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Abstract: In the last few years, deep reinforcement learning has been proposed as a method to perform
online learning in energy-efficiency scenarios such as HVAC control, electric car energy management,
or building energy management, just to mention a few. On the other hand, quantum machine learning
was born during the last decade to extend classic machine learning to a quantum level. In this work,
we propose to study the benefits and limitations of quantum reinforcement learning to solve energy-
efficiency scenarios. As a testbed, we use existing energy-efficiency-based reinforcement learning
simulators and compare classic algorithms with the quantum proposal. Results in HVAC control,
electric vehicle fuel consumption, and profit optimization of electrical charging stations applications
suggest that quantum neural networks are able to solve problems in reinforcement learning scenarios
with better accuracy than their classical counterpart, obtaining a better cumulative reward with fewer
parameters to be learned.

Keywords: quantum neural networks; variational quantum circuits; quantum reinforcement learning;
energy efficiency

1. Introduction

Reinforcement learning (RL) [1] is a type of machine learning inspired by behavioral
psychology. It provides the fundamental basis to describe how intelligent agents learn
autonomously to take actions in unknown environments in order to maximize the notion
of cumulative reward. Deep reinforcement learning (DRL) [1] integrates RL algorithms
together with neural networks, and this combination has attracted great attention in the
scientific literature and has been growing at an astounding speed in the last decade, due
to its success in solving massively complex problems such as games (chess, Go [2], and
Atari games [3]), robotics [4], or autonomous driving [5], just to mention a few. In the last
few years, it has also attracted the attention of researchers in energy-efficiency methods
such as [6,7], due to its ability to perform online learning and the capacity of adaptation
to new changes in an environment. Neural network models used in DRL range from the
multilayer perceptron or radial basis function networks, to more complex recurrent models
such as Elman, Jordan, LSTM, or GRU networks, as the most sound examples.

With regards to the state of the art of RL for energy efficiency and energy management,
there is a wide range of approaches, such as the efficient allocation/deallocation of the
resources in response to the workload variations [8,9] or task scheduling [10,11], providing
predictive and efficient routing schemes [12], or minimizing resources power usage [13].
Raman et al. [14] developed the Zap Q-learning algorithm, aimed at climate control of
a commercial building. Apart from the temperature comfort, the proposal attempted to
minimize energy consumption while maintaining comfort regarding humidity. As an-
other example, Wei et al. [15] used deep Q-learning to control building automation control
systems. The DQN algorithm was compared with a rule-based system and a Q-learning
algorithm. Their contribution proved to be able to maintain temperature comfort in the
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desired range while reducing the energy consumption. Lissa et al. [16], using the same
neural network model, developed a methodology to find the bounds of indoor temperature
comfort, and their proposal was able to save energy more efficiently than a rule-based
system, while comfort was not affected. Finally, Wang et al. [17] proposed a reinforcement
learning controller based on actor/critic models to building HVAC control, using recurrent
neural networks (LSTM). Experiments were performed on a simulated environment con-
taining a digital twin of an office building, and their results were able to save energy while
maintaining the user comfort. A complete survey about RL applied for energy efficiency
in buildings can be found in [18]. Despite the success of DRL that has been reported in
the literature in different energy-efficiency and management scenarios, the main limitation
of RL methods lies on the fact that, to be able to learn a correct behavior, the agent must
interact with the environment, making good actions but also making failures until the
optimal operation is learned. For this reason, researchers rely on the development of
simulation environments that implement digital twins of real devices, which in some cases
use historical data also. Simulation tools such as Energy Plus [19] or Modelica [20] play
a fundamental role in the training and testing of models before deploying them in real
energy systems. RL environments are built on top of this simulation software, for example,
Sinergym [21], Gym-EPlus [22], or EnerGym [23] to model energy consumption and control
in buildings, the simulation of energy management in electrical vehicles (EVs) [24,25],
or the simulation of EV charging stations [26]. Different environments are described and
analyzed in [21].

Contemporaneously with the advances in DRL, quantum computing (QC) [27] and
quantum machine learning (QML) [28,29] in particular, have evolved rapidly as research
areas thanks to the advances in quantum hardware and the creation of new quantum hard-
ware simulators such as Google’s Cirq, IBM’s Qiskit, Xanadu’s Pennylane, etc. The concept
of quantum computing was originally presented in 1982 by Richard Feynman [30] fol-
lowing an observation of the exponential complexity involved in modeling the behavior
of a quantum system with the existing knowledge of classical computing. It is based on
quantum mechanics properties such as superposition and entanglement, which also enable
quantum parallelism. The promise of QC in general, and QML in particular, is a huge
speedup to obtain solutions to complex problems that could not be solved in reasonable
time using classic computers. For example, early theoretical works demonstrated the
massive potential of quantum algorithms solving complex problems more efficiently than
their classical counterparts, such as Grover’s search [31], or integer factorization using
Shor’s algorithm [32].

On the other hand, quantum machine learning is the intersection of machine learning
and quantum computing, and it attempts to create machine learning models able to run
in quantum computers with the final goal of achieving a significant speedup in their
execution, or solving more complex problems with fewer resources than their classical
counterpart. Quantum reinforcement learning (QRL) is a very recent research field, and the
lack of worldwide access to a real quantum hardware able to run the learning process
forces researchers to use quantum computer simulators running in classical computers.
We believe that, for that reason, the existing QRL research works in the literature, such
as [33–36], focus their experimentation on well-tested simple environments, mainly from
the OpenAI Gym RL platform [37]. Despite these limitations, the existing QRL approaches
have provided relevant insights into how RL can be adopted by a quantum system, such
as the use of Grover iterations [33] to provide a quantum implementation of the classic
Q-learning algorithm, or variational quantum circuits (VQC) [38] as quantum agents in
deep Q-learning or policy gradient methods [34–36]. The VQC is a class of hybrid classical–
quantum algorithm based on a quantum circuit with learnable parameters optimized using
classical algorithms so that, in the case of QRL, VQCs are used as function approximators
for the agents’ policy. The trainable parameters would be optimized using gradient or
gradient-free methods.
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In this manuscript, we apply QRL to solve problems in the field of energy efficiency
and energy management using quantum artificial neural networks. We hypothesize that
QRL technologies could solve the problems using a more compact model than their classical
counterparts thanks to inherent nonlinear data management and quantum parallelization.
To the best of our knowledge, this article is the first attempt to address energy-efficiency
problems with quantum technologies. For that reason, we study different types of use cases
where classical RL has been successfully applied before: the Sinergym [21] project, which is
a simulator backed up by EnergyPlus and contains reference problems of energy efficiency
and HVAC control in buildings and facilities; the Prius [24] simulator of electrical vehicles,
aimed at reducing the fuel and battery usage of electrical vehicles with the Toyota Prius car
as testbed; and a simulator of electrical vehicle charging stations [26] whose objective is to
maximize the station’s profit in a real scenario, considering the workload and the price of
energy. Thus, the main contributions of the article can be summarized as follows: (1) the
proposal of QRL methodology for energy-efficiency and management scenarios; (2) the
design of hybrid quantum/classical agents to solve QRL energy-related environments; and
(3) a wide experimental study with an analysis of pros and cons of contemporary QRL
technologies in the field of energy efficiency and management.

