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Abstract: In the acoustics-based power transformer fault diagnosis, a transformer acoustic signal
collected by an acoustic sensor is generally mixed with a large number of interference signals. In
order to separate transformer acoustic signals from mixed acoustic signals obtained by a small
number of sensors, a blind source separation (BSS) method of transformer acoustic signal based on
sparse component analysis (SCA) is proposed in this paper. Firstly, the mixed acoustic signals are
transformed from time domain to time–frequency (TF) domain, and single source points (SSPs) in the
TF plane are extracted by identifying the phase angle differences of the TF points. Then, the mixing
matrix is estimated by clustering SSPs with a density clustering algorithm. Finally, the transformer
acoustic signal is separated from the mixed acoustic signals based on the compressed sensing theory.
The results of the simulation and experiment show that the proposed method can separate the
transformer acoustic signal from the mixed acoustic signals in the case of underdetermination.
Compared with the existing denoising methods of the transformer acoustic signal, the denoising
results of the proposed method have less error and distortion. It will provide important data support
for the acoustics-based power transformer fault diagnosis.

Keywords: transformer acoustic signal; noise suppression; BSS; SCA; SSP identification

1. Introduction

As an important hub of equipment in the power grid, power transformers play a key
role in the safe and stable operation of the power system. During the operation of the
transformer, an acoustic signal is generated by the vibration of the transformer core and
winding, which contains rich status information about the transformer. Transformer fault
diagnosis can be realized by accurately detecting and analyzing the transformer acoustic
signal [1,2]. However, due to the presence of various interference signals including power
equipment sound, speech sound and vehicle sound at the transformer substation site, the
transformer acoustic signal collected by the acoustic sensor may be mixed with a large
number of interference signals, which will seriously affect the accuracy of transformer fault
diagnosis [3]. Therefore, the accuracy of the acoustics-based transformer fault diagnosis
can be improved by accurately extracting the transformer acoustic signal.

In general, noise suppression methods of transformer acoustic signal include wavelet
domain denoising [4–6], empirical mode decomposition (EMD) denoising [7,8], source sep-
aration technology based on clustering algorithm [9–11] and BSS [12–14], etc. Pan et al. [4]
proposed a layered threshold denoising algorithm of acoustic signals, which has higher
accuracy in transformer acoustic signal denoising than conventional methods. Wu et al. [6]
used wavelet packet transform (WPT) and 50 Hz frequency doubling comb filter to sep-
arate transformer acoustic signal from noisy signals. Although the experimental results
in [4,6] show that the wavelet denoising method has a good denoising effect, the wavelet
basis function and decomposition levels are required to be manually determined, which
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directly affects the denoising effect of the transformer acoustic signal. Liu et al. [7] proposed
signal denoising of high voltage cable partial discharge based on EMD-BSS, it not only
effectively removes the noise in the partial discharge signal but also retains the integrity
of the PD signal well. However, the phenomenon of model aliasing and boundary effects
will be produced when EMD is used to decompose non-stationary signals; it is difficult
to completely separate transformer acoustic signals and interference signals by using the
EMD denoising method. Source separation technology based on a clustering algorithm is
carried out by extracting the specific behavior (temporal or spectral) of each type of pulse
source and clustering the feature quantities, it is mainly used for the separation of partial
discharge (PD) signal. Hao et al. [9] proposed a discrimination method for multiple PD
sources using wavelet decomposition and principal component analysis, which successfully
separated multiple PD sources. The method is mainly used for the separation of multiple
pulse signals, but the transformer acoustic signal and part of the interference signals are
continuous signals, and the specific behavior (temporal or spectral) of the interference
signals are similar, which directly affects the separation effect of the transformer acoustic
signal. BSS is the process of separating source signals from mixed signals collected by
sensors when the sound sources and mixing process are unknown [15]. A BSS algorithm
based on independent component analysis has been widely used in the fields of trans-
former vibration and PD signal denoising [16–18], but this method has an underdetermined
problem, which must meet the condition that the number of acoustic sensors is more than
or equal to the number of source signals. In the acoustics-based transformer fault diagnosis,
due to the unknown number of sound sources at the transformer substation site, the limited
number of acoustic sensors, and the influence of various environmental interference signals,
the separation of transformer acoustic signal is a typical underdetermined BSS problem. In
recent years, SCA based on sparse representation theory has gradually become a powerful
means to solve the problem of underdetermined BSS. The process of separating source
signals using the method includes two stages: estimating the mixing matrix by signals
sparsity and clustering algorithm and recovering the source signals by L1 norm decomposi-
tion [19–21]. Bofill et al. [19] proposed an underdetermined blind source separation method
using sparse representations, which successfully separated six source signals from two
mixed acoustic signals. Li et al. [21] used density peak clustering and compression sensing
model to separate various fault signals from mixed vibration signals, and the separation
effect is good.

