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Abstract: The United Arab Emirates (UAE) built four nuclear power plants at the Barakah site to
supply 25% of the region’s electricity. Among the Barakah Nuclear Power Plants, (BNPPs), their main
objectives are to achieve the highest possible safety for the environment, operators, and community
members; quality nuclear reactors and energy; and power production efficiency. To meet these
objectives, decision-makers must access large amounts of data in the case of a nuclear accident to
prevent the release of radioactive materials. Machine learning offers a feasible solution to propose
early warnings and help contain accidents. Thus, our study aimed at developing and testing a
machine learning model to classify nuclear accidents using the associated release of radioactive
materials. We used Radiological Assessment System for Consequence Analysis (RASCAL) software
to estimate the concentration of released radioactive materials in the four seasons of the year 2020.
We applied these concentrations as predictors in a classification tree model to classify three types of
severe accidents at Unit 1 of BNPPs each season. The average accuracy of the classification models in
the four seasons was 97.3% for the training data and 96.5% for the test data, indicating a high efficacy.
Thus, the generated classification models can distinguish between the three simulated accidents in
any season.

Keywords: nuclear power plant; nuclear accident; machine learning; classification; regression

1. Introduction

Sustainable energy production is a critical global challenge, with several conventional
energy sources, such as coal-based power plants, posing a significant threat to people and
the environment at large. Thus, there are intensifying efforts to transition to cleaner energy
sources, such as nuclear power plants. Governments globally are extensively investing
in these alternative energy production technologies to meet the present demand while
protecting the environment and conserving resources for future generations. Nuclear
power plants have proven reliable, partly because, when correctly managed, they are
clean and have fewer negative environmental consequences than typical electrical power
plants. Furthermore, nuclear reactors have a greater energy production capacity than many
other alternative energy sources, such as hydro, wind, and solar power plants. However,
the reactors have several problems, the most serious of which is the potential toxicity
to the environment and people [1]. Public awareness of nuclear disaster prevention has
grown following the Fukushima Daiichi Nuclear Power Plant accident. Early warning
and detection of radioactive emissions in a nuclear accident are essential to guarantee the
environment’s safety, operators, and community members [2]. Notably, every accident
type has a unique pattern that can support the analysis of its occurrence and the relevant
mitigation measures [3]. A radiological consequence evaluation plan is also considered a
vital element of a safety analysis procedure, mainly because it defines the safety parameters
of a nuclear reactor. Ultimately, this process allows the design team to implement suitable
measures to guarantee operators’ well-being. In a severe nuclear accident, the protection
action depends on the number of radioactive materials released and wind direction.
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Recently, decision support systems (DSSs) have been observed as a key strategy for
enhancing security and safety measures during emergency nuclear emergency operations.
These tools support decision-makers in identifying accident patterns and taking appropriate
protective steps. DSSs are particularly pivotal in the planning phase of the emergency
response [4,5]. They are also highly connected to artificial intelligence, a technology that
uses algorithms to produce accurate insights from amassed data. These attributes help
reduce human error while dealing with nuclear reactors during anomalous situations at
nuclear power plants. Hsieh et al. also report that DSSs minimize decision-making time by
25% and improve operators’ decision-making accuracy by 18%, especially in the case of
abnormal events in a power plant [6]. Furthermore, DSSs reduce the amount of information
an operator should consider to make accurate decisions in dealing with anomalies at a
power plant. This relevance motivated our study’s use of a decision-making tree built from
the Classification and Regression Tree (CART) model.

This study aimed to analyze the effects of radiation from a severe APR 1400 accident
at Unit 1 of the Barakah Nuclear Power Plant (BNPP), the latest model of a nuclear reactor
developed by South Korea. The study was based on simulation results obtained from
various relevant computer applications. A model that can predict the type of occurring
accident based on the radionuclides released into the environment was created. Notably,
three hypothetical accidents on the BNPP were assumed for the study. Table 1 illustrates
BNPP Unit 1 specifications.

Table 1. Specifications of Barakah unit 1.