The remainder of the manuscript is structured as follows: Section 2 provides a back-
ground in reinforcement learning and quantum computing. After that, Section 3 explains
the approach to build hybrid quantum/classical QRL agents. Section 4 describes the
experimentation and the analysis of results, and finally Section 5 provides conclusions.

2. Background

For article self-completeness and notation description, this section summarizes the
main concepts required to describe the proposal of the manuscript in Section 3. Firstly,
Section 2.1 describes the fundamentals of artificial neural networks. Then, Section 2.2
introduces the field of reinforcement learning and its integration with (deep) artificial
neural networks. Finally, Section 2.3 provides an introduction to quantum computing and
quantum variational circuits methods.

2.1. Artificial Neural Networks

Artificial neural networks [39] are computational models inspired by connectionist
models of human and animal brains. A feedforward neural network is formalized as a
weighted, non-cyclic, directed graph where nodes represent computation units called
neurons, and edges are synapses. The most known neural network model is the multilayer
perceptron (MLP), where neurons are stacked in layers, and its graphical representation is
shown in Figure 1.

Figure 1. Example of a multilayer perceptron with 3 inputs, 2 layers with 2 neurons each, and 1 output.

The dynamic of an MLP is as follows: Assuming an input data pattern O0 = X
composed of N0 values, X = (x1, x2, . . . , xN0), for which an output response Y = (y1, y2, . . .)
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is expected, each neuron i at layer l calculates its output Ol
i as a function f of the weighted

sum of its inputs (Equation (1)), where wji ∈ R represents the synaptic strength (weight)
of the connection between output of neuron j at layer l − 1 to neuron i at layer l; bl

i ∈ R is
a neuron intercept also called bias, and f is the neuron activation function. The network
output Y corresponds to the returned values of neurons located at the last layer. Usual
activation functions are sigmoid, hyperbolic tangent, rectified linear units (ReLUs), etc.
In this work, we use MLP as baseline models to compare quantum neural networks
behavior in the experimentation. The ReLU activation function (Equation (2)) is used as
activation function.

Ol
i = f (

Nl−1

∑
j=1

wl
jiO

l−1
j + bl

i) (1)

f (x) =
{

0 x < 0
x x ≥ 0

(2)

Training a neural network encompasses finding the correct values for weights wl
ij and

biases bl
i so that the network output Ỹ matches a desired output Y. This problem is usually

formulated as a minimization problem over a defined cost function, also called loss, for
instance, in Equation (3), where Y(p) is the desired output for a given input pattern X(p),
and Ỹ(p) is the output provided by the network for pattern X(p). Different algorithms
such as backpropagation, gradient descent, ADAM, etc., are used to optimize both weights
and biases. For more information about neural networks, we believe that the reference [39]
is a good, detailed book for both novicesand experts in the field.

[wl
ij
∗
, bl

i
∗
] = argmin{wl

ij ,bi}

{
∑
p
(Ỹ(p)−Y(p))

}
(3)

2.2. Reinforcement Learning

The main model of RL encompasses two main components: an environment (whose
internal dynamics are unknown) and an intelligent agent that interacts with the environ-
ment over time. At any time instant, the environment is at an unknown state, but the agent
can observe the environment to obtain some information about such state, e.g., using sensors.
For the sake of simplicity, in this manuscript we name as st the environment observation
perceived by the agent at time t. Then, the agent selects an action at from an available
action set considering the observed state st, and performs the action over the environment.
After that, the environment evolves from state st to a state st+1 as a consequence of the
agent–environment interaction, and returns st+1 and a reward rt+1 to the agent. This
reward is a scalar value that informs the agent about how good/bad the selection was of
action at conditioned to state st. This process is repeated in a loop indefinitely (Figure 2).

Figure 2. General reinforcement learning diagram.

The process of sequential agent–environment interactions (also known as trajectories
or episodes) involving state transitions, actions, and rewards in the RL problem can be
formulated as a Markov decision process (MDP). An MDP is characterized by the tuple
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〈
S, A, P, r

〉
, where S is the set of states, A is the set of actions, P is the probability of state tran-

sition P(s′|s, a) = P[st+1 = s′|st = s, at = a]; i.e., the probability of transitioning from the
state st at time t to state st+1 at time t + 1 using action at selected at time t, and r(st, at, st+1)
is the reward function for executing action at at state st and then performing a transition
from st to st+1.

The goal of an agent in RL is to maximize the total cumulative reward, or return, of a
sequence of agent–environment interactions τ starting at time t0 defined in Equation (4),
where γ is a hyperparameter to establish how important recent or older rewards are for the
learning, known as discount factor.

R(τ) =
∞

∑
t=t0

rtγ
t−t0 (4)

In order to maximize R(τ), it is necessary that the agent learns the best action a to
be performed at a given state s, i.e., the policy π(a|s), which is the probability to select
action a in state s. Two fundamental concepts arise from this problem formulation: the
value of a state–action pair Q(s, a) in Equation (5) (the expected return obtained in the
trajectory starting from state s and action a), and the value of a state V(s) in Equation (6)
(the expected return obtained in the trajectory starting from state s). A third relevant
concept is the advantage of the state–actionpair Adv(s, a) (Equation (7)), which returns the
advantage of choosing action a in state s with respect to the other actions available in the
action set for the same state s.

Q(s, a) = Eτ∼π(R(τ)|st = s, at = a) = ∑s′ p(s′|s, a)(r(s, a, s′) + γ ∑a′ π(a′|s′)Q(s′, a′)) (5)

V(s) = Eτ∼π(R(τ)|st = s) = ∑
i

R(τi)π(ai|s) (6)

Adv(s, a) = Q(s, a)−V(s) (7)

Deep reinforcement learning attempts to use a (deep) artificial neural network to learn
the optimal policy π(a|s), having the state s as input and, as output, a selected action a
(deterministic policy), or the probability distribution of selection of action a in the state s
(stochastic policy). In the literature, two main families of algorithms have been highlighted
in the last few years: deep Q-networks (DQN) [40] and policy gradient [41]. The former
family attempts to train an artificial neural network to approximate the function Q(s, a),
while the latter attempts to approximate π(a|s) directly. DQN training is inspired by the
classic Q-learning method, and attempts to minimize the loss function in Equation (8),
where Q̂(s, a) is the a-th output value of the neural network for the input s. A deep Q-
network contains as many input neurons as the dimension of the state, and as many output
neurons as actions available in the action set.

On the other hand, actor–critic policy gradient models require at least two types of
neural networks for training: one type of network (actor) has a similar structure to a DQN,
but the a-th network output is designed to return π(a|s). The second type of network
attempts to return an approximation of V(s), so that it contains the same number of inputs
as the actor, and a single output value.

MSE = ∑
t

(
r(st, at, st+1) + γmaxat+1

[
Q̂(st+1, at+1)

]
− Q̂(st, at)

)2 (8)

Different strategies have been devised to improve DQN training and policy gradient
methods and, for further reading, we refer the reader to references [40,41]. In this work,
we use the Advantage Actor–Critic (A2C) training algorithm [41], whose designed loss
function is described in Equation (9).