Based on the above analysis, we applied sparse component analysis to denoising of
transformer acoustic signal and proposed a blind source separation method of transformer
acoustic signal based on sparse component analysis. The proposed method is used to
denoise the simulated and measured transformer acoustic signals, and the results show
that the transformer acoustic signal can be separated from the mixed acoustic signals under
the condition of being underdetermined.

2. Principle of Blind Source Separation for Transformer Acoustic Signal
2.1. Characteristic Analysis of Interference Signals

In the acoustics-based power transformer fault diagnosis, the transformer acoustic
signal generated by the core and winding vibration is considered a useful signal, and the
acoustic signal generated by the external sound source of the transformer is regarded as
an interference signal. In addition, the electronic circuit of the sound acquisition system
also generates electrical noise. Since the electrical noise can be suppressed by high-quality
sound collection equipment, this paper only deals with the interference signals of the
transformer acoustic signal.

According to the field investigation and analysis, the external sound sources of trans-
former substations include transformers, capacitors, reactors and high-voltage transmission
lines. The sound of the transformer is mixed by the acoustic signal of the transformer
core and winding, the sound of the cooling fan and the action sound of the on-load tap
changer (OLTC). Sound signals will also be generated by capacitors, reactors and the corona
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discharge of high-voltage transmission lines. Besides, there may be various environmental
interference signals such as speech sound, vehicle sound and bird sound in the transformer
operation environment. All the above sound signals may be interference components of the
transformer acoustic signal. This paper classifies and lists the possible interference signals
in the transformer operation environment according to the characteristics of interference
signals, the results are shown in Table 1.

Table 1. Classification and main characteristics of interference signals.

Interference Source Interference Factor Duration/s Frequency Band/Hz

Transformer structure
Cooling fan sound continued 0–1000
OLTC action sound 0.2 0–20,000

power equipment

Reactor sound continued 0–2000
Capacitor sound continued 0–2000
Corona discharge

sound continued 5000–20,000

operation
environment

Speech sound 0.4 150–5000
Musical sound 0.5 0–20,000
vehicle sound 0.5 2000–8000

Bird sound 0.2 3000–8000

From Table 1, it can be seen that the types of interference signals in the transformer
acoustic signals are relatively complex. Firstly, the distance between the reactor, capacitor
and transformer is far, so the interference signals generated by the capacitor and reactor
during operation can be filtered by the single directional acoustic sensor. Therefore, they
may not be considered. Other interference signals can be divided into two categories: one
is the interference signal, which has no intersection with the frequency band (0–1000 Hz) of
the transformer acoustic signal, including corona discharge sound, vehicle sound and bird
sound; the other is the interference signal which has a large intersection with the frequency
band of transformer acoustic signal, including OLTC action sound, Speech sound and
Musical sound.

The first kind of interference signal can be easily eliminated by a low-pass filter.
Nevertheless, the frequency band of the second type of interference signal overlaps with
that of the transformer acoustic signal, it is necessary to use BSS based on SCA to get rid of
the second type of interference signal.

2.2. Sparse Component Analysis

The sparse component analysis method uses the sparsity of signals to solve the un-
derdetermined problem. In the underdetermined condition where the number of source
signals is more than that of acoustic sensors, the BSS problem of the mixed acoustic signals
in a substation can be described as

X(t) = AS(t) =
N

∑
n=1

anSn(t) (1)

where X(t) = [X1(t),X2(t),...,XM(t)]T are the M mixed acoustic signals at time t, A ∈ RM×N is
the unknown mixing matrix with M < N, an = [a1n,a2n, ..., amn]T is the nth column of the
mixing matrix A. S(t) = [S1(t),S2(t),...,SN(t)]T are the N sound source signals at time t.

For most of the sampling points, the amplitudes of the sparse signal are zero or close to
zero. In other words, it is definite that the amplitude of only one source signal is non-zero
at the same sampling point if all sound source signals meet the sparse condition. Hence,
most sampling points have only one sound source signal dominant, while the amplitude of
other sound source signals is zero, these sampling points are called single source points.
For the convenience of explanation, assume that the number of acoustic sensors is 2, i.e.,
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M = 2, and only one sound source signal S1 is present at a single source point t, i.e., S1(t) 6=
0 and S2(t) = 0. Equation (1) can be simplified as

X(t) = a1S1(t) (2)

Thus, the amplitude ratio of the two components of the mixed acoustic signals is

α =
X1(t)
X2(t)

=
a11S1(t)
a21S1(t)

=
a11

a21
(3)

From (3) it can be seen that the SSPs dominated by the sound source signal S1 will be
distributed on a straight line where the direction is a1. Therefore, the SSPs dominated by
different sound source signals will be distributed on straight lines in different directions.
The direction of the lines can be calculated by clustering algorithm and used as the estima-
tion of the column vectors of the mixing matrix so that the transformer acoustic signal can
be separated [19].

