parts of the project to the internet [58]. GPU multitasking in the MEC or cloud
platform can accelerate the video encoder due to the rapid advancement of learned in
the classroom algorithms in the machine vision domain [59]. These important facts can
be supplied in a comprehensive, continuing-to-learn integrated process that can decide
things [60,61]

4.4. Industry 4.0

With the onset of Industry 4.0, the world is concentrating on combining ICT devices to
increase efficiency [62]. Legislative intervention is being sought by countries all over the
world to promote energy efficiency, while ICT companies are launching energy manage-
ment solutions that employ big data to visualize and optimize energy flow and expenditure.
The industrial sector needs the most electricity. Industrial electricity can reduce production
costs even while improving productivity and increasing [63]. To minimize energy use,
the production industry has adopted equipment energy conservation measures, including
such things as upgrading elevated machinery. For this strategy to work, it needs an initial
investment and a certain amount of time [64].

Since there is no framework for integrative modelling within a company and constant
monitoring of electricity consumption, just as there is with conventional electricity grids
at the unit level, facility conditions are segregated and cannot be fully understood. From
this insufficient information, implementing electricity decisions in real time is difficult.
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Manufacturing power consciousness or management can, indeed, be improved significantly
by evaluating power consumption information online and integrating energy optimization
into current control. Internet access, which is commonly used in modern work, may be
able to help the optimization succeed [65,66].

4.5. Raising Energy Awareness

In the foreseeable future, the Fuel-Efficient Factories of the Future will function by
consistently collecting power rich data from any selected area on the production line and
combining it with organization data for business’s ability management. The inside glimpse
at power consumption is being shown.

In this circumstance, pervasive computing equipment can also be used in combination
with smart monitoring approaches to constantly monitor information, irrespective of where
all the origins are sited, and then convert it into company insights. The information
will be expanded and displayed to provide electricity automated scheduled maintenance,
electricity item/network duration management (for ongoing traceability devices), and
appropriate timing and equilibrium of manufacturing production lines.

At an industry scale, power generation consciousness will be applied via computer net-
work techniques that enable automatic detection of sensing devices, RFID readers, laptops,
smart applications, and PLCs, as well as on and in-network data analysis. Conventional
monitoring equipment will be improved with the ability to interpret original information,
retrieve company knowledge at the origin, as well as provide internet resources, reducing
the necessity for a unified software package to extract information. Collection of property
data points will be facilitated by mobile and interior location-specific devices [67].

Furthermore, as presented in Figure 3, fuel efficiency goes beyond simple surveillance
and hold ruling procedures at the community scale. Interaction is very important through-
out multiple sectors, such as the manufacturer, the financial world, including business
applications, and even building automation. Information from all levels must be connected
and reviewed to contribute to a fuel efficient strategy that takes a holistic view of how en-
ergy consumption can be accomplished. Cross-enterprise concerns, such as transportation
for transporting supplies and materials before and after manufacturing, should also be
addressed. In addition, external organizations, including a smarter power grid and better
aggregation of information, will be needed to pass the strategy.
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The efficient use of energy at the site level requires flexible resource and operation
administration. There will be a price consideration in processes, assembly, distribution
efficiency, as well as electricity indicators. To guarantee comprehensive management and
oversight, efficiency cycles will be established at all stages of manufacturing, from the
industrial automation to the Enterprise Resource Planning (ERP). Management choices
can be taken with full understanding of the energy demand situation on the production
line by using this closed loop approach. WebSocket, for portable systems and autonomous
asset identification, will be developed to ensure tunability and connectivity from of the
hardware level up to ERP [68].

Conventional methods for collecting and interpreting information, obtained from the
production floor, employ handmade platforms. The information is managed and graphi-
cally represented so that individuals can comprehend it. Employees must have a strong
grasp of the facility (systems, manufacturing structure, etc.) and industrial automation
experience in addition to understanding the condition of the process. Employing sta-
tistical analysis to make data-driven decisions (e.g., Six Sigma) has shown productivity
improvements of 40–60% in actual case scenarios [69].

5. System Model and Problem Formulation

In this section, an Industrial IoT (IIoT) system network is studied in which a single base
station (BS) serves N IIoT devices through M sub-channels. This form of communication
can occur among different IIoT devices that are connected to an RF transmission source
in general. We investigate the NOMA system model based on SWIPT. Then, we derive
and mathematically formulate the optimization problem. A downlink NOMA system with
a single base station (BS) and N IIoT devices is taken into consideration. We assume
that all terminals have complete knowledge of the channel state information (CSI). You
can get downlink CSI from pilots, and uplink channel estimate in TDD mode can give
you transmitter-side channel estimation, which can be used to get receiver-side channel
estimation. It is possible to rank channel gains as |h1,m|2 < |h2,m|2 < . . . < |hn,m|2 without
losing generality by using the notation |hn,m|2 to represent the channel power gain for
sub-channel m ∈ M. If Sm represents the set of IIoT devices on sub-channel m ∈ M, IIoT
devices’ messages are superimposed by allocating distinct powers, which is represented as
pl,m for IIoT device l ∈ Sm in NOMA system [29]. In this way, the transmit signal xl,m on
sub-channel m can be described as follows [7,8,33,48]:

xl,m =
M

∑
m=1

Sm

∑
l=1

√
pl,mxl,m (1)

where xl,m is the message for IIoT device l on sub-channel m. We have the following
constraint since the overall power of BS is restricted