LogLoss = −∑
t

Adv(st, at)logπ(at|st) (9)
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2.3. Quantum Computing and Variational Quantum Circuits

The most basic information unit in classic computing is the bit, and the underlying
mathematical model to work with bits is Z2, the field with two elements. Unlike the classic
model, the fundamental information unit in quantum computing is the qubit, and the
underlying mathematical model is the complex plane C2, where the standard orthonormal
basis vectors are usually denoted by |0〉 and |1〉. Hence, the value (state) of a qubit |ψ〉 is a
linear combination of these vectors:

|ψ〉 = α0 |0〉+ α1 |1〉 ; α0, α1 ∈ C (10)

with the constraint that |α0|2 + |α1|2 = 1, since Born’s rule tells us that if this qubit is
measured, we will obtain |0〉 with probability |α0|2 and |1〉 with probability |α1|2.

When a new bit is included into a classical system, the underlying state space increases
by one dimension, since the resultant space is the Cartesian product of the older one by
Z2. Thus, in n-bit systems, the state space is ×nZ2 = Zn

2 . On the other hand, when a new
qubit is added to a quantum system, the underlying space doubles its dimension, since the
resultant space is the tensor product of the older one by C2, yielding an exponential growth
of the dimension. In an n-qubit system, the underlying model is C2n

=
⊗n C2, i.e., the

tensor product of C2, n times. For instance, the C-vector space C22
has a basis formed by

the vectors |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, and |1〉 ⊗ |1〉, which, for simplicity, are denoted by
|00〉, |01〉, |10〉, and |11〉, respectively.

Classical computers manipulate bits using logic gates such as AND, OR, NOT, NAND,
XOR, etc. Likewise, quantum computers manipulate qubits using quantum gates. A quan-
tum gate is modeled as a unitary matrix that multiplies the system qubit state, and all
quantum operations must be reversible (except measurement). Some examples of quan-
tum gates are the Pauli-X (σx), Pauli-Y (σy), and Pauli-Z (σz) single qubit rotations with
a phase of π, or their generalization rotation gates Rx(θ), Ry(θ), and Rz(θ) that rotate a
qubit in the specified axis by the given angle θ. Another relevant quantum gate for the
proposal described in this work is the CNOT gate over two qubits. The unitary matrices
of the gates Rx(θ), Ry(θ), andRz(θ), CNOT are shown in Equations (11), (12), (13), and (14),
respectively.

Rx(θ) =

(
cos( θ

2 ) −isin( θ
2 )

−isin( θ
2 ) cos( θ

2 )

)
(11)

Ry(θ) =

(
cos( θ

2 ) −sin( θ
2 )

sin( θ
2 ) cos( θ

2 )

)
(12)

Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
(13)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (14)

A quantum program, implemented as a quantum circuit, is a sequence of quantum
gates applied over one or more qubits. An example of a graphical representation of a
quantum circuit with two qubits is shown in Figure 3: First, two single-qubit Hadamard
(H) quantum gates are applied separately over qubits q0 and q1. Then, a two-qubit SWAP
quantum gate is applied on both qubits, followed by a CNOT gate over q1 controlled by q0.
Finally, both qubits are measured to obtain the result, which can be any quantum state in
{|00〉 , |01〉 , |10〉 , |11〉}.
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Figure 3. Example of a quantum circuit with two qubits.

A variational quantum circuit is a quantum circuit containing parameterized gates,
such as the aforementioned Rx, Ry, Rz gates with parameter θ. Since VQCs are universal
approximators and are able to approximate any continuous function similar to a classical
neural network [34,42], they are also known in the quantum machine learning community
as quantum neural networks. An example of a VQC is shown in Figure 4, where three
rotations Rx, Ry, Rz gates are applied over each qubit (12 total parameters), and then
different non-parameterized gates transfer the qubit information. If the reader is interested
in extending the fundamentals of QC and QML, we suggest the references [27,28].

Figure 4. Example of a variational quantum circuit with 4 qubits.

The output of a quantum system is obtained using the measurement operator, which
makes a qubit collapse to a basis vector |0〉 or |1〉. In quantum computing hardware it is
required to measure outputs with regards to an observable, i.e., quantum properties that can
be observed. It is also common to measure expectations of these observables [27], and this
last technique is the one we use in our experimentation. The expectation of an observable
whose unitary matrix is U, over a quantum state |φ〉, is denoted as 〈φ|U |φ〉. In our case,
we use the Z observable whose unitary matrix σz is the Pauli-Z shown in Equation (15).
As an example, if the quantum state is |φ〉 = |0〉, then the expectation of the observable
returns value 1, and if the quantum state is |φ〉 = |1〉, then the expectation of the observable
returns value −1. Any other intermediate value in [−1, 1] is linked to the probabilities α0
and α1 described previously.

σz =

(
1 0
0 −1

)
(15)

3. Methodology

We assume a QRL scenario of a hybrid quantum–classical agent with a set of parame-
ters θ = (θ1, ..., θk) that learns by interacting with a classical (non-quantum) environment,
as shown in Figure 5. In the beginning of an episode, the quantum–classical hybrid agent
receives a state information from the environment, determines its action from its policy
πθ(a|s), and perceives a reward r and the next environment state after applying the action
to the environment. The policy πθ is given by a VQC running on a quantum processing
unit (QPU). The optimization of this policy is carried out by updating the parameters θ,
which is performed by a classical learning algorithm in a central processing unit (CPU) with
the objective of reducing the cost function [43]. In our work, the cost function is described
in Equation (9) for A2C (actor network) and Equation (16) for the critic network, where
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Vτ(s) is the true value function of state s in a given trajectory τ, and V̂τ(s) is the value
network output.

MSELoss = ∑
τ

∑
s∈τ

(
V̂τ(s)−Vτ(s)

)2 (16)

Figure 5. QRL schema. Example of hybrid agent and classical/quantum interaction to optimize the
trainable parameters of the policy using a classical learning algorithm.

The general hybrid methodology to train a quantum agent in QRL is illustrated in
Figure 6, and encompasses the following steps:

1. Preprocessing (CPU): This step has the environment state s as input, and performs
data preprocessing to prepare classical data before encoding the environment state
into a quantum state. This preprocessing could be a simple operation of translation
and/or change of scale (Figure 7), or more complex data processing such as a change
of space (projection, injection) with a classical (non-quantum) neural network layer
(Figure 8).

2. Quantum Embedding (QPU): The objective of the encoding layer, also named quan-
tum embedding, is to map the classic data to the qubits’ Hilbert space to be manipu-
lated afterward. This layer is composed of rotation and entanglements gates, and the
tensor product and the entanglement generated in those encoding circuits capture
the existing nonlinearities of the data. The information of the environment state s,
after the previous preprocessing step, must be encoded into a quantum state |s〉 by
means of a quantum circuit with the appropriate sequence of quantum gates. In this
work, we use the tensor product encoding technique [44] using Rx(θ) rotation gates,
so that each feature of state s is matched with a qubit. The value of the feature is the
rotation angle of the Rx gate. Thus, we must ensure that all features in s are in the
range [−π/2, π/2], which is the domain of the parameter of Rx(θ).