3. Blind Source Separation Method of Transformer Acoustic Signal
3.1. Sparse Enhancement of Mixed Acoustic Signals

The sparsity of sound source signals is the key factor of SCA. However, the transformer
acoustic signal and its interference components cannot meet the sparsity requirements of
SCA in practice, the mixed acoustic signals are transformed from the time domain to the TF
domain. The underdetermined BSS model in (1) can be expressed domain using short-time
Fourier transform (STFT) as

X(t, f ) = AS(t, f ) =
N

∑
n=1

anSn(t, f ) (4)

where X(t, f ) = [X1(t, f ), X2(t, f ), ..., XM(t, f )]T and S(t, f ) = [S1(t, f ), S2(t, f ), ..., SN(t, f )]T are,
respectively, the STFT coefficients of the mixed acoustic signals and sound source signals in
the f th frequency bin at time frame t. Although the mixed acoustic signals show approximate
sparsity in the TF plane, it does not meet the sparsity requirements of SCA. Therefore, the
SSPs are selected from the mixed acoustic signals in the TF plane by the single-source-point
identification method based on phase angle. Assume that only one source signal S1 is present
at an SSP (t1, f 1) in the TF plane. Equation (4) can be expressed as

X(t 1, f 1) = a1S1(t1, f 1) (5)

Calculating the real and imaginary parts of each component of the mixed acoustic
signals X(t1, f 1), we will get

R{Xm(t1, f 1)} = am1R{S1(t1, f 1)} (6)

I{Xm(t1, f 1)} = am1 I{S1(t1, f 1)}, m = 1, 2, ..., M (7)

where R{X} and I{X} are the real and imaginary parts of X, respectively. The angle between
R{Xm(t1, f 1)} and I{Xm(t1, f 1)} can be expressed as

θ = tan−1
(

R{X1(t1, f 1)}
I{X1(t1, f 1)}

)
= . . . = tan−1

(
R{XM(t1, f 1)}
I{XM(t1, f 1)}

)
(8)

From (8) it can be seen that the phase angles of each component of the mixed acoustic
signals are the same. That is to say, the ratio of the real part to the imaginary part of each
component of X(t, f ) will be the same if the sampling point (t, f ) is an SSP. However, the
probability of obtaining SSPs is very low in practice, hence we relax the determination
condition of SSP as follows: the point in the TF plane where the absolute value of the
difference βf between the ratio of the real part to the imaginary part of each component of
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the mixed acoustic signals is less than β is taken as an SSP. The SSP identification formula
can be expressed as ∣∣∣∣R{X I(t1, f 1)}

I{X I(t1, f 1)}
−

R{X J(t1, f 1)}
I{X J(t1, f 1)}

∣∣∣∣ < β, I 6= J (9)

where |X| is the absolute value of X; I and J are the subscripts of different components of
the mixed acoustic signals respectively.

After single-source-point identification in the TF plane, the SSPs XSSP show sufficient
sparsity and linear clustering characteristics. In order to ensure that the direction of each
line is represented by a unique direction vector, the negative direction vectors of XSSP are
mapped to the positive half unit circle using the normalization method. The transformation
process can be expressed as

Xnor(t, f ) =


XSSP(t, f )
‖XSSP(t, f )‖ , XSSP(t, f ) > 0
−XSSP(t, f )
‖XSSP,(t, f )‖ , XSSP(t, f ) < 0

(10)

where ‖X‖ = (XTX)1/2 is the absolute value of the vector X.

3.2. Mixing Matrix Estimation Based on Density Space Clustering

After the sparse enhancement of the mixed acoustic signals in the TF plane, the next
stage is the estimation of the mixing matrix. Here, we can use a clustering algorithm to
estimate the mixing matrix. The real and imaginary parts of X(t, f ) in the TF plane are
stacked into an array, and this array is used as the input for the clustering algorithm. Then,
the output of the clustering algorithm is the mixing matrix estimation.

There are many kinds of clustering algorithms including system clustering, K-means
clustering, birch clustering and density clustering. Among them, the density clustering
algorithm represented by density-based spatial clustering of applications with noise (DB-
SCAN) can automatically determine the number of clusters according to the density of
samples in space, which is suitable for data sets with arbitrary shapes. We consider the
sample set C = (P1, P2, ..., PC), the definitions of various sample points in the algorithm are
shown in Figure 1, and the descriptions are as follows [22,23]:
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Figure 1. Clustering principle of the DBSCAN algorithm.

(1) Eps-neighborhood: for P ∈ C, the set of sample points contained in the hypersphere
region with P as the center and Eps as the radius is called the Eps-neighborhood of P,
i.e., NE(P) = {Q ∈ C | dist(P, Q) ≤ Eps}. Where dist(P, Q) is the distance between
sample point P and Q in C.

(2) Core point: for P ∈ C, if the number of sample points contained in NE(P) is more than
or equal to mps, i.e., | NE(P) | ≥ mps, P is called the core point of C.
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(3) Directly density reachable: for Q ∈ C, if | NE(P) | ≥ mps and Q ∈ NE(P), Q is directly
density reachable from P.