M

∑
m=1

Sm

∑
l=1

√
pl,m ≤ PT , (2)

where PT denotes the total transmission power available at the BS.
We implement SWIPT through using the power splitting (PS) approach, assuming

that all IIoT devices are capable of harvesting energy through RF signals. Consequently, to
simultaneously use EH and ID, receivers with a signal processing module and a harvested
energy module are being investigated in this study. To maximize energy harvesting and
information transmission, the BS signals are divided into two segments using the PS ap-
proach. Let us assume that ρl ∀ 0 ≤ ρl ≤ 1, and ρl denotes the proportion of transmission
power assigned to IIoT device l for ID. Additionally, (1− ρl) is the proportion of transmis-
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sion power assigned to IIoT device l for EH. In this configuration, the signal received by
IIoT device l’s sub-channel m ID receiver is

yID
l,m = hl,m

√
ρl xl,m + nl,m, (3)

where nl,m is the independent zero-mean additive white Gaussian noise (AWGN) with
variance (σ2). For any i > j, each device ui will be able to detect and eliminate the message
of uj from its received signal via successive interference cancellation (SIC). In the case i < j,
the message of device uj will be ignored [30]. In terms of feasible transmission rates for
device l on sub-channel m, we can use the following formula as follows:

RID
l,m = log2

(
1 +

ρl
∣∣hl,m

∣∣2 pl,m

ρl
∣∣hl,m

∣∣2 ∑Sm
i=1 pi,m + σ2

)
. (4)

Then, one can express the transmission rate as follows:

RID = ∑M
m=1 ∑Sm

l=1 RID
l,m. (5)

For EH, the received signal of device l is defined as

yEH
l,m =

√
1− ρl xl,mhl,m + nl,m, (6)

Here, we explore a well-recognized linear EH model [16–25]. This assumption is
suitable because the amount of harvested energy is often little in reality, as illustrated by [20],
which demonstrates that, by appropriately adjusting the energy conversion efficiency, it
is feasible to adapt the linear EH framework to the non-linear EH theory at weak power
input. Furthermore, since we consider total harvested energy to be one of our optimization
objectives in the provided system, we may conclude that collected energy somehow doesn’t
exceed the receiver saturated criteria. Consequently, the captured energy at the receiver of
device l is provided by:

el,m = η(1− ρl)
∣∣hl,m

∣∣2 pl,m, (7)

where η denotes the efficiency of energy conversion. We also assume that the noise is far
less and, hence, insignificant. The system’s total harvested energy can be expressed as

E = ∑M
m=1 ∑Sm

l=1 el,m, (8)

In this paper, our goal is to optimize both the entire amount of energy harvested and
the overall transmission rate. One can write the optimization problem with the minimal
transmission rate objectives, the minimal transmitted energy requirements, and the overall
power limit in consideration. Let us assume that each device’s QoS constraints are similar.
However, one can formally write the optimization problem as:

P1 : max
{pl,m},{ρn}

{
RID(pl,m, ρl), E(pl,m, ρl)

}
(9)

s.t.
M

∑
m=1

Sm

∑
l=1

pl,m ≤ PT , (9a)

RID
l,m ≥ Rmin, ∀ l, m, (9b)

el,m ≥ Emin, ∀ l, m, (9c)

0 ≤ ρl ≤ 1 ∀ l (9d)

pl,m ≥ 0 ∀ l (9e)
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The constraint (9a) indicates that the aggregate of transmitted power for all devices
never surpasses the PT threshold, which is the BS’s maximum power. Constraint (9b) meets
the lth devices’s QoS requirement. Constraint (9c) indicates that each lth device is required
to harvest at least the minimum harvested energy Emin for each lth device. The constraint
(9d) requires that the power splitting factor ρl of the lth device be between [0,1]. The
constraint (9e) implies that the power allocated of the lth device is non-negative.

The optimization problem (P1) is a widely known Multi-Objective Optimization
(MOO) problem [31–33]. According to [33], the problem P1 can be turned into a Single
Objective Optimization (SOO) problem.

Nevertheless, because the unit for RID
l,m is bit/s/Hz, which is different than the unit

of E in Watts, it is not suitable to sum them directly. To align the units of these two cost
objectives, we use the Shannon formula to translate the harvested energy into throughput,
and then, we establish a unique performance metric by adding the weighted constants of
the transmission rate attained by information decoding and the transformed throughput
from energy harvested [33].