Item BNPP Unit 1

Location Barakah, Abu Dhabi, UAE
Reactor type PWR

Capacity 1400 MWe
Commercial operation 20 April 2021

2. Review of Previous Studies

Before introducing this study’s proposed RASCAL model, reviewing some of the key
alternatives available is vital. The following are some major substitutes that can be used for
source term estimation and burnup calculations.

2.1. Source Term Estimation
2.1.1. Source Inversion Algorithms

All source inversion algorithms are essentially top-down techniques used to compute
source terms. Due to their exceptional accuracy levels, these methods are favored over
their bottom-down counterparts. In top-down systems, the atmospheric dispersion model
of the solution to measurements is adjusted to approximate the source term. Moreover, to
regularize the inverse problem, the source term’s initial projections, often derived from
bottom-up models, are utilized. A successful application of this approach in modeling
nuclear disasters has been adequately documented by Kovalets et al. [7]. Due to their lack
of real-time dimension, previous implementations were considered less effective. There-
fore, Kovalets et al. created a source inversion algorithm that quantifies various models’
time-dependent release rates using measurements at varying distances from the nuclear
power plant (NPP) and gamma-dose rates (GDR). They tested their model in JRODOS,
the European nuclear emergency response system, to validate it. According to their re-
sults, the model exhibits robustness and real-time applicability. The team incorporates
meteorological data assimilation tools to maximize the source term’s accuracy.

2.1.2. Inverse Modeling Tool

Saurier et al. also developed an inverse modeling technique for measuring the acci-
dental atmospheric emission from an NPP [8]. Similar to most source inversion techniques,
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their approach consolidates atmospheric dispersion models and environmental measure-
ments to quantify the source term. Additionally, the method utilizes GDR measurements,
where the source term’s composition, σ, is reduced to the critical radionuclides’ list. In
order to optimize the selection of λ, the authors utilize the L-curve technique [8]. In par-
ticular, the maximum curve point is chosen from the graph of the source term versus J(σ)
measures (residues). For every case that estimates the source term, the L-curve is used to
compute a specific value of λ. Overall, inverse modeling is used to reconstruct the source
terms and compute radionuclide composition. This approach is meticulous and suitable
for the real-time reconstruction of the main release events, irrespective of the number of
measurements available.

2.1.3. Kalman Filter-Based Approach

Di Ronco and Cammi propose an improved backward method, which is fundamen-
tally an adapted Kalman filter-based technique. The Kalman filter is a data simulation
algorithm, initially visualized as an iterative predictive-corrector state estimator [9]. Di
Ronco and Cammi incorporate the Gaussian plume dispersion algorithm into the Kalman
filter to build their online data simulation tool. The resultant model implements online
updates of approximated quantities by comparing measurements with model predictions.
Furthermore, by exploiting the most recent unknown parameters’ projections, the algo-
rithm can determine mobile sensors’ feasible placements [9]. A simulation loop depicts
three details: (1) the current parameter estimates, (2) the sensor’s current location, and
(3) measurement estimations. Contrastingly, the control loop controls the sensor depending
on current parameter estimates. In order to quantify the experimental observations’ role
throughout estimate updates, sensor noise level data is leveraged. Ultimately, the tool
applies to single-source, steady-state situations that obey the Gaussian plume model.

2.1.4. Forward-Backward Coupled Estimation

A coupled source term estimation model is proposed by Sun, Fang, and Li [10]. Gener-
ally, to project source terms, backward techniques relying on environmental monitoring
data or forward methods utilizing an NPP’s status data are used. Both approaches comprise
considerable uncertainties capable of compromising the results’ accuracy. Therefore, for a
more precise estimation, Sun et al. advocate for a forward-backward coupled approach [10].
In this instance, the Response Technical Manual (RTM-96) and the ensemble Kalman filter
act as the forward and backward tools, respectively. In order to minimize the backward
component’s temporal correlation of estimates, the combined system uses the forward
estimate’s evolution model [10]. This consolidated process reduces the proliferation of
uncertainties. Sun et al. conducted numerical and sensitivity assessments using the com-
bined technique to reinforce the model’s accuracy and robustness using a hypothetical NPP
accident. Therefore, the RTM-96-ensemble Kalman filter model is practical for real-time
estimating the source term in modern NPPs.