(4) Density reachable: for P1, P2, ..., PC ∈ C, if Pc+1 is directly density reachable from Pc,
where 1 ≤ c ≤ C−1, PC is density reachable from P1.

(5) Boundary point: for Q ∈ C, if NE(Q) < mps, NE(P) ≥ mps and Q ∈ NE(P), Q is the
boundary point of C.

(6) Noise point: for Q ∈ C, if Q does not belong to Eps-neighborhood of any core point, Q
is the noise point of C.

The implementation process of mixing matrix estimation based on DBSCAN can be
described as follows: Given the input parameter (Eps, mps), randomly select a data point (t,
f ) in the normalized data as the starting point. If (t, f ) satisfies | NE(t, f ) | ≥ mps, a cluster
is formed when all density reachable sampling points belonging to the core point (t, f ) are
found. Then, the above action is repeated for all data points, and the data points without
any cluster are regarded as noise points.

3.3. Source Signals Recovery Based on Compressed Sensing
3.3.1. Compressed Sensing

The essence of compressed sensing is an inverse linear problem, which aims to recover
high-dimensional source signals from a small number of linear observation signals collected
by sensors [24,25]. The compressed sensing model can be expressed as

x = Φs (11)

where x = [x(1),x(2),···,x(M1)]T are the observed signals, Φ ∈ RM1×N1 is the measurement
matrix with M1 < N1, s = [s(1),s(2),···,s(N1)]T are the unknown sparse source signals. Then,
the source signals can be recovered by solving the L0 norm optimization problem:{

ŝ = arg min‖s‖
s.t. x = Φs

(12)

The L0 norm optimization problem is usually solved by the orthogonal matching
pursuit (OMP) algorithm [26].

3.3.2. Source Signals Recovery

The underdetermined blind source separation model of the mixed acoustic signals is
the same as the compressed sensing model. Hence, the transformer acoustic signal can be
recovered by constructing the compressed sensing model and using the OMP algorithm to
solve Equation (11) [27].

Firstly, we select the mixed acoustic signals and sound source signals in the TF plane
at a time frame t = 1 as the starting signal, i.e.,

X(f ) = [X1(f ), X2(f ), ..., XM1(f )]T (13)

S(f ) = [S1(f ), S2(f ), ..., SN1(f )]T, f = 1,2,...,L (14)

where L is the length of a time frame signal in the TF plane. Then We interleave X(f ) and
S(f ) into vectors as follows:

X = [X1(1), ..., XM1(1), X1(2), ..., XM1(2), ..., X1(L), ..., XM1(L)]T (15)

S = [S1(1), ..., SN1(1), S1(2), ..., SN1(2), ..., S1(L), ..., SN1(L)]T (16)

Thus, the underdetermined blind source separation model of the mixed acoustic
signals in Equation (4) can be expressed as

X = ΦS (17)
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Φ =


A 0 · · · 0
0 A · · · 0
... . . .

. . .
...

0 0 · · · A

 (18)

where 0 is an M × N matrix of zeros. The measurement matrix estimation is obtained by
using the mixing matrix estimation B instead of the mixing matrix A. So far, the compressed
sensing model of the mixed acoustic signals has been established.

Then, the vector estimation Ŝ is obtained by using the OMP algorithm to solve
Equation (17), and N1 sound source signals estimation Ŝ =

[
Ŝ1( f ), Ŝ2( f ), . . . , ŜN1( f )

]T

at time frame t = 1 are split from the vector estimation by Equation (16).
Finally, the above action is repeated for each time frame signal in the TF plane and the

recovery of the sound source signals are obtained by inverse short-time Fourier transform.
To sum up, the flowchart of the blind source separation method of transformer acoustic

signal based on sparse component analysis is shown in Figure 2.
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4. Simulation Analysis
4.1. Simulation Signals

The dry-type transformer with model SCB 10-630/10 was taken as the simulation
experimental object, the ATR2100 microphone was used as the acquisition device of the
transformer acoustic signal, and the sound acquisition device was fully remotely control-
lable by a personal computer. The microphone was set 0.1 m away from the high voltage
side of the transformer and 1 m away from the ground. The layout of the simulation
experiment is shown in Figure 3, and a, b and c in Figure 3 are three phases on the high
voltage side of the transformer, i.e., phase a, phase b and phase c. The transformer acoustic
signal S1 is collected through the microphone under the environment of 10 dB background
noise, and two speech signals are randomly selected from the TIMIT as two interference
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signals S2 and S3. The sampling frequency of the signals is 16 kHz and the sampling time
is 4 s.
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Figure 3. Layout of simulation experiment.

Figure 4 shows waveforms and spectrums of three sound source signals of simulation,
it can be seen from Figure 4 that the spectrum of the transformer acoustic signal is mainly
distributed within 1000 Hz, mostly 100 Hz and higher order harmonics.
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Figure 4. Waveforms and spectrums of the source signals; ((a): waveforms; (b): spectrums).