In this section, we define REH
l,m to represent the feasible rate that is changed from device

l’s harvested energy as follows:

REH
l,m = log2

(
1 +

γη(1− ρl)
∣∣hl,m

∣∣2 ∑M
m=1 ∑Sm

l=1 pl,m

σ2

)
. (10)

where γ represents the efficiency of transferring battery power to RF power. Then, one can
express the transmission rate from EH as follows:

REH = ∑M
m=1 ∑Sm

l=1 REH
l,m . (11)

Then, the cost function of the new optimization problem is given as

R = aRID + bREH (12)

where a and b denote non-negative rating numbers for both cost functions. However, R
represents the total of the information decoding rate and the harvested energy. To make
things easier, we will normalize a as 1 and τ = a

b . As a result, the objective function is
recast as follows:

R = RID + τREH (13)

where τ represent the weight used to govern the precedence of service between ID and EH.
According to the Equations (5), (11), and (13), the objective function of the data rate of

device l on sub-channel m is given as follows:

R =
M

∑
m=1

Sm

∑
l=1

log2

(
1 +

ρl
∣∣hl,m

∣∣2 pl,m

ρl
∣∣hl,m

∣∣2 ∑Sm
i=1 pi,m + σ2

)
+ τ

M

∑
m=1

Sm

∑
l=1

log2

(
1 +

γη(1− ρl)
∣∣hl,m

∣∣2 ∑M
m=1 ∑Sm

l=1 pl,m

σ2

)
(14)

As a consequence, one can rewrite the problem in (14) as:

P2 : max
{pl,m},{ρl}

{
R(pl,m, ρl)

}
(15)

s.t.
M

∑
m=1

Sm

∑
l=1

pl,m ≤ PT , (15a)

RID
l,m ≥ Rmin, ∀ l, m, (15b)

el,m ≥ Emin, ∀ l, m, (15c)

0 ≤ ρl ≤ 1 ∀ l (15d)

pl,m ≥ 0 ∀ l, m (15e)
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The problem in (15) is joint non-convex optimization, with splitting control and power
allocation in the existence of device entanglement. Nevertheless, an exhaustive search
strategy across all conceivable PS ratio and power allocation combinations can be used.
To that end, because of the coupling of several variables and the existence of inter-user
interference, the problem presented in (15) is neither convex nor linear [57]. Furthermore,
as mentioned in [70], for any optimization issue with multiple variables, we may analyze
and solve the problem over certain variables while treating the others as constants, and
then solve the problem over the remaining variables.

6. Derivation of the SWIPT-NOMA System

We examined the joint optimization in SWIPT NOMA-enabled IIoT systems in (15) to
find the greatest achievable rate. Equations in (15) are non-convex optimizations. Therefore,
finding optimum solutions is quite tough. An iterative optimization method is developed to
handle this intractable problem. We divide the problem in (15) into two suboptimal problems
while meeting the desired EH limitations and transmit power constraint requirements.

Nonetheless, this comprehensive search approach incurs significant processing ex-
pense as the number of devices increases. To overcome this problem, we devise an iterative
strategy based on the Lagrangian duality methodology [48,70], as shown below. According
to [70], for any optimization problem with various variables, it is possible to deal with the
sub-problem over a subset of variables while treating the other variables as constants before,
then, pivoting to deal with the sub-problem over the remaining variables. Consequently,
pl,m and ρl are separated to construct a realistic and efficient solution for the examined
optimization problem in (15).

Firstly, one can consider the case where the power allocation is (pl,m ∀ l, m) ∈ Constant.
In this section, we concentrate on maximizing the power splits variables ρl∀ l, given
constant power allocations pl,m ∀ l, m. The optimization sub-problem, on the other hand,
can be reformulated as described in the following:

P3 : max
ρ
{R(ρ)} (16)

s.t. RID
l,m ≥ Rmin, ∀ l, m, (16a)

el,m ≥ Emin, ∀ l, m, (16b)

0 ≤ ρl ≤ 1 ∀ l (16c)

According to (14) and Constraints (16a), (16b), and (16c), ρl ∀ l is required to satisfy
the following condition

ρl
Lower ∼=

(
2Rmin − 1

)
σ2∣∣hl,m

∣∣2 pl,m − (2Rmin − 1)
∣∣hl,m

∣∣2 ∑Sm
i=l+1 pi,m

≤ ρn ≤ 1− Emin

|hn,m|2 ∑M
m=1 ∑Sm

l=1 pl,m

∼= ρl
upper, (17)

Considering (16c) and (17) united, the considered problem becomes infeasible only if
ρl

lower > 0 ∀ l and ρl
upper > 0 ∀ l.

Based on the result in [48,49], the problem in (16) is a convex optimization for the
power splitting factors ρl ∀ l. To certify the convexity of the optimization problem in (16),
we initially make sure that the power splitting parameter domain is quasi and convex.
Due to the constraint of ρl

lower > 0 ∀ l and ρl
upper > 0 ∀ l, the possible range of the power

splitting factor is quasi. One can also find the convexity due to the Equations (16a), (16b),
and (17). In (16), the objective function is shown to be concave on the power-splitting
variables ρl ∀ l.