3. Variational Layer (QPU): The quantum state |s〉 is the input of the VQC in charge
of modeling πθ(a|s) as a quantum state |φ〉. Usually, VQCs are composed of entan-
glement and rotation gates parameterized with learnable parameters θ. A classic
optimization algorithm will optimize these parameters, aiming at minimizing a given
cost function. The choice of the encoding strategy, as well as the construction of the
VQC, are crucial to obtain optimal results. In this work we use the same VQC in all
experiments, and it is inspired by previous works [35,43].

4. Measurement Process (QPU/CPU): In this final step, the quantum state provided by
the VQC is measured and decoded to obtain the desired output. The critical point
in the quantum measurement is to find an optimal way to associate outputs of the
observations with target classes. The selection of the observables used to read out
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information from the quantum model is crucial to achieve a good performance. In this
work, we calculate as output the expectation of the σz observable, i.e., the operation
〈φ| σz |φ〉, for each qubit. The value of this observable is in the range [−1,+1], where
the bounds +1 means that ket |0〉 is always returned, and −1 means that ket |1〉 is
always returned as output.

5. Postprocessing (CPU). This step gathers the outputs returned by the QPU, i.e., the
policy πθ(a|s), and performs post-processing operations over the outputs, if necessary.

6. Learning (CPU). This last step computes the loss function of the VQC to optimize its
parameters θ. In general QRL approaches, and also in this work, this is performed by
a traditional optimization algorithm such as Adam, RMSProp, etc.

Figure 6. General hybrid quantum–classical agent structure.

Figure 7. Preprocessing with input data manipulation. The output of preprocessing is fed to the
encoding circuit and then to the variational layers.

As happens in classical neural networks, VQCs also suffer from the gradient vanishing
phenomenon, also known as barren plateau [38,45]. In general, a VQC is able to solve
a problem using fewer parameters than its classical counterpart, although there is an
inflection point at which the excessive number of qubits, entanglements, or layers used
in the construction of the circuit makes this phenomenon more prone to happen. For the
case study of Section 4, we selected a circuit made up of Ry, Rz rotation gates, followed by
entanglement gates similar to circuits used in other previous QRL algorithms that provided
promising results in simple RL problems [35,43]. Figure 9 shows an example of the VQC
structure used in this work for a quantum program containing 7 qubits. A multilayer VQC
is generated in our experiments by means of creating a sequence of VQCs with this structure.
Thus, we may see that the number of learnable parameters in a VQC increases linearly,
which is an advantage when compared with classical (non-quantum) neural networks.
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Figure 8. Preprocessing with a hybrid classical/quantum neural network. The output of preprocess-
ing is fed to the encoding circuit and then to the variational layers.

Figure 9. Example of a 7-qubit VQC with the structure used in the experiments. Left: encoding layer;
middle: variational gates; right: entanglement CNOT gates organized in a ring.

4. Experiments

In this section, we test quantum reinforcement learning algorithms in different scenar-
ios related to energy efficiency, and compare the results with their corresponding classical
counterparts. The goal is to verify if QRL and quantum technologies are appropriate in the
field of energy efficiency. To that end, three different use cases with different constraints and
nature are used. Section 4.1 addresses a use case of classic control of HVAC energy-saving
in buildings; Section 4.2 solves an environment regarding energy management strategies in
hybrid electric vehicles; and, finally, Section 4.3 addresses a mixed environment regarding
optimal control of electric vehicle charging stations.

To avoid biases and to favor baseline comparison and analysis of results among
different types of problems, the ground metric used in the analysis is the cumulative reward
(return) of episodes, which eases comparison between different types of problems and
environments. The QRL models are compared with state-of-the-art baseline approaches,
which are classic actor/critic multilayer perceptron networks whose structure can be easily
adapted for the three use cases. Both classic RL and QRL models are trained using the same
A2C algorithm, to avoid training biases between quantum and classical models.

With the previous decisions, we are able to compare QRL with classic RL indepen-
dently of the use case for their peculiarities, therefore simplifying the global analysis of
results among different types of problems.
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4.1. Use Case 1: HVAC Control
4.1.1. Problem Statement

This use case is powered by the Sinergym [21] simulator. The target building in this
study is the environment Eplus-demo-v1 and focuses on the scenario 5ZoneAutoDx [21],
Pittsburgh, PA, USA. It is a single-floor rectangular building 100 ft × 50 ft with five
zones (four exterior, one interior) and all zones were regularly occupied by office workers.
The overall building height is 10 feet. There are windows on all four facades; the south
and north facades have glass doors. The building is oriented 30 degrees east of north
(see Figure 10). The walls are woodshingle over plywood, R11 insulation, and Gypboard.
The roof is a gravel built-up roof with R-3 mineral board insulation and plywood sheathing.
The windows are of various single- and double-pane construction with 3 mm and 6 mm
glass and either 6 mm or 13 mm argon or air gap. The window-to-wall ratio is approximately
0.29. The south wall and door have overhangs. Finally, the floor area is 463.6 m2 (5000 ft2).
A state s in the reinforcement learning environment represents a sequence of historical
observations (e.g., outdoor air temperature and room temperatures) from the buildings.
The goal of this environment is to maximize an aggregation of KPIs (key performance
indicators) regarding energy usage and user comfort. The selected environment has the
following features:

• State space: The state space contains 20 features; 16 are described in Table 1 and 4 are
reserved for the environment.

• Action space: The action space contains a set of 10 discrete actions described in Table 2.
The bounds for heating setpoint temperature is [15, 22.5] and for cooling setpoint
temperature is [21, 30].

• Reward function: Reward is always negative. This means that perfect reward would
be 0 (perfect power consumption and perfect temperature comfort); there are two
temperature comfort ranges (winter and summer) and a weight of energy and comfort.
Therefore, the reward is calculated as the sum of reward of energy and comfort multi-
plied by their respective relevance weights, given by Wenergy, as a hyperparameter.

Figure 10. Zone building plan.

reward = Wenergy ∗ rewardenergy + (1.0−Wenergy) ∗ rewardcom f ort (17)
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Table 1. Observation variables.

Variable Name Units

Site Outdoor Air Drybulb Temperature ◦C
Site Outdoor Air Relative Humidity %
Site Wind Speed m/s
Site Wind Direction ◦ N
Site Diffuse Solar Radiation Rate per Area W/m2

Site Direct Solar Radiation Rate per Area W/m2

Zone Thermostat Heating Setpoint Temperature ◦C
Zone Thermostat Cooling Setpoint Temperature ◦C
Zone Air Temperature ◦C
Zone Thermal Comfort Mean Radiant Temperature ◦C
Zone Air Relative Humidity %
Zone Thermal Comfort Clothing Value Icl (clo)
Zone Thermal Comfort Fanger Model PPD %
Zone People Occupant Count count
People Air Temperature ◦C
Facility Total HVAC Electricity Demand Rate W

Table 2. Action variables.