In practice, the mixed acoustic signals collected by acoustic sensors are generally
formed by the random mixing of multiple sound source signals. Therefore, we randomly
generate a mixing matrix:

A =

[
−0.7660 0.9848 0.6691
0.6428 0.1737 0.7431

]
(19)

Then, the mixed acoustic signals X(t) = [X1(t),X2(t)]T is generated by Equation (1).
Figure 5 shows waveforms and spectrums of the mixed acoustic signals of simulation.
From Figure 5 it can be seen that the frequency components of the mixed acoustic signals
are relatively complex, and there are low-frequency and high-frequency interferences with
large amplitude in the spectrum range of 0–2000 Hz.
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Figure 5. Waveforms and spectrums of the mixed acoustic signals; ((a): waveforms; (b): spectrums).

4.2. Simulation Experiment and Analysis

The mixed acoustic signals X(t) is transformed to TF domain by STFT. The parameters
of STFT are set as: STFT size 1024, Hanning window as the weighting function and the
overlap size of window 512.

Figure 6a shows a scatter diagram of the mixed acoustic signals in the time domain,
the x-axis is the amplitude of X1 and the y-axis is the amplitude of X2 in the scatter diagram.
Figure 6b shows the scatter diagram of the mixed sound signals X(t, f ) in the TF domain,
the x-axis is the amplitude of R{X1(t, f )} and the y-axis is the amplitude of R{X2(t, f )} in
scatter diagram.
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Figure 6. Scatter diagram of the mixed acoustic signals in time domain and time-frequency domain;
((a): time domain; (b): time-frequency domain).

From Figure 6b it can be seen that the mixed acoustic signals in the TF domain show
approximate sparsity and linear clustering characteristics, but they still cannot meet the
sparsity requirements of SCA. Therefore, the SSPs XSSP(t, f ) of the mixed acoustic signals in
the TF domain are extracted by using the single-source-point identification method and
the parameter of the SSP identification method is set to β = 0.02 [19]. Then, the normalized
data Xnor(t, f ) are obtained by normalizing XSSP(t, f ). Figure 7 shows scatter diagrams of
the real part of the SSPs and normalized data, respectively.
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Figure 7. Scatter diagram of the real part of the SSPs and normalized data; ((a): the real part of the
SSPs; (b): the real part of the normalized data).

As shown in Figure 7, the mixed acoustic signals have obvious sparsity and clustering
characteristics after SSP identification and normalization. The normalized data are clustered
using DBSCAN algorithm, The parameters of DBSCAN algorithm are: Eps = 0.07, mps = 10.
The mixing matrix estimation and its error are

B =

[
−0.7713 0.9841 0.6623
0.6411 0.1775 0.742

]
(20)

and

A − B =

[
0.0053 0.0007 0.0068
0.0017 −0.0038 −0.0061

]
(21)

It can be seen from Equation (21) that the number of source signals and the mixing
matrix can be accurately estimated by the DBSCAN algorithm. Then three sound source
signals are recovered by constructing the compressed sensing model and using the OMP
algorithm to solve Equation (17). As shown in Figure 8, the waveforms of three recovered
signals are similar to that of three source signals, and the three recovered signals, in turn,
are transformer acoustic signal Sa, voice signal Sb, and voice signal Sc. The low-frequency
and high-frequency interference signals in the mixed acoustic signals are eliminated, and
the frequency characteristic of the transformer acoustic signal is preserved completely by
the transformer recovered signal.
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Figure 8. Waveforms and spectrums of three recovered signals of simulation; ((a): waveforms;
(b): spectrums).
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4.3. Comparison with Other Methods

In order to further verify the denoising effect of the proposed method, two typical
denoising methods of the transformer acoustic signal are used to denoise the mixed acoustic
signals of simulation respectively, and their denoising performance is compared with the
proposed method. Method 1 and method 2 are respectively potential function-SCA method
in [1] and the WPT-comb filter method in [3]. The denoising results of the two methods are
shown in Figure 9.
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Figure 9. Waveforms and spectrums of the transformer recovered signal using the two methods;
((a): method 1; (b): method 2).

Two evaluation indexes, normalized correlation coefficient (NCC) and signal–noise
ratio (SNR), are introduced to evaluate the denoising effect of the three methods. They are
defined as follows:

NCC is used to measure the waveform similarity between the source signal and the
recovered signal, which is defined as

NCC =
∑T

t=1
∣∣Sn(t) Ŝn(t)

∣∣√
∑T

t=1 S2
n(t)∑T

t=1 Ŝ2
n(t)

(22)

where Sn(t) and Ŝn(t) are respectively the nth source signal and its recovered signal; T is
the length of the signal. The closer NCC is to 1, the closer the recovered signal is to the
source signal.