Assume that the achievable data rate for device l on sub-channel m is

Rg = log2

(
1 +

ρl
∣∣hl,m

∣∣2 pl,m

ρl
∣∣hl,m

∣∣2 ∑Sm
i=l+1 pi,m + σ2

)
+ τlog2

(
1 +

γη(1− ρl)
∣∣hl,m

∣∣2 ∑M
m=1 ∑Sm

l=1 pl,m

σ2

)
(18)
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Thus, the first derivative of Rl,m with respect to ρl is written as

∂Rg(ρl)

∂ρl
=

1
ln2
·

 ∣∣hl,m
∣∣2 pl,mσ2(

ρl
∣∣hl,m

∣∣2 ∑Sm
i=l+1 pi,m + σ2

)(
ρl
∣∣hl,m

∣∣2 ∑Sm
i=l+1 pi,m + σ2

) − τγη
∣∣hl,m

∣∣2PT

γη(1− ρl)
∣∣hl,m

∣∣2PT + σ2

 (19)

Moreover, the second derivative of Rg, with respect to ρl , is expressed as

∂2Rg
∂ρl

2 = − 1
ln2 ·
(

2ρl |hl,m|2 pl,m ∑Sm
i=l+1 pi,m ∑Sm

i=l+1 pi,mσ2+|hl,m|4 pl,m

(
∑Sm

i=l+1 pi,m+∑Sm
i=l+1 pi,m

)
σ4(

ρl |hl,m|2 ∑Sm
i=l+1 pi,m+σ2

)2(
ρl |hl,m|2 ∑Sm

i=l+1 pi,m+σ2
)2

)
− τγ2η2|hl,m|4PT

2(
γη(1−ρl)|hl,m|2PT+σ2

)2

(20)

And
∂2Rg

∂ρi∂ρj
= 0 ∀ i 6= j (21)

According to (20) and (21), the Hessian matrix H is expressed as

H =

H1 · · · 0
...

. . .
...

0 · · · HSm

 (22)

where Hn =
∂2Rg
∂ρl

2 ≤ 0, ∀ l. To put it another way, if the R g is concave, then the Hessian
matrix is in the negative or equals zero range for all values of ρl ∀ l. Due to its nature as a
bounded aggregation from concave curves, objective function in (16) is inherently concave
with respect to power splitting variables ρl , ∀ l. To this purpose, the Lagrangian duality-
based technique [33] can be used to achieve the closest solution to the optimization issue in
(16). According to the formula, the Lagrangian function can be expressed as described in
the following:

Y(ρ, υ, π, λ, µ) =
M
∑

m=1

Sm
∑

l=1
log2

(
1 +

ρl |hl,m|2 pl,m

ρl |hl,m|2 ∑Sm
i=l+1 pi+σ2

)
+τ

M
∑

m=1

Sm
∑

l=1
log2

(
1 +

γη(1−ρl)|hl,m|2 ∑M
m=1 ∑Sm

l=1 pl,m
σ2

)
+

Sm
∑

l=1
νl

(
Rmin −

M
∑

m=1

Sm
∑

l=1
log2

(
1 +

ρl |hl,m|2 pl,m

ρl |hl,m|2 ∑Sm
i=l+1 pi,m+σ2

))
+

Sm
∑

l=1
πl

(
M
∑

m=1

Sm
∑

l=1
log2

(
1 + γEmin

σ2

)
−

M
∑

m=1

Sm
∑

l=1
log2

(
1 +

γη(1−ρl)|hl,m|2 ∑M
m=1 ∑Sm

l=1 pl,m
σ2

))
+

Sm
∑

l=1
λlρl +

Sm
∑

l=1
µl(1− ρl)

(23)

where υ = [ν1, ν2, . . . , νSm ]
T and π = [π1, π2, . . . , πSm ]

T are non-negative Lagrange
multipliers, and they are corresponding to the constraint (16a) and the constraint (16b), re-
spectively. λ = [λ1, λ2, . . . , λSm ]

T and µ = [µ1, µ2, . . . , µSm ]
T are non-negative Lagrange

multipliers, and they are corresponding to the constraint (16c).
As a result, the Lagrange dual mathematical formulation can be expressed in terms of

Γ(υ, π, λ, µ) = max
ρ

Y(ρ, υ, π, λ, µ) (24)

The Lagrange dual optimization approach may, therefore, be outlined:

min
υ, π,λ, µ

Γ(υ, π, λ, µ) (25)

s.t. υ < 0, π < 0, λ < 0, µ < 0, (26)
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This Lagrange dual issue may be solved using the gradient descent technique and the
sub-gradient strategy to adjust the dual parameters (υ, π, λ, µ) with an optimal PS factor ρ.
To maximize ρl for the given variables (υ, π, λ, µ), we must identify the gradient direction
of the Lagrange optimization method in Equation (23), as described in the following:

∇ρl Y = 1
ln2 ·
(

|hl,m|2 pl,mσ2(
ρl |hl,m|2 ∑Sm

i=l+1 pi,m+σ2
)(

ρl |hl,m|2 ∑Sm
i=1 pi,m+σ2

) − τγη|hl,m|2PT

γη(1−ρl)|hl,m|2PT+σ2

)