Variable Name Heating Setpoint Cooling Setpoint

0 15 30
1 16 29
2 17 28
3 18 27
4 19 26
5 20 25
6 21 24
7 22 23
8 22 22
9 21 21

In our experimentation we design a classic multilayer perceptron (MLP) neural net-
work agent with 20 inputs (environment state) and 10 outputs and train the agent in the
Eplus-demo-v1 environment with the A2C algorithm [41]. After that, we also train a quan-
tum agent designed with the methodology described in Section 3 and trained with the
same A2C algorithm. The settings for the environment and A2C algorithm remain the same
for the classic baseline and quantum agents, to make a fair performance comparison.

For the actions’ control, the proposed framework provides continuous and discrete
action space, and the RL agent controllers were trained and evaluated using a discrete
action space environment.

4.1.2. Experimental Settings

Two types of experiments were performed: The first one models the agent’s policy
with a classic feedforward multilayer perceptron (MLP) neural network; the second one
implements the agent’s policy as a hybrid architecture with one linear layer and one
variational quantum circuit. In these experiments we used the advanced actor critic RL
method to train the agent. To that end, we ran four environments in parallel to generate
batches of five interactions between the agent and each environment, using a discount
factor γ = 0.98 to calculate the total return of each episode. The stopping criterion was
set so that the algorithm stops after 100 episodes were finished. Additionally, the agent
performance was tested in the last episode with a deterministic policy that selected the
action with maximum probability to check how the agent learned to interact with the
environment. Finally, we performed 10 different runs with different initial random seeds to
validate the experimentation.
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The algorithm A2C requires two networks to perform the learning: a policy network
(actor) which inputs a state s and outputs π(a|s), i.e., the probability of selection of action a
in state s, and a value network (critic) which inputs a state s and outputs an estimation of
the value of the state V(s). The structure of the policy and value networks for the classical
and the quantum agents are described in Table 3. Different stages of information processing
can be distinguished in Table 3: firstly, the quantum agents define the use of 10 qubits (one
for each possible action selection). Then, the information of a state of the environment
(20 values) is provided to each network (in the case of the quantum VQCs, a scale to
the range [−π/2, π/2] is required prior to the quantum embedding process). After that,
the intermediate network layers of the MLP agent contain 50 units that compute a linear
combination of the previous inputs followed by an ReLU activation function. In the case
of the quantum agent, the encoded information of the input layer is fed to five sequential
quantum variational layers, as explained in Section 3. The last step in the policy MLP
network calculates the probability of selection of each action using a linear layer containing
10 outputs using a softmax activation function, and the policy VQC agent measures the
expectation of the σz operator over all qubits separately, followed by a softmax activation
function to transform the measured data into a probability distribution.

In the case of the policy MLP (actor), the number of parameters is 20× 150 + 150× 10
(weights) + 150 + 10 (bias) = 4660; and the number of parameters of the value network
(critic) is 20× 150+ 150× 1 (weights) + 150 + 1 (bias) = 3301. If we focus on the policy VQC,
each qubit of every quantum variational layer contains two trainable parameters: one for
qubit rotation in the y axis, and one for rotation in the z axis. The value network requires
two additional parameters to perform the output scale and translation. Then, the total
number of parameters is 300 for the policy network: 20× 10 = 200 (preprocessing layer) + 5
(number of layers) × 2 (learning parameters used in Rx and Ry) × 10 (number of qubits).
For the value VQC network, the number of parameters is 20× 10 + 5× 2× 10 + 2× 10 =
320. We remark that the number of total parameters required by the quantum proposal
is much lower than the number of parameters required to train the classical agent so
that, in theory, the complexity of the quantum agent is lower than the complexity of its
classical counterpart.

Table 3. Structure of policy and value classical/quantum networks used in use case 1.

Policy MLP Value MLP Policy VQC Value VQC

No. of qubits - - 10 10
Inputs 20 20 20. Scaled to [−π/2, π/2] 20. Scaled to [−π/2, π/2]

Preprocessing - - Linear (10 units) Linear (10 units)
- - Tanh Tanh

Quantum embedding - - Tensor product encoding Tensor product encoding
Intermediate Layers Linear (150 units) Linear (150 units) Variational Layer (10 qubits) Variational Layer (10 qubits)

ReLU ReLU - -

Output layer Linear (10 units) Linear (1 unit) Expectation of σz(qi)
observable for each qubit qi

Product of expectation of σz(qi)
observable for all qubits qi

Post-processing softmax activation - softmax activation Scale and translation
Training algorithm RMSProp (λ = 0.001) RMSProp (λ = 0.03) RMSProp (λ = 0.01) RMSProp (λ = 0.03)

4.1.3. Results

The performance results are shown in Table 4 summarizing the average, best, and
worst total accumulated reward obtained by the MLP and the VQC, as well as the compu-
tational time required to finish each experiment (in seconds) and the validation using a
deterministic policy that selects the action with maximum probability. The results consider
the total accumulated reward of the agent in an episode, i.e., the sum of the reward function
described in Equation (17) in all steps of an episode. We refer to the average accuracy as
the average total accumulated reward in the 10 different runs performed.

The first thing we notice in the results shown in Table 4 is that the quantum agent
achieves the best result in average, in the best and in the worst total reward value, although
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the computation time is higher for VQC because of the use of simulators instead of real
quantum computers. The boxplots of the total reward distribution for both VQC and MLP
are shown in Figure 11. We remark on the high standard deviation of the classical agents
during the whole process of learning, and this fact suggests that the MLP can achieve
suitable results, but it depends highly on the initial parameter values (weights and biases).
It also makes the classical MLP less robust than the quantum VQC.

To conclude with the analysis of results, Figure 12 plots the learning curves of both
quantum VQC and classical MLP agents during the learning process from episode 1 to
episode 100. We can observe the better learning in the case of VQC and its higher standard
deviation of total reward among episodes of different runs in the first episodes of learning
than in the last learning episodes, when it has converged, as should be expected. However,
the standard deviation of the total reward in the classical agent remains higher during
the whole process of learning, as mentioned above. In addition, the classic MLP becomes
trapped in a local optima which does not reach the optimal total reward; therefore, it is not
able to learn the optimal policy.

Figure 11. Boxplots of average total reward obtained from VQC and MLP in use case 1.

Figure 12. Learning curve obtained from VQC and MLP in use case 1.
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Table 4. Results obtained by MLP and VQC agents in the use case 1 environment. Column 1:
MLP agent (classic) and VQC agent (quantum); Column 2: Average total reward after training;
Column 3: Best total reward after training; Column 4: Worst total reward after training; Column 5:
Computational time in seconds; Column 6: Total reward (test with deterministic policy).

Model Avg. Total Reward Best Total Reward Worst Total Reward Time (s) Test Reward

VQC (quantum) −2.91 −2.38 −3.90 1365.46 0.0
MLP (Classic) −6.17 −2.50 −9.77 737.93 0.0

4.2. Use Case 2: Energy Management in Electrical Vehicles
4.2.1. Problem Statement

The environment tested in this use case was first described in [24], and the authors
used deep reinforcement learning (DRL) to improve the energy management strategy
in hybrid electrical vehicles. More specifically, they developed algorithms based on the
deep deterministic policy gradient method to learn optimal energy management policies
for the Toyota Prius car. As described in [24], the vehicle is equipped with a gasoline
engine, a traction motor, a generator, and a small Ni-MH battery. The authors gathered real
data measured experimentally, and they used these data to create a simplified simulation
reinforcement learning environment with the following features:

• State space: The state space contains three features (SoC, velocity, and acceleration).
The state of charge (SoC) refers to the battery state, while the other features velocity,
acceleration refer to the current state of the vehicle.