SNR is used to measure noise content in the recovered signal, which is defined as

SNR = 10lg

(
∑T

t=1 S2
n(t)

∑T
t=1
[
Sn(t)− Ŝn(t)

]2
)

(23)

The higher the SNR, the less the noise content of the recovered signal. The evaluation
indexes of the denoising effect of the three denoising methods are shown in Table 2.

Table 2. Evaluation indexes of denoising effect of the three methods.

Evaluation Index Proposed Method Method 1 Method 2

NCC(S1, Sa) 0.9941 0.9648 0.8413
SNR(S1, Sa)/dB 20.1829 13.8940 4.9459

The following conclusions can be drawn by analyzing the results of Figures 8 and 9
and Table 2:

Compared to the denoising results and the evaluation indexes of the denoising effect
of the three methods, it can be seen that the proposed method has the best denoising effect,
and the waveform and spectrum of the transformer recovered signal are basically the same
as the original signal, with the minimum error.
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Compared with method one, the sparsity and linear clustering characteristics of the
mixed acoustic signals are enhanced by SSP identification in the proposed method, and the
accuracy and robustness of the blind source separation method are improved.

The 50 Hz frequency doubling parts of the interference signals will be retained by
the comb filter when method two is used to denoise the transformer acoustic signal. The
transformer recovery signal has been mixed with some interference signals, resulting in the
generation of frequency components that do not originally exist in the transformer, which
affects the accuracy of subsequent fault diagnosis.

5. Experimental Analysis
5.1. Experimental Setup

In order to verify the effectiveness of the proposed method in processing the measured
transformer acoustic signal, the experiment was set in a 110 kV substation. The experiment
object is the main transformer of the substation. The parameters of the transformer are:
three phases oil-immersed transformer, the rated capacity is 50 MVA, the rated frequency
is 50 Hz, and the rated voltage is (121 ± 8 × 1.25%)/10.5 kV. Firewalls are installed on both
sides of the transformer, and cooling fans are installed on the left side of the transformer.

According to IEC 60651 standard, COINV-INV9206 acoustic sensors and NI-9232 data
acquisition card were selected to form a sound acquisition system, and the sensor and
acquisition card is connected through the BNC interface. The sound acquisition system is
fully remotely controllable by a personal computer. The parameters of the acoustic sensor
are: the length of the acoustic sensor is 85 mm, the nominal sensitivity is 50 mV/Pa, the
frequency range is 20 Hz~20 kHz, the dynamic range is 20~146 dB, the working temperature
range is −35~80 ◦C, the temperature coefficient is −0.008 dB/◦C. The parameters of the
data acquisition card are: the number of analog input channels is 4, the maximum sampling
rate is 102.4 kHz, and the analog input voltage range is −30~30 V. The sampling frequency
of the sound acquisition system is set to 48 kHz. The acoustic sensors were arranged
according to GB/T 1094.10-2003 standard: two acoustic sensors were set 0.3 m away from
the front box of the transformer, 1.5 m away from the ground, and the distance between the
two sensors was set at 1 m. The physical diagram and experiment schematic diagram of
the transformer are shown in Figure 10.
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Figure 10. Physical diagram and experiment schematic diagram of the transformer; ((a): power 
transformer, three phases, 50 MVA, 50 Hz; (b): experiment schematic diagram.). 

Two experimental assistants located on each side of the sensor began talking to each 
other as soon as the experiment started, and two mixed acoustic signals in the substation 
were collected by the sensors are shown in Figure 11. Then, the transformer acoustic signal 

Figure 10. Physical diagram and experiment schematic diagram of the transformer; ((a): power
transformer, three phases, 50 MVA, 50 Hz; (b): experiment schematic diagram).

Two experimental assistants located on each side of the sensor began talking to each
other as soon as the experiment started, and two mixed acoustic signals in the substation
were collected by the sensors are shown in Figure 11. Then, the transformer acoustic
signal in the substation was collected by any sensor as the reference signal, waveform and
spectrum of the reference signal are shown in Figure 12.
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Figure 11. Waveforms and spectrums of the mixed acoustic signals in the substation; ((a): waveform;
(b): spectrum).
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Figure 12. Waveform and spectrum of the reference signal in the substation; ((a): waveform;
(b): spectrum).

5.2. Experimental Results and Analysis

The recovered signals are separated from two mixed acoustic signals by using the
presented method. Three recovered signals, in turn, are transformer acoustic signal Sa,
voice signal Sb, and voice signal Sc. Figure 13 shows the waveforms and spectrums of
the recovered signals. The separation results show that the waveform of the transformer
recovery signal Sa is roughly the same as that of the reference signal, and the main frequency
peaks in the two signal spectrums correspond to each other one by one.
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Figure 13. Waveforms and spectrums of the recovered signals in the substation; ((a): waveform;
(b): spectrum).