−νl

(
|hl,m|2 pl,mσ2

ln2
(

ρl |hl,m|2 ∑Sm
i=l+1 pi,m+σ2

)(
ρl |hl,m|2 ∑Sm

i=l+1 pi,m+σ2
)
)

−πl

(
τγη|hl,m|2PT

ln2γη(1−ρl)|hl,m|2PT+σ2

)
+ λl − µl

(27)

Particularly, one can update the ρl as follows:

ρl(Itr + 1) = ρl(Itr) + ε(Itr)∇ρl(Itr) Y (28)

where ρl(Itr ) and ρl(Itr + 1) represents the ρl in terms of Itr-th and (Itr + 1)-th iteration.
ε(Itr) represents step size of the ρl for Itr-th iteration to satisfy the condition as follows:

ε(Itr) = arg max
ε

Y(ρ(Itr + 1), υ, π, λ, µ)
∣∣∣

ρl(Itr+1)=ρl(Itr)+ε(Itr)∇ ρl (Itr) Y
(29)

One can repeat the process in (28) until
∣∣∣∇ ρl(Itr) Y

∣∣∣ ≤ ε1 ∀ l. The ρ∗ denotes the
optimal power splitting factor. Therefore, one can rewrite the equation in (25) as follows:

Γ(λ, µ, υ) = Y(ρ∗, υ, π, λ, µ) (30)

Lagrange multipliers (υ, π, λ, µ) are adjusted and computed after solving
Equations (25) and (26).

On the subset of Lagrangian (υ, π, λ, µ), the problem in (25) and (26) is clearly convex.
As a result, optimizing the dual variables (υ, π, λ, µ) may be solved using a 1-d heuristic
approach. Although the desired function in (25) is often un-differentiable, this gradient-
based technique is often impossible. When this isn’t an option, we utilize the commonly
used sub-gradient approach to calculate and determine the variables of (υ, π, λ, µ).

∇λl Γ = ρ∗l (31)

∇µl Γ = 1− ρ∗l (32)

∇νl Γ = Rmin −
M

∑
m=1

Sm

∑
l=1

log2

(
1 +

ρl
∣∣hl,m

∣∣2 pl,m

ρl
∣∣hl,m

∣∣2 ∑Sm
i=l+1 pi,m + σ2

)
(33)

∇πl Γ =
M

∑
m=1

Sm

∑
l=1

log2

(
1 +

γEmin
σ2

)
−

M

∑
m=1

Sm

∑
l=1

log2

(
1 +

γη(1− ρl)
∣∣hl,m

∣∣2 ∑M
m=1 ∑Sm

l=1 pl,m

σ2

)
(34)

If the valued of ∇λl Γ, ∇µl Γ, ∇νl Γ, and ∇πl Γ are greater than zero, then λl , µl , νl , and
πl decrease. Therefore, one can employ the binary search algorithm of error ε2 to solve and
find the optimal Lagrange multipliers (υ∗,π∗, λ∗, µ∗). As a result, the method constructed
in steps 1 and 2 alternately work until the duality differences are constant, i.e.,

|Rsum(ρ
∗)− Γ(υ∗,π∗, λ∗, µ∗)| = Constant (35)

Secondly, one can find the power allocation under a fixed power splitting factor in the
optimization problem (15). The purpose is to investigate the optimized power splitting
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value ρ∗ and the power allocation pl,m ∀ l, m. However, the optimization issue in (15) can
be written in the following form:

P4 : max
{pl,m}

R(pl,m) (36)

s.t.
M

∑
m=1

Sm

∑
l=1

Pl ≤ PT (36a)

el,m ≥ Emin, ∀ l, m, (36b)

RID
l,m ≥ Rmin, ∀ l, m, (36c)

pl,m ≥ 0 ∀ l, m, (36d)

To that end, let us assume that the noise power for all devices is equal, i.e.,
∣∣σl,m

∣∣2 → 0 .
Then, one can rewrite the objective function as follows:

R(p) =
M

∑
m=1

Sm

∑
l=1

Rl,m (37)

R(p) =
M
∑

m=1

Sm
∑

l=1
log2

(
1 +

ρl |hl,m|2 pl

ρl |hl |2 ∑Sm
i=l+1 pi,m+σ2

)
+ τ

M
∑

m=1

Sm
∑

l=1
log2

(
1 +

γη(1−ρl)|hl,m|2 ∑M
m=1 ∑Sm

l=1 pl,m
σ2

)
=

M
∑

m=1

Sm
∑

l=1
log2

(
1 +

ρl |hl,m|2 pl,m

ρl |hl,m|2 ∑Sm
i=l+1 pi+σ2

)
+ τlog2

(
1 +

γη(1−ρl)|hl,m|2PT
σ2

) (38)

Also, one can rewrite the desired data rate of device l in the following form:

Rl = log2

(
1 +

∣∣hl,m
∣∣2 pl,m∣∣hl,m

∣∣2 ∑N
i=l+1 pi + σ2

)
(39)

Rl =
Sm

∑
l=1

log2

1 +

∣∣∣hψ(l)

∣∣∣2 pψ(l)∣∣∣hψ(l)