• Action space: The action space contains a single continuous action, engine power, which
is a real value that describes the power that the engine must supply. The authors also
provided a discretized simulation of the action space, containing 14 different actions
that update the required engine power by increasing/decreasing the power by +0 kW,
±1 kW, ±2 kW, ±4 kW, ±6 kW, ±8 kW, and ±10 kW (13 actions), plus an additional
action that resets the engine power to value 0 kW. In our experiments, we use the
discretized action space.

• Reward function: The work [24] attempts to make multi-objective optimization of
both the fuel and the battery required by the vehicle. Equation (18) describes the
aggregated reward function which considers both objectives, where α, β are parameters
to set the relevance of fuel/battery consumption in the aggregated objective, fuel(t)
is the fuel consumption at time t, SoCre f is the reference value for the battery state of
charge, and SoC(t) is the battery state of charge at time t. The goal in the environment
is to maximize the accumulated value of Equation (18) among the episode, so that the
required energy consumption of the vehicle is minimized.

r = −
(

α f uel(t) + β(SoCre f − SoC(t))2
)

(18)

The environment dynamics are as follows: at the beginning of the episode, the agent
receives the car current state as the tuple (SoC, velocity, and acceleration). Then, the agent
decides which engine power should be provided according to this state, and sends the
selected action to the simulator. Finally, the simulator updates the internal state of the car
according to the experimental data and the internal simplified Prius modeling, and returns
the next state and the current reward to the agent. This is repeated in a loop until the
episode ends, which occurs when the real dataset ends.

The authors of the work [24] proposed a neural network agent to solve both continuous
and discrete action set environments. In this manuscript, our interest is not to propose
a new approach to improve their findings, but to use the work carried out as a ground
test scenario to check whether quantum reinforcement learning can be used as a tool to
solve problems related to energy efficiency. To do so, in our experimentation we design
a classic multilayer perceptron (MLP) neural network agent with 3 inputs (environment
state) and 14 outputs (available discrete actions to be selected), and train the agent in the
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Prius environment with the Advantage Actor–Critic (A2C) algorithm. This agent is used
as baseline. After that, we also train a quantum agent designed with the methodology
described in Section 3 and trained with the same A2C algorithm. The settings for the Prius
environment and A2C algorithm remain the same for the classic baseline and quantum
agents, to make a fair performance comparison.

4.2.2. Experimental Settings

As in use case 1, we also tested the quantum agent implemented as VQCs against the
classical MLP, using the same conditions and learning algorithm. As in use case 1, four
environments were running in parallel to generate batches of 10 interactions between the
agent and each environment, using a discount factor γ = 0.99 to calculate the total return of
each episode. The stopping criterion was set so that the algorithm stops after 100 episodes
were finished. In addition, the agent performance was tested every five episodes with a
deterministic policy that selected the action with maximum probability to check how the
agents were learning to interact with the environment. Finally, we performed 10 different
runs with different initial random seeds to validate the experimentation.

The experimental settings for the classical and quantum actor/critic networks are
shown in Table 5. In the case of the policy MLP, as the linear combination layers are dense,
the number of network parameters is 3 × 30 + 30 × 14 (weights) + 30 + 14 (bias) = 554,
and the value MLP has 3× 30 + 30× 1 (weights) + 30 + 1 (bias) = 151 parameters. If we focus
on the policy VQC, each qubit of every quantum variational layer contains two trainable
parameters for Ry, Rz gates. The total number of parameters is 3 × 14 (preprocessing layer)
+ 5 × 2 × 14 = 182 parameters. The value VQC network requires three qubits only (one for
each input), plus two more parameters to perform the output scale and translation. In this
case, the value quantum network has 5 × 3 × 2 + 2 = 32 trainable parameters. It is easy to
verify that the number of total parameters required by the quantum proposal is much lower
than the number of parameters required to train the classical agent, as happens in use case 1.

Table 5. Structure of policy and value classical/quantum networks used in use case 3.

Policy MLP Value MLP Policy VQC Value VQC

No. of qubits - - 14 3
Inputs 3 3 3. Scaled to [−π/2, π/2] 3. Scaled to [−π/2, π/2]

Preprocessing - - Linear (14 units) Linear (3 units)
- - Tanh -

Quantum embedding - - Tensor product encoding Tensor product encoding
Intermediate Layers Linear (30 units) Linear (30 units) Variational Layer (×5) Variational Layer (×5)

ReLU ReLU - -

Output layer Linear (14 units) Linear (1 unit) Expectation of σz(qi)
observable for each qubit qi

Product of expectation of σz(qi)
observable for all qubits qi

Post-processing softmax activation - softmax activation Scale and translation
Training algorithm RMSProp (λ = 0.001) RMSProp (λ = 0.01) RMSProp (λ = 0.01) RMSProp (λ = 0.01)

Finally, we highlight that the previous experimental settings were obtained after a
long pre-experimentation in order to find the best configuration for each model.

4.2.3. Results

We describe the performance results considering the total accumulated reward of
the agent in an episode, i.e., the sum of the reward function described in Equation (18)
in all steps of an episode. As in use case 1, we call average accuracy the average total
accumulated reward in the 10 different executions performed. Table 6 summarizes the
average, best, and worst total accumulated reward obtained by the MLP and the VQC,
the computational time required to finish each experiment (in seconds), and the validation
using a deterministic policy that selects the action with maximum probability. The boxplots
of the total reward distribution for both VQC and MLP are shown in Figure 13.
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Table 6. Results obtained by MLP and VQC agents in the use case 2 environment. Column 1:
MLP agent (classic) and VQC agent (quantum); Column 2: Average total reward after training;
Column 3: Best total reward after training; Column 4: Worst total reward after training; Column 5:
Computational time in seconds; Column 6: Total reward (test with deterministic policy).

Model Avg. Total Reward Best Total Reward Worst Total Reward Time (s.) Test Reward

VQC (quantum) −2.58 −0.99 −4.22 5675.24 0.0
MLP (Classic) −4.28 −1.79 −8.69 337.04 0.0

Figure 13. Boxplots of average total reward obtained from VQC and MLP in use case 2.

According to Table 6 and Figure 13, the quantum VQC agent accomplished the task of
energy management better than its classic MLP counterpart. In fact, all the average, best,
and worst total rewards with a stochastic policy performed better than MLP, and are near
the optimum value of 0.0. On the other hand, the clear limitation of the quantum proposal
lies in the computational time required to learn the policy, which is near to 1 h 30′ per
execution against the approximately 5′40′′ required by the classical agent. We validated
these results using a paired t-test with 95% confidence level, obtaining a p-value equal
to 0.005, which suggests clear statistical differences between the average total reward of
VQC and MLP. In any case, neither VQC nor MLP stochastic policies are optimal due to
the inherent probabilistic nature of such policies. However, if we transform the stochastic
policies to deterministic ones by mean of selecting the action with the highest probability at
each episode step, the test rewards of both algorithms perform the same with no statistical
differences and are able to learn the optimal policy.

