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Abstract: Power systems are subjected to a wide range of disturbances during daily operations.
Severe disturbances, such as a loss of a large generator, a three-phase bolted fault on a generator
bus, or a loss of a transmission line, can lead to the loss of synchronism of a generator or group of
generators. The ability of a power system to maintain synchronism during the few seconds after
being subjected to a severe disturbance is known as transient stability. Most of the modern methods
of controlling transient stability involve special protection schemes or remedial action schemes. These
special protection schemes sense predetermined system conditions and take corrective actions, such
as generator tripping or generation re-dispatch, in real time to maintain transient stability. Another
method is the use of a real-time feedback control system to modulate the output of an actuator in
response to a signal. This paper provides a fundamental evaluation of the use of feedback control
strategies to improve transient stability in a power system. An optimal feedback control strategy that
modulates the real power injected and absorbed by distributed energy-storage devices is proposed.
Its performance is evaluated on a four-machine power system and on a 34-machine reduced-order
model of the Western North American Power System. The result shows that the feedback control
strategy can increase the critical fault clearing time by 60%, thereby improving the transient stability
of the power system.

Keywords: power system stability; transient analysis; energy storage; power system control; wide
area measurements

1. Introduction

Today’s electric grids are one of the most complex networks in the world. Electric
power is generated by several generators and is transmitted over hundreds of thousands
of miles on transmission lines to various consumers. An example is the Western North
American Power System (WNAPS), also known as the Western Interconnection. The
Western Interconnection is one of the largest electric power grids in North America, serving
a population of over 80 million. It spans over the Canadian provinces of British Columbia
and Alberta, 14 states in the USA, and the northern portion of Baja California in Mexico.
The stability of the grid is fundamental for the delivery of reliable power to its industrial,
commercial, and residential customers. Power systems are always subjected to a wide
range of disturbances, such as load changes, loss of a large generator, and a short circuit on
a transmission line. These disturbances affect the stability of the grid. Large disturbances
rarely occur, but when they do, it can lead to the loss of synchronism among generators and
damaging of delicate power system equipment, and, more importantly, create widespread
power outage resulting in huge economic consequences [1]. In the USA, the North American
Electric Reliability Corporation (NERC) sets standards and requirements to ensure that the
grid remains stable and reliable. In the Western Interconnection, these requirements are
enforced by the Western Electricity Coordinating Council (WECC).

The ability of synchronous machines in an interconnected power system to remain
in synchronism after it has been subjected to a large disturbance is known as transient
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stability [2]. Transient stability is a major concern for power system planning engineers,
because it affects the reliability of any power system. One interesting way to view the
problem of transient stability is by describing the mechanical system shown in Figure 1.
In this system, a car, a bus, and three loads are all connected together with a spring and
are all moving in synchronism on the freeway at a speed of 60 miles per hour. Now, what
happens to the system if the car hits a deer? What happens if one or more of the springs
are cut? Will all the elements of the system continue moving at a synchronized speed? The
ability of the system to remain synchronized after it has been disturbed (by a deer or by a
broken spring) defines the transient stability of the system.

Figure 1. A mechanical system.

In conventional power systems, transient stability analysis is usually worked out
locally and offline. Potential contingencies that can affect the transient stability of a system
are simulated, and a strategy table is created based on the pre-fault mode of operation.
When the system goes unstable, control devices search the control strategy table for the
corresponding control measures to be taken to return the system to stability [3]. These
control actions are called remedial action schemes (RASs). Common actions taken by an
RAS includes generator tripping and generation re-dispatch [4,5]. Tripping schemes may
become difficult to implement because of the inertia reduction associated with the increase
in inverted-based and distributed generation. Other control methods that have been studied
in the literature to improve transient stability include high-speed excitation [6], coordinated
operation of fast-valving [7], regulated series compensation [8–10], load shedding [11], and
dynamic braking [12–19].

A much less common scheme is the use of a real-time feedback control system to
modulate the output of an actuator in response to a signal. Usually, this involves an actuator
injecting or absorbing real power into a network in response to a feedback signal.The use of
a thyristor-controlled resistor to enhance transient stability has been studied [12,20]. These
works focus on improving transient stability by dampening the swing of synchronous
machines. In [21], the effect of using machine acceleration as a feedback signal in a real-
power injection control scheme is presented. In [22], a feedback control strategy based on
local and center-of inertia frequency measurements is explored, and in [23], a critical review
of research on real power modulation strategies for transient stability control is provided.
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This paper provides a fundamental evaluation of the use of feedback control strategies
to improve transient stability in a one-machine infinite bus (OMIB) power system. An
optimal feedback control strategy that modulates the real power injected and absorbed
by distributed energy-storage devices (ESD) is proposed. The ESD is modeled as an ideal
energy storage device to understand the capabilities and help drive the requirements of
energy storage systems for transient stability applications. The ESDs are located at the
high-voltage bus of the generators in the system. Unique contributions in this paper include
the following:

• An examination of feedback control strategies from the viewpoint of phase-plane
analysis. This examination provides guidance on what electrical signals are most
effective as feedback signals.