The normalized correlation coefficient and signal–noise ratio of transformer recovery
signal and reference signal are shown in Table 3. From Tables 2 and 3, it can be seen that the
NCC and SNR of the transformer recovery signal in the experiment are smaller than those
in the simulation because there is a lot of background noise including the sound of the wind,
the reflection of the substation buildings walls and transformer tanks in the substation,
which reduces the accuracy of the proposed method. Although the substation environment
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has a great impact on signal separation, the NCC and SNR of the transformer recovered
signal in the experiment can reach 0.9254 and 8.8580 respectively. Besides, compared with
the mixed acoustic signals, the evaluation indexes of the transformer recovery signal have
been significantly improved. In other words, the separation of the transformer acoustic
signal is not affected by the background noise.

Table 3. Evaluation indexes of the proposed method separation effect.

Evaluation Index (X1, Sa) (X2, Sa) (S1, Sa)

NCC 0.4927 0.6472 0.9254
SNR/dB 0.7885 1.6663 8.8580

The experimental results show that the transformer acoustic signal can be effectively
separated from the measured mixed acoustic signals by the proposed method under the
condition of underdetermination, and the frequency characteristics of the transformer
acoustic signal are well preserved.

6. Conclusions

Aiming at the problems of useless signal interference in transformer acoustic signals, a
blind source separation method of transformer acoustic signals based on sparse component
analysis is proposed in this paper. Through the analysis of simulation and experimental
results, it can be seen that the proposed method can effectively separate the transformer
acoustic signal from the mixed acoustic signals and can protect the spectrum information
in the transformer acoustic signal. Compared with the existing transformer acoustic signal
denoising methods, the proposed method has strong applicability, small denoising result
error, and small waveform and spectrum distortion. The method also has limitations, such
as the method needs to use multiple sensors, which is not suitable for the case of a single
sensor; The linear instantaneous mixed model used in this paper may not be applicable to
convolution mixed model and nonlinear mixed model, which is the focus of the next step
of the method.

Author Contributions: Methodology, G.W. and Y.W.; software, G.W. and Y.W.; investigation, Y.M.;
resources, W.L.; writing—original draft preparation, G.W. and Y.W.; writing—review Y.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
51867012); the Science and Technology Program of Gansu Province (No. 21YF5GA159) and the 2021
Young Doctor Fund Project of Gansu Provincial Department of Education (No. 2021QB-058).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zou, L.; Guo, Y.K.; Liu, H.; Zhang, L.; Zhao, T. A Method of Abnormal States Detection Based on Adaptive Extraction of

Transformer Vibro-Acoustic Signals. Energies 2017, 10, 2076. [CrossRef]
2. Adnan, S.; Matej, K.; Igor, K. Vibro-Acoustic Methods in the Condition Assessment of Power Transformers: A Survey. IEEE Access

2019, 7, 83915–83931.
3. Liu, Y.P.; Wang, B.W.; Yue, H.T.; Gao, F.; Han, S.; Luo, S.H.; Zhang, C.C. Identification of Transformer Bias Voiceprint Based on

50Hz Frequency Multiplication Cepstrum Coefficients and Gated Recurrent Unit. Proc. CSEE 2020, 40, 4681–4694.
4. Pan, L.L.; Zhao, S.T.; Li, B.S. Electrical equipment fault diagnosis based on acoustic wave signal analysis. Electr. Power Autom.

Equip. 2009, 29, 87–90.
5. Shams, M.A.; Anis, H.I.; El-Shahat, M. Denoising of heavily contaminated partial discharge signals in high-voltage cables using

maximal overlap discrete wavelet transform. Energies 2021, 14, 6540. [CrossRef]

http://doi.org/10.3390/en10122076
http://doi.org/10.3390/en14206540


Energies 2022, 15, 6017 15 of 15

6. Wu, X.W.; Zhou, N.G.; Pei, C.M.; Hu, S.; Huang, T.; Ying, L.M. Separation methodology of audible noises of UHV AC substations.
High Volt. Eng. 2016, 42, 2625–2632.

7. Liu, Z.Y.; Liu, Z.Y.; Fan, H.M. Study on signal de-noising of high voltage cable partial discharge based on EMD-ICA. Power Syst.
Prot. Control 2018, 46, 83–87.

8. Chan, J.C.; Hui, M.; Saha, T.K.; Ekanayakel, C. Self-adaptive partial discharge signal denoising based on ensemble empirical
mode decomposition and automatic morphological thresholding. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 294–303. [CrossRef]

9. Hao, L.; Lewin, P.L.; Hunter, J.A.; Swaffielf, D.J.; Contin, A.; Walton, C.; MIchel, M. Discrimination of multiple PD sources using
wavelet decomposition and principal component analysis. IEEE Trans. Dielectrics Electr. Insul. 2011, 18, 1702–1711. [CrossRef]

10. Alvarez, F.; Garnacho, F.; Ortego, J.; Sanchez-Uran, M.A. A clustering technique for partial discharge and noise sources
identifification in power cables by means of waveform parameters. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 469–481. [CrossRef]

11. Wang, Y.B.; Chang, D.C.; Qin, S.R.; Fan, Y.H.; Mu, H.B.; Zhang, G.J. Separating multi-source partial discharge signals using linear
prediction analysis and isolation forest algorithm. IEEE Trans. Instrum. Meas. 2020, 69, 2734–2742. [CrossRef]

12. Han, S.; Gao, F.; Wang, B.W.; Liu, Y.P.; Wang, K.; Wu, D.; Zhang, C.C. Audible sound identification of on load tap changer based
on mel spectrum filtering and CNN. Power Syst. Technol. 2021, 45, 3609–3617.