2.1.5. Grey Wolf Optimizer Algorithm and the Corrected Gaussian Diffusion Model

Another combined tool for rapidly estimating the source term is proposed by Liu et al. [11].
Their Grey Wolf Optimizer (GWO) is merged with the Gaussian diffusion model to improve
the computation of the source term. Markedly, the Gaussian plume represents the diffusion
model, while gas concentrations at various stations are calculated using the plume height,
distance deviation coefficient, wind speed, and emission source strength [11]. Contrastingly,
the GWO is used for solving the objective function. It is a swarm intelligence algorithm
derived from the wolf pack’s prey predation and class system [11]. In this model, the fittest,
second-best, and third-best refer to the parameters α, β, and δ, respectively. The other
potential solutions, ω, conform to the three classes of wolves. Such a conceptualization
accounts for the GWO’s ability to compute the source term reliably and rapidly. The
Gaussian model is incorporated into the model using a terrain correction factor to optimize
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accuracy. This case further demonstrates the essence of source estimation tools that utilize
amalgamated approaches.

2.2. Recently Developed Methods for Burnup Calculations
2.2.1. Trajectory Period Folding Method

The Trajectory Period Folding (TPF) approach can be feasibly utilized to model nu-
clear transformations numerically. The basis of the technique is the linear chain method,
often utilized for modeling isotropic changes in matter [12]. Based on Stanisz, Oettingen,
and Cetnar’s description, to build linear chain depictions, TPF folds in two successive
periods [12]. Over the cumulative period of interest, what is considered is the linear
nuclide-to-nuclide mass flow of transitions following each phase’s creation of nuclide
transmutation chains. This approach promotes the retention of all quantitative data detail-
ing the isotropic transformation for the time-lapse beyond a given computation step [12].
Moreover, from the start of irradiation to a random time step, the evaluation of an isotope’s
history is facilitated by TPF. Cooling periods for all nuclear cycles and multi-recycling are
included in this capability. Furthermore, TPF can safely detail the reactions that frequently
proceed in nuclide production. Therefore, TPF creates a roadmap for rapid and accurate
burnup calculations.

2.2.2. Serpent-SUBCHANFLOW-TRANSURANUS

To conduct pin-by-pin burnup computations, Garcia et al. propose a simulation
tool based on Serpent 2, SUBCHANFLOW (SCF), and TRANSURANUS (TU) [13]. The
technique consolidates fuel-performance analysis, Monte Carlo neutron transport, and
subchannel thermal hydraulics to simulate depletion in a highly detailed manner. The
method can be used to quantify burnup-dependent safety variables at the pin levels for
various designs of NPPs [12]. Markedly, an object-oriented setup featuring a mesh-feedback
exchange is the basis for the Serpent–SCF–TU coupling system [13]. Serpent 2’s novel
Collision-based Domain Decomposition (CDD) scheme spreads burnable materials across
computation nodes, facilitating large-scale burnup calculations. In particular, this technique
defines fields with only the related data and a fraction of the combustible materials, while
replicating the rest of the model data in other domains [13]. Thanks to this system, it
is possible to derive solutions to problems that cannot be accommodated by one node.
Therefore, the Serpent–SCF–TU pin-by-pin burnup computations are sufficiently detailed
and accurate.