Finally, we analyze the learning curves performed by both agents from episode 1
to episode 100 in Figure 14. As is usual in any deep reinforcement learning problem,
the standard deviation of the total reward is higher during the execution of the first episodes
in both agents, and it is lower as the agent learns the policy. In Figure 14, we also observe
that the MLP is able to obtain a nearly optimal policy in fewer episodes than VQC, and that
the quantum model is able to overcome the classic agent just in the last episodes. This is
consistent with VQC training problems such as the barren plateau [38,45], which makes the
gradient have small values, therefore requiring more iterations to converge. To conclude
with the analysis of results, quantum reinforcement learning might compensate a tradeoff
between accuracy, model complexity (measured as learnable parameters), and learning
time, being able to overcome classical ANNs in terms of long-term learning.
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Figure 14. Learning curve obtained from VQC and MLP in use case 2.

4.3. Use Case 3: Profit Optimization of Charging Stations
4.3.1. Problem Statement

This use case differs from the previous experiments since it is not directly targeted at
solving energy-efficiency problems. In contrast, it assumes a scenario of scheduling control
and real-time pricing in electrical vehicle (EV) charging stations. The reinforcement learning
environment used in this experimentation was proposed in [26], and considers the operation
of an EV charging station over a discretized period of T time instants. The objective is to
develop an optimal policy that maximizes the profit of the charging station, knowing that
there are customers that arrive at a certain time slot, then request service, and the scheduler
must send them to the service zone. The price of the service also depends on the electricity
price at each time slot. The authors of the article [26] formalized the problem as a Markov
decision process and created a simulated reinforcement learning environment to provide
the scheduler with online learning. The designed environment has the following features:

• State space: The original state space in [26] contains eight features, where four of
them are directly acquired from a real experimentation over a working charging
station, and the remaining four are aggregated features calculated as a function of
the raw experimental measurements, reward design, and action design, to obtain
the best performance. In this manuscript, we use the first four raw features as input,
namely, the set of EVs which are using the charging station at the current time instant,
the expected residual charging demand, the parking time of EVs waiting for service,
and the online electricity price.

• Action space: At each time slot t, the agent must make two decisions: (1) the charging
price for the EV that arrived at time t; and (2) the charging rate of each EV in the
service zone. Thus, this environment differs substantially from classic reinforcement
learning environments, since there are two different action spaces which must be
sampled at each time step by the agent to select the two required actions. Both action
spaces are discrete: the charging rate can be set to a value in {0 kWh, 20 kWh, 40 kWh,
60 kWh, 80 kWh}, and the charging price is a value in {1, 2, 3, 4, 5, 6}, which indicates
a multiplicative factor over the electricity price to offer the service to the customer
arriving at the current time slot.

• Reward function: The environment sets the charging station profit as the sole criterion
to be optimized. Thus, the goal is to maximize the difference between the payment it
collects from customers and the charge it has to pay to the utility company to consume
the required electricity. This reward is shown in Equation (19), where Tt is the set of
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EV arrivals at time t, pt is the charging price selected at time t, Di(pt) is the demand
of the i-th EV in response to the price pt, et is the charging rate of the station (service
zone) at time t, and ct is the electricity price the station has to pay at time t.

r = ∑
i∈Tt

ptDi(pt)− ctet (19)

The authors of [26] proposed a single artificial neural network that outputs an action
from both action sets simultaneously, in response to a current input state. This strategy has
the advantage that the internal feature space learned by the network from the input data is
shared by the decision layers of both action spaces. However, in this work, we design the
agent containing two different networks, one targeted at the selection of an action from each
action space. This decision is justified because of the high computational power required
to simulate a quantum neural network with the characteristics of [26]. In our case, we
have two separate networks with a reduced size which can be run in a quantum program
simulation software in affordable time. In fact, by adopting this strategy, we reduce the
quantum search space from C211

to two search spaces in C25
and C26

, respectively, which
reduces the simulation computational complexity substantially.

4.3.2. Experimental Settings

As in use case 2, we trained two agents (classical MLP and quantum VQC) under
the same reinforcement learning algorithm with the same settings. We also used the A2C
algorithm to learn stochastic policies. The A2C configuration used was the same as in use
case 2, since in a preliminary battery of experiments it was found that these settings could
provide optimal policies. With regards to the policy/value classical/quantum networks,
we recall that the environment has two different action sets, and we used two different
policy networks (one for each action set). Table 7 shows each network structure, similarly
to how it was explained in the previous use case 2.

In the case of the policy MLP for the first action set, the number of network parameters
is 4 × 100 + 100 × 100 + 100 × 5 (weights) + 2 × 100 + 5 (bias)= 11,105; the number of
parameters for the policy MLP in the second action set is 4 × 100 + 100 × 100 + 100 × 6
(weights) + 2 × 100 + 6 (bias) = 11,206; and the value MLP has 4 × 100 + 100 × 100 + 100 ×
1 (weights) + 2× 100 + 1 (bias) = 10,701 parameters. If we consider the policy VQC network
for the first action set, it contains 5 × 2 × 5 = 50 parameters; the policy VQC network for
the second action set contains 6 × 2 × 6 = 72 parameters, and the value VQC network
has 4 × 4 × 4 = 64 parameters. As happens in the previous use cases, the number of total
parameters to be trained by the quantum proposal is on orders of magnitude smaller than
the number of parameters of the classic networks.

Table 7. Structure of policy and value classical/quantum networks used in use case 2.

Policy MLP 1 Policy MLP 2 Value MLP Policy VQC 1 Policy VQC 2 Value VQC

No. of qubits - - - 5 6 4

Inputs 4 4 4 4. Scaled to
[−π/2, π/2]

4. Scaled to
[−π/2, π/2]

4. Scaled to
[−π/2, π/2]

Preprocessing - - - Linear (5 units) Linear (6 units) Linear (4 units)
Quantum

embedding - - - Tensor product
encoding

Tensor product
encoding

Tensor
product encoding

Intermediate Layers Linear (100 units) Linear (100 units) Linear (100 units) Variational Layer
(×5)

Variational Layer
(×6)

Variational Layer
(×4)

ReLU ReLU ReLU - - -
Linear (100 units) Linear (100 units) Linear (100 units) - - -

ReLU ReLU ReLU - - -

Output layer Linear (5 units) Linear (6 units) Linear (1 unit)
Expectation of

σz(qi) observable
for each qubit qi

Expectation of
σz(qi) observable
for each qubit qi

Product of
expectation of σz(qi)

observable for all
qubits qi

Post-processing softmax activation softmax activation - softmax activation softmax activation Scale
and translation

Training algorithm RMSProp
(λ = 0.001)

RMSProp
(λ = 0.001) RMSProp (λ = 0.01) RMSProp (λ = 0.01) RMSProp (λ = 0.01) RMSProp (λ = 0.01)
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The experimental settings described in Table 7 were obtained after a preliminary
experimentation was performed to find the best configuration for each model.