13. Stergiadis, C.; Kostaridou, V.D.; Klados, M.A. Which BSS method separates better the EEG Signals? A comparison of five different
algorithms. Biomed. Signal Process. Control 2022, 72, 103292. [CrossRef]

14. Dorothea, K.; Ramon, F.A.; Eugen, H.; Reinhold, O. Independent component analysis and time-frequency masking for speech
recognition in multitalker conditions. EURASIP J. Audio Speech Music Process. 2010, 1, 1–13. [CrossRef]

15. Reju, V.G.; Koh, S.N.; Soon, I.Y. An algorithm for mixing matrix estimation in instantaneous blind source separation. Signal
Process. 2009, 89, 1762–1773. [CrossRef]

16. Guo, J.; Ji, S.C.; Shen, Q.; Zhu, L.Y.; Ou, X.B.; Du, L.M. Blind source separation technology for the detection of transformer fault
based on vibration method. Trans. China Electrotech. Soc. 2017, 27, 68–78.

17. Lin, S.F.; Li, Y.; Tang, B.; Fu, Y.; Li, D.D. System harmonic impedance estimation based on improved fastica and partial least
squares. Power Syst. Technol. 2018, 42, 308–314.

18. Zhou, D.X.; Wang, F.H.; Dang, X.J.; Zhang, X.; Liu, S.G. Blind Separation of UHV Power Transformer Acoustic Signal Preprocessing
Based on Sparse Representation Theory. Power Syst. Technol. 2020, 44, 3139–3148.

19. Bofill, P.; Zibulevsky, M. Underdetermined blind source separation using sparse representations. Signal Process. 2001, 81,
2353–2362. [CrossRef]

20. Bofill, P. Underdetermined blind separation of delayed sound sources in the frequency domain. Neurocomputing 2003, 55, 627–641.
[CrossRef]

21. Li, M.Z.; Li, S.M.; Lu, J.T. Underdetermined blind source separation based on density peak clustering for gear fault identification.
J. Aerosp. Power 2022, 37, 1010–1019.

22. Li, X.; Zhang, P.; Zhu, G. DBSCAN clustering algorithms for non-uniform density data and its application in urban rail passenger
aggregation distribution. Energies 2019, 12, 3722. [CrossRef]

23. Nooshin, H.; Hamid, S. A fast DBSCAN algorithm for big data based on efficient density calculation. Expert Syst. Appl. 2022,
203, 117501.

24. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
25. Ruiz, M.; Montalvo, I. Electrical faults signals restoring based on compressed sensing techniques. Energies 2020, 13, 2121.

[CrossRef]
26. Zhang, Y.J.; Zhang, S.Z.; Qi, R. Compressed sensing Construction for Underdetermined Source Separation. Circuits Syst. Signal

Process. 2017, 36, 4741–4755. [CrossRef]
27. Zhao, H.F.; Zhang, Y.; Li, S.Z. Undetermined blind source separation and feature extraction of penetration overload signals. Chin.

J. Sci. Instrum. 2019, 40, 208–218.

http://doi.org/10.1109/TDEI.2013.003839
http://doi.org/10.1109/TDEI.2011.6032842
http://doi.org/10.1109/TDEI.2015.005037
http://doi.org/10.1109/TIM.2019.2926688
http://doi.org/10.1016/j.bspc.2021.103292
http://doi.org/10.1155/2010/651420
http://doi.org/10.1016/j.sigpro.2009.03.017
http://doi.org/10.1016/S0165-1684(01)00120-7
http://doi.org/10.1016/S0925-2312(02)00631-8
http://doi.org/10.3390/en12193722
http://doi.org/10.1109/TIT.2006.871582
http://doi.org/10.3390/en13082121
http://doi.org/10.1007/s00034-017-0520-y

	Introduction 
	Principle of Blind Source Separation for Transformer Acoustic Signal 
	Characteristic Analysis of Interference Signals 
	Sparse Component Analysis 

	Blind Source Separation Method of Transformer Acoustic Signal 
	Sparse Enhancement of Mixed Acoustic Signals 
	Mixing Matrix Estimation Based on Density Space Clustering 
	Source Signals Recovery Based on Compressed Sensing 
	Compressed Sensing 
	Source Signals Recovery 


	Simulation Analysis 
	Simulation Signals 
	Simulation Experiment and Analysis 
	Comparison with Other Methods 

	Experimental Analysis 
	Experimental Setup 
	Experimental Results and Analysis 

	Conclusions 
	References