∣∣∣2 ∑Sm
i=ψ(l)+1 pi + σ2

 (40)

where ψ(l) represents the decoding order of the l-th device.
Assume that Θl = ∑Sm

j=l pψ(j) and Θl+1 = ∑Sm
j=l+1 pψ(j). Then, one can rewrite the Rl

given in (40) as follows:

Rl =
Sm

∑
l=1

log2

(∣∣∣hψ(l)

∣∣∣2Θl + σ2
)
−

Sm

∑
l=1

log2

(∣∣∣hψ(l)

∣∣∣2Θl+1 + σ2
)

(41)

Then, the first derivative of Rl in regards to pψ(l) can be expressed as
Case I: l = 1,

∂Rl
∂pψ(l)

=
1

ln2
·

∣∣∣hψ(1)

∣∣∣2(∣∣∣hψ(1)

∣∣∣2Θ1 + σ2
) , (42)

Case II: 2 ≤ l ≤ Sm,

∂Rl
∂pψ(l)

=
1

ln2
·


∣∣∣hψ(1)

∣∣∣2(∣∣∣hψ(1)

∣∣∣2Θ1 + σ2
) +

l

∑
j=2


∣∣∣hψ(j)

∣∣∣2(∣∣∣hψ(j)

∣∣∣2Θj + σ2
) −

∣∣∣hψ(j−1)

∣∣∣2(∣∣∣hψ(j−1)

∣∣∣2Θj + σ2
)

∀ n (43)

Note that the first derivative in (42) is a special case of (43). Nevertheless, one can find
the second derivative of Rl as follows:
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∂2Rl
∂pψ(l)∂pψ(k)

= − 1
ln2
·

∣∣∣hψ(1)

∣∣∣4(∣∣∣hψ(1)

∣∣∣2Θ1 + σ2
)2 −

1
ln2
·

w

∑
j=2


∣∣∣hψ(j)

∣∣∣4(∣∣∣hψ(j)

∣∣∣2Θj + σ2
)2 −

∣∣∣hψ(j−1)

∣∣∣4(∣∣∣hψ(j−1)

∣∣∣2Θj + σ2
)2

 ∀ l (44)

where w = min(l, k). According to (43) and (44), the Hessian matrix of Rl can be either
zero or negative for pl,m ∀ l, m. However, the cost function in (36) can be considered as a
concave function for all pl,m ∀ l, m.

To that end, one can express the problem in (36), using the Lagrangian, by:

¯
Y(p, τ, o, κ, δ) =

M
∑

m=1

Sm
∑

l=1
log2

(
1 + |hψ(n)|2 pψ(n)

|hψ(n)|2 ∑N
j=n+1 pψ(j)+σ2

)
+

Sm
∑

l=1
τl

(
PT −

M
∑

m=1

Sm
∑

l=1
pψ(l)

)
+

Sm
∑

l=1
ol

(
M
∑

m=1

Sm
∑

l=1
log2

(
1 + γEmin

σ2

)
−

M
∑

m=1

Sm
∑

l=1
log2

(
1 +

γη(1−ρl
∗)|hψ(l)|2 ∑Sm

l=1 pψ(l)
σ2

))
+

Sm
∑

l=1
κl

(
Rmin −

M
∑

m=1

Sm
∑

l=1
log2

(
1 + |hψ(l)|2 pψ(l)

|hψ(l)|2 ∑Sm
j=l+1 pψ(j)+σ2

))
+

Sm
∑

l=1
δl

Sm
∑

l=1
pψ(l)

(45)

where τ = [τ1, τ2, . . . , τSm ]
T , o = [o1, o2, . . . , oSm ]

T , κ = [κ1, κ2, . . . , κSm ]
T and

δ = [δ1, δ2, . . . , δSm ]
T denote Lagrange multipliers for the corresponding constraints

in (36a), (36b), (36c), and (36d), respectively.
Nevertheless, the Lagrange dual objective function can be expressed as

Γ(τ, o, κ, δ) = max
p

Y(p, τ, o, κ, δ) (46)

Then,
min
α, η,κ

Γ(τ, o, κ, δ) (47)

s.t. τ < 0, o < 0, κ < 0, δ < 0. (48)

And the first derivative of the Lagrangian function, as a function of power allocation
pψ(l), can be expressed by:

∇pψ(l)Y = 1
ln2 ·
(

|hψ(1)|2(
|hψ(1)|2Θ1+σ2

) +
l

∑
j=2

(
|hψ(j)|2(

|hψ(j)|2Θj+σ2
) − |hψ(j−1)|2(

|hψ(j−1)|2Θj+σ2
)
))
− τl +

1
ln2

·
(

Sm
∑

l=1
olγη(1− ρl

∗)
∣∣∣hψ(l)

∣∣∣2)+ κl
ln2

·
(

|hψ(1)|2(
|hψ(1)|2Θ1+σ2

) +
l

∑
j=2

(
|hψ(j)|2(

|hψ(j)|2Θj+σ2
) − |hψ(j−1)|2(

|hψ(j−1)|2Θj+σ2
)
))