4.3.3. Results

The performances of both VQC and MLP agents are described in Table 8, as the total
accumulated reward of episodes following the reward function described in Equation (19).
As in the previous use cases, Table 8 contains the average, best, and worst total accumulated
reward obtained by both quantum and classic agents after the learning process, together
with the computational time required to finish each experiment (in seconds) and the total
reward over a test episode using a deterministic policy that selects the agent’s action with
maximum probability. Boxplots in Figure 15 help to support the analysis of the results of
the table.

Table 8. Results obtained by MLP and VQC agents in the use case 3 environment. Column 1:
MLP agent (classic) and VQC agent (quantum); Column 2: Average total reward after training;
Column 3: Best total reward after training; Column 4: Worst total reward after training; Column 5:
Computational time in seconds; Column 6: Total reward (test with deterministic policy).

Model Avg. Total Reward Best Total Reward Worst Total Reward Time (s) Test Reward

VQC (quantum) 4832.00 4832.00 4832.00 865.47 4832.00
MLP (Classic) 4312.00 4752.00 3846.11 168.83 4704.78

Figure 15. Boxplots of average total reward obtained from VQC and MLP in use case 3.

The first thing we notice in the results shown in Table 8 is that the quantum agent
always converges to the same solution, which in turn is the optimal policy, since the average,
best, and worst results print the same value of total reward. Additionally, the execution
of the VQC in a test episode using the deterministic policy returns the same value of total
reward, which supports this statement.

On the other hand, the classical MLP agent is not able to learn the optimal policy,
with a total reward of 4752.00 in the best execution and an average total reward of 4312.00
over all executions. Figure 13 shows the average total reward data distributions of both
agents at the end of learning, and the previous statement can be verified graphically. In this
use case, the quantum VQC agent is also able to overcome its classical counterpart. We
validated this analysis using a paired t-test with 95% confidence level, obtaining a p-value
under 10−6, which indicates that there are significant differences between the results of
executions for VQC and MLP. However, as happens in all use cases, the current limitation of
the quantum agent relates to the high computational time required to simulate the quantum
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agent in a classic computer. In this use case, it is almost five times higher (approximately
14′30′′) than training the MLP (approximately 3′).

To conclude the analysis of results, Figure 16 plots the learning curves of both quantum
VQC and classical MLP agents during the learning process from episode 1 to episode 100.
It is worth mentioning two facts from this figure: firstly, the classic MLP shows a faster
convergence than the quantum VQC agent, achieving an average reward over 4000.00 in
only a few episodes of learning. However, it becomes trapped in a local optima which does
not reach the optimal total reward. As happened in the previous use cases, the quantum
agent learning is slower, but it is able to achieve better solutions than the classical agent.
Secondly, the standard deviation of total reward among episodes of different runs is higher
in the first episodes of learning of the quantum agent than in the last learning episodes,
when it has converged, as should be expected. However, the standard deviation of the total
reward in the classical agent remains higher during the whole process of learning. This fact
suggests that the model is highly sensitive to initial conditions (weights and bias network
initialization values), which makes the classical MLP less robust than the quantum VQC.

Figure 16. Learning curve obtained from VQC and MLP in use case 3.

4.4. Discussion

We proposed a hybrid classical/quantum model with a classical layer for preprocess-
ing purposes, allowing a reduction of the dimension of the input features by a variational
quantum circuit. After the variational layer, a measurement process was performed by
the selection of the observables to obtain the expected values and, finally, post-processing
using a softmax activation function was performed to transform the measured data into a
probability distribution. This structure was applied to three different use cases regarding
energy efficiency and management, and it was compared with state-of-the-art classical
(non-quantum) RL methods.

A global insight that arises from the study of the results in the three use cases is
that the quantum reinforcement learning approach proves the feasibility of implementing
decision-making processes with less complexity than their classical counterpart, obtaining
better performance than the classical MLP in all use cases studied in this work. On the
other hand, they require more time to converge than the classical neural networks, and
their computing time is higher than the classical counterpart because of the use of quantum
simulators instead of real quantum computers, even when the model complexity is lower
than using MLP. In addition, another limitation is that the proposal could not be tested in
real contemporary NISQ quantum hardware due to the limitations in accessing these types
of computers for large experiments nowadays, and their inherent noise in measurement.

In addition, the quantum agents showed more stability during the training with a
lower standard deviation of the total reward, suggesting that the MLP model is more
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sensitive to initial conditions (weights, bias, and discount factor), which makes the classical
MLP less robust than the quantum VQC (especially in use cases 1 and 3).

5. Conclusions and Future Work

In this work, we carried out a study about the suitability of using quantum decision-
making models for deep reinforcement learning in different energy-efficiency and man-
agement scenarios. The results suggest that the best performance can be obtained by the
quantum agent, although the learning process is slower, requiring more interactions with
the environment than classical MLP neural network agents, because of the barren plateau
phenomenon, which refers to gradients that vanish exponentially, similarly to classical
neural networks, but are becoming even more present in VQC.

On the other hand, the complexity of the quantum agents, measured as the number of
free model parameters to be optimized, is orders of magnitude smaller than the number
of parameters of the classic networks. This suggests that quantum technologies can be
suitable to reduce the size and complexity of decision-making processes, although at the
cost of a higher computational time to operate in quantum simulation software.

With regards to the quantum agent, we illustrated the importance of encoding and
selecting the observables of a quantum model that can represent the observation spaces
and the expected outputs. This task becomes even more important when working with
environments with a large number of features. Therefore, as a future work, we would
have to investigate how to encode environments with a large number of features and
how to handle these observables to obtain the expected output more efficiently using a
reduced number of qubits. Another challenge in training quantum agents is avoiding the
barren plateaus, which become even more present when increasing the number of qubits,
layers, and entanglement gates. Therefore, building expressive but simple circuits plays
a fundamental role in quantum reinforcement learning and should be a key aspect to be
studied in the future.

It is also worth mentioning the slow learning speed observed, especially in more
complex problems with a high number of dimensions in the state space or the action
space. In these cases, quantum agents may provide better results than their classical
counterpart, although the simulation on classical computers may become a limitation in
terms of resources required for computation and the large size of quantum operations,
expressed as complex matrix operations of size 2n × 2n.

In summary, this work is indicative of the potential impact of the relationship between
quantum computing and reinforcement learning in energy-efficiency and management
scenarios, demonstrating that quantum agents can solve complex environments even better
than their classical counterparts.
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Abbreviations
The following abbreviations are used in this manuscript:

A2C Advantage Actor–Critic
CPU Central Processing Unit
DQN Deep Q-network
DRL Deep reinforcement learning
EV Electrical vehicle
HVAC Heating, ventilation, air-conditioning
KPI Key performance indicator
LSTM Long/short-term memory
MDP Markov decision process
MLP Multilayer perceptron
NISQ Noisy, intermediate-scale quantum era
QC Quantum computing
QML Quantum machine learning
QPU Quantum Processing Unit
QRL Quantum reinforcement learning
RL Reinforcement learning
VQC Variational quantum circuit
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