• A control strategy derived from two perspectives. The first is based on the well-
established equal-area-criterion and energy function approach, with the control objec-
tive of removing as much kinetic energy gained during a disturbance as quickly as
possible before it is converted to potential energy. With the second, an optimal control
cost-function is minimized.

The performance of the proposed control strategy is evaluated on a four-machine
power system model and on a 34-generator reduced-order model of the Western North
American grid.

The paper is structured as follows; Section 2 gives a fundamental analysis of transient
stability using phase-plane plots and the equal area criterion. In Section 3, feedback control
strategies for improving transient stability are introduced. The two perspectives for the
proposed controller are presented in Section 4. The proposed controller is described in
Section 5. Simulation results from the four-machine power system and the reduced-order
model of the WNAPS are presented in Section 6. Section 7 gives a general discussion and
highlights shortcomings and future works. Finally, Section 8 provides a conclusion.

2. Fundamental Analysis of Transient Stability

The dynamics of a classical generator are approximately represented by the swing
equation. It is the starting point for transient stability studies. It also captures the essential
features of the generator’s behavior with regard to the transient stability problem. The
swing equation describes the relationship between the rotor angle and the accelerating
power of a synchronous machine connected to an infinite bus (Figure 2), and it is given as

2H
ωb

d2δ

dt
= Pm − Pe = Pa (1)

δ̈ = ωb(ω− 1) (2)

such that;
Pe = Pmax sin δ (3)

Pmax =
V0V1

X
(4)

where H is the inertia, ωb is the synchronous speed, δ is angular position of the generator’s
rotor with respect to a synchronizing rotating reference frame, Pm and Pe are the input
mechanical power and the output electrical power of the generator, Pa is the accelerating
power, ω is the speed of the generator, Pmax is the maximum electrical power of the
generator, V0 is the voltage magnitude at the infinite bus, V1 is the voltage magnitude at the
generator bus terminal, and X is the total line impedance between the generator and the
infinite bus. When the system is in a steady state, the input mechanical power is equal to
the output electrical power of the generator, hence Pa = 0. However, during a disturbance,
the motion of the rotor angle of the generator is governed by Equation (1).
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Figure 2. One-machine infinite bus.

The transient stability problem can be analyzed in several ways. To gain a better
understanding of the motion of the generator’s rotor angle during a disturbance, this paper
analyzes the swing equation using a two-state phase-plane and an energy-based method.

2.1. Phase-Plane Analysis

The solutions to a differential equation can be plotted graphically in the phase-plane
similar to a two-dimensional vector field. For a one-machine infinite bus (OMIB), the
solution of the swing equation can be plotted on a two-state (δ and δ̇) phase-plane.

Consider a generator connected to an infinite bus over two parallel transmission lines,
X1 and X2, as shown in Figure 2. The infinite bus voltage magnitude, V0 = 1 and the
voltage angle, δ0 = 0 at all times. The transmission lines, X1 = 1 pu and X2 = 3 pu.
At steady state, the output electrical power, Pe = 0.5 pu, the voltage magnitude of the
generator, V1 = 1 pu, and the voltage angle, δ1 = 0.4950 rad. The generator’s inertia,
H = 3.

A three-phase bus fault is applied on the generator bus, and the trajectories of the
generator’s rotor speed (relative to the infinite bus) and the generator rotor speed (rate of
change of the rotor angle) for three different fault cycles are observed. The fault is cleared
after 6 cycles, 12 cycles, and 15 cycles. It is assumed that the post-fault configuration is
the same as the pre-fault state of the system. Table 1 shows the value of the generator’s
rotor angle, δcl , and speed, δ̇cl , for the three different fault cycles after the fault is cleared.
Figure 3 shows the two-state phase-plane plot of the system with δ and δ̇ as coordinates.
The region enclosed by the dotted curve in the figure shows the region of stability for the
OMIB system. Point A is the operating point of the system at steady state. When a fault is
applied on the generator bus, the rotor angle advances and the generator speed increases,
hence, the trajectory of the states follows the curve from A to D. Curve A–B and curve A–C
are the trajectories of the states during a 6-cycle and 12-cycle fault, respectively. For both
faults, the fault is cleared before passing the stability region boundary; hence, the states
oscillates around the equilibrium point A, and system is transient stable. These oscillations
can be dampened and the system can reach a new equilibrium. In the case of a 15-cycle
fault, the curve A–D shows the trajectory of the states during the fault. After the fault is
cleared, the operating point of the states are outside the region of stability; therefore, the
system becomes transient unstable.