+ δl

(49)

Particularly, one can employ the following formula to update the pψ(l) as follows:

pψ(l)(Itr + 1) = pψ(l)(Itr) + ε(Itr)∇pψ(l)(Itr)
¯
Y (50)

where ε(Itr) represents the step size, according to (29).
To find the optimal power allocation p∗, the updated process in (50) for the power

allocation can be continued till
∣∣∣∇pψ(l) Y

∣∣∣ ≤ ε3 ∀ 1 ≤ l ≤ Sm. Therefore, the problem in (46)
can be reformulated as

Γ(τ, o, κ, δ) =
¯
Y(p∗, τ, o, κ, δ) (51)

Then, one can use the Lagrange dual method to identify Lagrange multipliers (τ, o, κ, δ)
in (47) and (48) as
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∇τl Γ = PT −
M

∑
m=1

Sm

∑
l=1

pψ(l) (52)

∇ol Γ =
M

∑
m=1

Sm

∑
l=1

log2

(
1 +

γEmin
σ2

)
−

M

∑
m=1

Sm

∑
l=1

log2

1 +
γη(1− ρl

∗)
∣∣∣hψ(l)

∣∣∣2 ∑Sm
l=1 pψ(l)

σ2

 (53)

∇κl Γ = Rmin −
M

∑
m=1

Sm

∑
l=1

log2

1 +

∣∣∣hψ(l)

∣∣∣2 pψ(l)∣∣∣hψ(l)

∣∣∣2 ∑Sm
j=l+1 pψ(j) + σ2

 (54)

∇δl Γ = pψ(l) (55)

To that end, one can employ the binary search method to find the optimal solution of
(51) as follows: ∣∣R(p∗)− Γ(τ∗, o∗, κ∗, δ∗)

∣∣ = Constant (56)

Algorithm 1 summarizes the comprehensive methods for solving the optimization
problem based on dual Lagrangian methodology. Figure 2 also shows the visualization of
your assumed factory environment, including the IIOT connectivity, network infrastructure,
and edge connectivity.

Algorithm 1 The presented method for joint optimization problem of resource allocation
algorithm and power splitting ratio

Input :
Channel vectors : hl,m ∀ l, m
Noise variance : σ2

Max iteration : Itrmax
Output :

p∗ = pl,m
∗ ∀ l, m for the optimized power allocation vector

ρ∗ = ρl
∗∀ l for for optimized power control vector

1 : Randomly initial power allocations p with setting the error tollariance ε1 , ε2, ε3 = 10−4

2 : Solve the problem P3 in (16) to optimize ρl∀l with constant power allocation

• Randomly initial dual weights (υ, π, λ, µ)
• Find the optimal ρ∗ according to (27)–(28)

• If
∣∣∣∇ρl(Itr) Y

∣∣∣ ≤ ε1 ∀ l, break;

• Find (υ∗,π∗, λ∗, µ∗) according to Equations in (31)–(34)
• If |R(ρ∗)− Γ(υ∗,π∗, λ∗, µ∗)| = Constant; Stop.

9 : Solve the problem P4 in (36) to optimize p∗with the optimal ρ∗

• Randomly initial dual weights (τ, o, κ, δ)
• Find the optimal p̂ ∗ according to (49)–(50)

• If
∣∣∣∇ρl(Itr) Y

∣∣∣ ≤ ε3 ∀ l, Break.

• Find (τ∗, o∗, κ∗, δ∗) according to Equations in (52)–(55).
• If

∣∣R(p∗)− Γ(τ∗, o∗, κ∗, δ∗)
∣∣ = Constant Stop.

7. Simulation and Validation of the Energy Efficiency in the Factory of the
Future Environments

The simulation results presented in this part are used to verify the performance
of the proposed method in the SWIPT NOMA-enabled IIoT networks. The results of
the simulations are presented below, along with a discussion of findings. Simulation
parameters can be found in the following Table 2 [7,24,33,48,56].
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Table 2. Simulation Parameters.

Parameter Description Value

σ2 AWGN variance 0.1

r The radius of the factory 500 m

d0 The reference distance 150 m

v The path-loss exponent 3.76

N Max. number of IIoT Devices 24

M Number of sub-channels 8

η The EH efficiency 0.6

γ The conversion efficiency 10

τ The preference weight 0.1

Sm
Number of IIoT devices associated

to the sub-channel 2

f Operating frequency 3.5 GHz

Pt The total transmission power available at the BS 8 W

Pc The circuit power 0.2 W

Rmin The minimum QoS threshold at the BS 1 b/s/Hz

Emin The minimum harvested power 0.1 m W

All of the results are gathered from a variety of randomly selected locations among
the devices. Assume that the BS is positioned in the center of a factory with a radius
of r = 500 m and that all IIoT devices are dispersed, randomly and independently,
inside the factory. The system’s overall frequency band is set at BW = 100 MHz. The
transmission channel between a pair of transceivers in the conventional 3GPP propagation
environment [71] consists of i.i.d Rayleigh block fading, Log-Normal shadowing with a

standard variation of 8 dB, and path loss given by
(

d0
d

)v
. Specifically, d represents the

actual propagation distance from the BS to the IIoT devices, d0 = 50 m as the reference
distance, and v = 3.76 represents the path-loss exponent. Other than that, the EH efficiency
is set to η = 0.6, the preference weight is set to τ = a

b = 0.1, and the efficiency of conversion
has been set at γ = 10 percent [7,48,72].