3. Materials and Methods
3.1. Accident Scenarios

Loss of Coolant Accident (LOCA) is a simulated accident involving the loss of the
core cooling system. Consequently, there is an automated actuation of the safety injection
system (SIS) to keep the reactor core cooled and submerged. For this study, it was simulated
that the SIS was disabled while, at the same time, the coolant was discharged through a
break. Therefore, there was neither a cooling water injection nor an instantaneous trip of
the reactor. Due to the rapid depressurization, the core was uncovered for a few seconds.
Subsequently, there was a rapid increase in the fuel temperature, and the interaction
between steam and the cladding was fastened. After the core was uncovered for a short
while, the reactor began to melt. In this accident, different ranges of power 100%, 70%,
50%, and 20% are analyzed under the condition of LOCA with the ability to use a spray
system on/off once the release becomes on the containment. The accident started at 00:00
(midnight), and the core was uncovered at 05:00. The release rate was 0.3 per day, and the
operators could not save the core from melting down. It was assumed that the release was
inside the containment.

Long Term Station Blackout (LTSBO) is an accident involving the total loss of electric
energy in the Barakah nuclear power plant. Essentially, it was modeled that both onsite and
offsite emergency systems were lost in the power plant. The trip signals for the reactors
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were generated due to the low coolant flow level. Consequently, there was an accelerated
increase in reactor pressure, which further caused an increase in reactor coolant temperature.
Since there were no steam flows due to stopped feed-water pumps, the increased pressure
was slowly discharged through the main steam safety valves (MSSVs). Despite shutting
down the reactor and stopping the chain reactions through control elements, the coolant
temperature continued to grow due to the increased decay heat. Similarly, there was
a continued pressure increase until the pilot-operated safety relief valve opened. This
scenario enabled the release of excess pressure. Despite the pilot-operated safety relief
valve opening to release extra pressure, the reactors’ coolant continued heat-up, which led
to further heat transfer to the steam generator since the feed-water systems were stopped.
This situation led to a maintained high reactor pressure that sustained the opening of the
relief valve. The resultant effect was a decreased volume of the reactors’ liquid as the
reactor core remained uncovered. In this study, we assumed that the site lost power for a
long period, between 8 to 12 h. The reactor shutdown event was at 00:00 (midnight), and
the release from the core started on the same day at noon. The accident was tested with
both systems spray on/off. The operators could not save the core from melting down, and
the release pathway was inside the containment.

Steam Generator Tube Rupture (SGTR) is an accident that occurred simultaneously
when the plant experienced a power blackout. The APR 1400 reactors have the potential to
withstand this accident. The rupture of the steam generator tube (double-ended U-tube in
that case) resulted in the reactors’ tripping with immediate turbine tripping at a high level.
There was no assumption of time delay between the power blackout occurrence and the
steam generator tube rupture. This rupture can lead to leakage of Radionuclides from the
primary to the secondary side. This study used a different range of powers of 100%, 70%,
50%, and 20% with this accident. The shutdown occurred at 00:00 (midnight), the leak rate
into the steam generator was 500 gal/min, and the rupture location was above water level.
The condenser was exhausted at 06:00 after activation of the safety relief valve. In this case
of an accident, the release pathway would be to the steam generator.

3.2. Accident Assessment

The accident assessment was divided into three phases and illustrated in Figure 1.
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Figure 1. Schematic approach for methodology and analysis.

1. The first phase involved using Radiological Assessment System for Consequence
Analysis (RASCAL) to generate the radiological source terms for each of the three
accidents at the APR 1400 power plant.

2. The second phase involved using the source term to dose tool (STDose) of RAS-
CAL to estimate the fallout concentration of radionuclides for each of the three
accidents analyzed.



Energies 2022, 15, 6048 6 of 11

3. The third phase involved building a decision tree model using CART® classification
based on the estimated radionuclides concentration.

3.3. RASCAL

RASCAL version 4.3.3 software was developed to rapidly estimate doses from nuclear
or radiological emergencies, helping the decision-making process during the implemen-
tation of protective actions such as evacuation and sheltering in the first four days after a
nuclear accident [14]. This study used RASCAL to generate the radiological source terms
for each of the three accidents at the APR 1400 power plant. The STDose in RASCAL
was used to estimate radiation doses from plumes to people downwind. STDose required
information such as event location, event type, release path, source term, and meteorologi-
cal data. The meteorological data were used to evaluate the atmospheric dispersion and
transport model of radioactive effluents released from the Barakah Nuclear Power Plant
weather station. To fulfill RASCAL requirements, five days were taken from each season
as follows:

• Winter: 1–5 January 2020
• Spring: 1–5 April 2020
• Summer: 1–5 August 2020
• Fall: 1–5 October 2020

The National Center of Meteorology (NCM) in the United Arabs Emirates collected the
meteorological data for these five days. Notably, RASCAL can only perform simulations
for 96 h, informing the choice of the number of days. The STDose tool will first generate
a time-dependent “source term.” The source terms were input to an atmospheric disper-
sion and transport model. The atmospheric dispersion and transport model estimates
radionuclide concentrations downwind in the air and ground due to deposition. The dose
pathways are cloud shine from the plume, inhalation from the plume, and ground shine
from deposited radionuclides (assuming four days of exposure to ground shine). Gaussian
plume and Gaussian puff models are embedded within RASCAL for the atmospheric
transport, dispersion, and deposition of radioactive materials from the release point. A
simplified version of the straight-line Gaussian model is expressed as:

X(x, y, z)
Q

=
1

(2π)
3
2 σxσyσz

exp

[
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2

(
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)2
]
× exp

[
−1
2
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]
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[
−1
2

(
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]

(1)

where χ is the concentration (Bq/m3 or g/m3), Q is the amount of material unconfined
(Bq or g), and σ is the dispersion parameter (m), which is a function of distance from the
release point.

3.4. CART (Classification and Regression Tree) Model

The CART® classification is a supervised machine learning algorithm that uses his-
torical data to construct a prediction model in a decision tree [15]. Typically, a decision
tree is an upside-down tree-like diagram with the root node at the top, multiple internal
nodes, and several terminal nodes at the bottom. Data are passed through a series of splits,
called nodes, at which a decision is made about which direction to proceed based on one
of the explanatory variables [16]. The goal is to get a predicted class at the terminal node.
Because the CART model is a nonparametric model that does not make any assumptions
about the mapping function between outcome and predictors, they are free to learn any
functional form from the training data. However, the CART model requires more training
datasets than parametric methods, such as Naive Bayes [17]. This limitation was overcome
by using big data and simulating multiple accidents at varying power levels with different
safety parameters. The algorithm chooses the variable and its split point that most reduces
the root or parent node impurity. It then assigns classes to these nodes according to a rule
that minimizes misclassification costs [18]. A node’s misclassification cost is the proportion
of observations that do not belong to the majority class in that node [19]. In our model,
training is conducted on 70% of the data using Gini’s index for node splitting [15]. The
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optimal tree was the smallest tree with a misclassification cost within one standard error of
the tree with the minimum misclassification cost. A total of 30% of the data were used to test
the performance of the trained model to improve the generalizability of the trained model.

3.5. Data Generation

Only three radionuclides (137Cs, 131I, and 133Xe) were selected as predictors in our
model, based on previous severe accident data from Chernobyl and Fukushima. In addition,
these three radionuclides had long half-lives (Table 2), which enabled multiple sampling.
The fallout concentration of these three radionuclides was used as the input data for the
CART model. The final sampled data consisted of 7700 rows for each season/month
(Winter/January, Spring/April, Summer/August, and Fall/October), generating the big
data preferred in predictive modeling. Each season/month data was used to train and test
a decision tree model using the same criteria listed above (70%/30% train/test; Gini’s index
for node splitting; the optimal tree was the smallest tree with a misclassification cost within
one standard error of the tree with the minimum misclassification cost).

Table 2. Selected radionuclides.

Radionuclides Half-Life
137Cs 30.17 years

131I 8.0197 days
133Xe 5.245 years

4. Results
4.1. Variable Importance

The ranking of predictors that classify the three accidents is shown as a bar graph
(Figures 2–5). The predictors’ ranking was similar across three months, August-summer,
Winter-January, and Fall-October, with I-131 the most important, followed by Cs-137 and
Xe-133. For April (spring), Cs-137 was the most important, followed by I-131 and Xe-133.
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4.2. Accuracy

Focusing on the test data as a measure of model performance, the LOCA accident
was best predicted in Spring April (97.3% accuracy) and least predicted in Winter January
(84.0% accuracy). On the other hand, the LTSBO accident was best predicted in Summer
August (98.8% accuracy) and least predicted in Winter January (97.4% accuracy). Finally,
the SGTR accident was best predicted in Spring-April or Fall-October (99.4% accuracy for
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both) and least predicted in Summer August or Winter January (99.2% accuracy for both).
The overall accuracy for the three accidents in the test data was best in Summer August
(98.0% accuracy), followed by Spring April (97.9% accuracy), Fall October (97.7% accuracy),
and finally, Winter January (92.5% accuracy), as shown in Table 3.
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Table 3. The accuracy of the four models tested.

Accuracy Summer August Winter January Spring April Fall October

LOCA (train) 98.5% 84.7% 98.1% 97.4%
LOCA (test) 96.6% 84.0% 97.3% 96.0%

LTSBO (train) 99.3% 98.3% 98.0% 98.8%
LTSBO (test) 98.8% 97.4% 97.8% 98.5%
SGTR (train) 99.9% 99.5% 99.9% 99.9%
SGTR (test) 99.2% 99.2% 99.4% 99.4%

Overall (train) 99.1% 93.1% 98.4% 98.4%
Overall (test) 98.0% 92.5% 97.9% 97.7%

4.3. ROC AUC

The receiver operator characteristic (ROC) curve with its area under the curve (AUC)
is another metric for evaluating the four models’ performance in correctly classifying each
accident. ROC AUC is the probability that the classification model ranks a random positive
for a specific accident [1]. Generally, the classification of the four models for each accident
type was excellent and never went below 0.97. Focusing on the test data, the LOCA accident
had the best ROC AUC in Spring April (AUC = 0.9892) and least AUC in Winter January
(AUC = 0.9752). The LTSBO accident had the best AUC in Spring April (AUC = 0.9921) and
the least AUC in Winter January (AUC = 0.9768). The SGTR accident had the best AUC
in Spring April or Fall October (AUC = 0.9989 for both) and least AUC in Winter January
(AUC = 0.9979), as shown in Table 4.

Table 4. ROC AUC of the three accidents in the four models tested.

ROC AUC Summer August Winter January Spring April Fall October

LOCA (train) 0.9987 0.9800 0.9956 0.9952
LOCA (test) 0.9888 0.9752 0.9892 0.9846

LTSBO (train) 0.9985 0.9802 0.9953 0.9951
LTSBO (test) 0.9920 0.9768 0.9921 0.9860
SGTR (train) 0.9994 0.9991 0.9991 0.9991
SGTR (test) 0.9985 0.9979 0.9989 0.9989

5. Discussion and Conclusions

The research demonstrated that offsite parameters could support prompt decision-
making during a nuclear disaster when onsite parameters are unavailable [1]. In this case,
machine learning is a viable option for the underlying assessments. This study also noted
the significance of using released radioactive materials to identify and categorize nuclear
power plant accidents. Specifically, the radioactive materials released to the environment
were used to identify and classify the three scenarios/accidents: LOCA with spray on/off,
LSTBO with spray on/off, and SGTR without spray on/off. The three accidents were
categorized at level seven on the International Nuclear and Radiological Event Scale
(INES), meaning that significant radioactive materials were emitted. These discharges are
associated with health and environmental consequences that necessitate public protective
actions. Using the RASCAL 4.3.3 output, a machine learning model was developed for
each season/month using the Minitab analysis software. The average accuracy of the
classification model across the four seasons was 97.3% for the training data and 96.5%
for the test data. The accuracy values were high, although they decreased slightly in
Winter/January, indicating that the classification model could potentially categorize the
accidents based on the radioactive materials released. These findings demonstrate that
the radionuclides released at a specific time can help predict the accident type that might
occur in the nuclear power plant. Thus, the study succeeded in developing and testing
a machine learning model to classify nuclear accidents using the associated release of
radioactive materials. The obtained results were contingent on several factors that affected
the accuracy. Firstly, the classification model’s accuracy increased with the volume of big