The specifications for the model are as follows: There are a maximum of N = 24 IIoT
devices and M = 8 sub-channels. It is set to Pt = 8 W and Rmin = 1 b/s/Hz for the
minimal QoS threshold at BS. Each sub-channel has Sm = 2 IIoT devices and Pc = 0.2 W of
circuit power. A variance of σ2 = 0.1 is used for the additive white noise. In this paper,
the sum rate reached while operating inside a specific spectrum is referred to as spectral
efficiency in (56). In contrast, energy efficiency is defined as the ratio of the total power
consumed to the sum rate achieved. It can be expressed mathematically as:

EE =
Achievable sum rate

Total power consumption
(57)

EE =
R

Pt = ∑M
m=1 ∑N

n=1 pn,m + Pc
(58)

Figure 4 illustrates the energy efficiency as the number of IIoT devices increases. The
proposed technique outperforms both the KKT-based NOMA scheme and the standard
OFDMA scheme. For fewer IIoT devices, the difference in energy efficiency between
the proposed technique and the KKT-based method is insignificant. However, when the
number of IIoT devices grows, the gap between the proposed technique and the KKT-based
NOMA scheme grows dramatically. On the other hand, the OFDMA-based approach
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performs extremely badly when a large number of IIoT devices are deployed. The figure
clearly shows that the energy efficiency of the OFDMA scheme achieves saturation when
the number of IIoT devices exceeds ten. This is because an OFDMA-based system can
handle the same number of IIoT devices as the number of sub-channels, which is set at 10.
This demonstrates the OFDMA scheme’s failure to manage a high number of IIoT devices,
but both NOMA methods continue to improve when the number of IIoT devices exceeds 10.
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Figure 4. Energy efficiency against the number of IIoT devices.

To study the performance of our proposed scheme further, it is necessary to evaluate
the effect of the total transmit power at the BS on the spectral efficiency in (14). The
spectral efficiency versus the total power budget at the BS is shown in Figure 5. We can
see that the disparity between the curves for the proposed method and the OFDMA-
based scheme is rather considerable, indicating that the OFDMA-based scheme performs
poorly. Furthermore, we observe that the proposed technique outperforms the benchmark
KKT-based NOMA and OFDMA schemes in terms of boosting the BS total power budget.

Figure 6 depicts spectrum efficiency versus total transmit power at the BS with different
number of IIoT devices. It compares the proposed NOMA scheme’s spectrum efficiency
for a different number of IIoT devices. The chart shows the influence of the number of
users on optimum spectrum efficiency when the number of users is adjusted to 4, 6, 8,
and 10. When the overall transmit power is substantial, as shown in Figure 5, spectrum
efficiency improves with the number of users. This is due to the increased diversity gain
given when more consumers are serviced concurrently. However, with a low transmit
power, spectrum efficiency decreases as the number of users increases. The fundamental
cause for this finding is the non-orthogonality of the channel access. Inter-user interference
would increase in NOMA systems as the number of terminals increased. This demonstrates
that a much greater transmit power is required to meet the minimum rate requirement
for each terminal. In other words, limited transmit power cannot fulfill all users’ minimal
transmission rate needs. As a result, there is a trade-off between spectrum efficiency
performance and the number of users, particularly for low-power systems, as in [34].
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To demonstrate the performance of the proposed NOMA system with various IIoT
devices per sub-channel, Figure 7 analyzes the network’s total energy efficiency as the
number of sub-channels increases, with each sub-channel capable of accommodating a
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different number of IIoT devices at the same time. It can be shown that, as the number of
sub-channels increases, so does the total energy efficiency.
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It is also worthwhile to illustrate the SE-EE trade-off metric for the presented method
in Figure 8. EE and SE have both increased at the same time, showing that no trade-off
has occurred over this time period. Once you reach the point of inflection, you will see a
decrease in both SE and EE.
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8. Conclusions

NOMA is widely regarded as a critical enabler for supporting the massive number
of IIoT devices that will be deployed in the factory of the future (FoF). Using the SWIPT-
assisted NOMA system with PS receivers as a case study, we looked at the feasible data
rate maximization issue under the constraints of the maximum transmit power budget
and the minimal EH requirement in this work. For NOMA-enabled IIoT networks, a joint
optimization of power allocation and splitting control strategy that is both energy-efficient
and cost-effective is presented. The allocation of power and the assignment of the PS ratio
were done separately. The Lagrangian duality-based technique was then used to solve the
related sub-problems. Finally, we compare the performance of our proposed scheme to that
of traditional KKT-based NOMA and SQP-based OFDMA-based schemes. In comparison
to the benchmark systems, the performance assessment shows that our proposed scheme is
more effective.
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