Energies 2022, 15, 6048 10 of 11

data accumulated. Secondly, seasonal variations impacted the prediction outcomes, with
the lowest accuracy reported during winter. Future research should focus on developing
optimization approaches to eliminate the effects of seasonal variability, which may be
significant in different geographical locations. Furthermore, research is needed to outline
the most informative metrics for predicting the concentration of radioactive materials.
Notwithstanding, the findings of our study were adequately accurate and significant.
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13. García, M.; Vočka, R.; Tuominen, R.; Gommlich, A.; Leppänen, J.; Valtavirta, V.; Imke, U.; Ferraro, D.; Van Uffelen, P.; Milisdörfer,
L.; et al. Validation of Serpent-SUBCHANFLOW-TRANSURANUS Pin-by-Pin Burnup Calculations using Experimental Data
from the Temelín II VVER-1000 Reactor. Nucl. Eng. Technol. 2021, 53, 3133–3150. [CrossRef]

14. RASCAL 4: Description of Models and Methods. Available online: https://www.nrc.gov/docs/ML1303/ML13031A448.pdf
(accessed on 1 November 2021).

http://doi.org/10.3390/su13179712
http://doi.org/10.1016/j.jhazmat.2021.125546
http://www.ncbi.nlm.nih.gov/pubmed/33684811
http://doi.org/10.1016/j.anucene.2019.05.039
http://doi.org/10.1016/j.jenvrad.2020.106444
http://www.ncbi.nlm.nih.gov/pubmed/33120028
http://doi.org/10.1016/j.nucengdes.2012.04.009
http://doi.org/10.1051/radiopro/2016046
http://doi.org/10.1051/radiopro/2020044
http://doi.org/10.3390/su122310003
http://doi.org/10.1016/j.anucene.2017.01.039
http://doi.org/10.3390/pr10071238
http://doi.org/10.3390/en15062245
http://doi.org/10.1016/j.net.2021.04.023
https://www.nrc.gov/docs/ML1303/ML13031A448.pdf


Energies 2022, 15, 6048 11 of 11

15. Timofeev, R. Classification and Regression Trees (CART) Theory and Applications. Master’s Thesis, Humboldt University, Berlin,
Germany, 2004.

16. Moisen, G.G. Classification, and Regression Trees. In Encyclopedia of Ecology; Jorgensen, S.E., Fath, B.D., Eds.; Elsevier: Oxford,
UK, 2008; p. 582.

17. Ghiasi, M.M.; Zendehboudi, S.; Mohsenipour, A.A. Decision Tree-Based Diagnosis of Coronary Artery Disease: CART Model.
Comput. Methods Programs Biomed. 2020, 192, 105400. [CrossRef] [PubMed]

18. Minitab Software for Quality Improvement. Available online: https://www.minitab.com/en-us/ (accessed on 1 November 2021).
19. Alin, A. Minitab. WIREs Comput. Stat. 2010, 2, 723–727. [CrossRef]

http://doi.org/10.1016/j.cmpb.2020.105400
http://www.ncbi.nlm.nih.gov/pubmed/32179311
https://www.minitab.com/en-us/
http://doi.org/10.1002/wics.113

	Introduction 
	Review of Previous Studies 
	Source Term Estimation 
	Source Inversion Algorithms 
	Inverse Modeling Tool 
	Kalman Filter-Based Approach 
	Forward-Backward Coupled Estimation 
	Grey Wolf Optimizer Algorithm and the Corrected Gaussian Diffusion Model 

	Recently Developed Methods for Burnup Calculations 
	Trajectory Period Folding Method 
	Serpent-SUBCHANFLOW-TRANSURANUS 


	Materials and Methods 
	Accident Scenarios 
	Accident Assessment 
	RASCAL 
	CART (Classification and Regression Tree) Model 
	Data Generation 

	Results 
	Variable Importance 
	Accuracy 
	ROC AUC 

	Discussion and Conclusions 
	References