Table 1. Rotor angle and speed after fault is cleared.

Fault Cycle δcl (rad) δ̇cl (rad/s) Location in Figure 3

0 0.4950 0 A
6 0.6519 3.1374 B
12 1.1228 6.2747 C
15 1.4753 7.8421 D
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Figure 3. Phase-plane plot of OMIB.

2.2. Energy Function

There is a general agreement that the first integral of the equation of motion of the
system constitutes a proper energy function [24]. The energy function is the sum of the
kinetic and potential energies of the system after the fault has been cleared. For an OMIB,
the equation of motion of the system is given in Equation (1), which can be rewritten as

M
d2δ

dt
= Pm − Pmax sin δ (5)

where the moment of inertia, M = 2H
ω0

.
The first integral of the right hand side of Equation (1) can be written as

UPE(δ) = −Pmδ− Pmax cos δ (6)

If we multiply Equation (5) by dδ/dt, we obtain

dδ

dt
d2δ

dt2 =
1
M

(Pm − Pmax sin δ)
dδ

dt
, (7)

which can be rewritten as

d
dt

(
dδ

dt

)2
=

2
M

(Pm − Pmax sin δ)
dδ

dt
,

by integrating (
dδ

dt

)2
=

2
M

(Pmδ + Pmax cos δ)

Hence,
M
2

(
dδ

dt

)2
= Pmδ + Pmax cos δ (8)

Comparing the right hand side of Equation (8) to Equation (6), the energy function,
U(δ, ω), is

1
2

Mω2 + UPE(δ) = 0 (9)

The stable equilibrium point δs is given by the solution to Equation (5) when the acceleration
is zero. If the coordinates are changed such that UPE = 0 at δ = δs, the energy function can
then be written as
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U(δ, ω) =
1
2

Mω2 − Pm(δ− δs)− Pmax(cos δ− cos δs) = UKE + UPE(δ, δs) (10)

where UKE = 1
2 Mω2 is the transient kinetic energy. Suppose a fault is cleared at t = tcl ; the

value of the energy function U(δ, ω) evaluated at t = tcl represents the total energy present
in the system. This value remains constant because the system is conservative. During
the fault duration, the system gains transient kinetic energy UKE. The value of the kinetic
energy is always positive. For the transient stability to be maintained, the system must be
able to absorb the kinetic energy once the fault is cleared [24]. This energy-based stability
criteria for an OMIB can be described graphically using the equal area criterion [25].

The equal area criterion (EAC) is a direct method for studying the transient stability of
power systems without explicitly solving the system’s differential equations [1,20,26]. Just
like the phase-plane analysis, the EAC helps in understanding the basic factors that influ-
ence transient stability through a graphical representation of the synchronous machine’s
input mechanical power, output electrical power, and rotor angle relationship. This method
has been used extensively to study transient stability in a single machine infinite bus power
system [20]. The power–angle relationship is given by Equations (1) and (3).

At equilibrium, the accelerating power, Pa = 0, i.e., the input mechanical power, Pm,
is equal to output electrical power, Pe, and the operating point of the generator is at point
‘a’, as shown in Figure 4. At point ‘a’, the rotor angle of the generator is δ0. When a
fault occurs, the electrical power, Pe, drops and the operating point of the machine is at
point ‘b’. Assuming that the mechanical power, Pm, remains the same, Pa > 0, hence,
the machine accelerates and the rotor angle increases as the operating point moves from
point ‘b’ towards ‘c’. If the fault is cleared when the rotor angle gets to δcl at point ‘c’,
and the post-fault configuration of the system is the same as the pre-fault configuration,
the electrical power increases to point ‘d’. The area A1 during the fault is referred to as
the accelerating area. At point ‘d’, the electrical power, Pe, is greater than the mechanical
power, Pm, i.e., Pa < 0, therefore the machine starts to decelerate. The operating point of
the machine keeps moving from point ‘d’ and stops at a point ‘e’ where the rotor angle is
δ1 such that the decelerating area A2 is equal to the accelerating area A1. If there is not
enough decelerating area ‘defk’ to match the accelerating area A1 ‘abck’, the machine is
said to be transient unstable.

Figure 4. Equal area criterion.
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From the EAC, the area A1 can be written as

A1 =
∫ δcl

δ0

(Pm − Pe)dδ

=
∫ δcl

δ0

(Pm − Pmax sin δ)dδ

=
∫ δcl

δ0

M
d2δ

dt2 dδ

=
∫ δcl

δ0

M
dω

dt
dδ

=
∫ δcl

δ0

M
dω

dt
ωdt

=
∫ δcl

δ0

Mωdω

Therefore, A1 can be written as

A1 =
1
2

Mω2
cl = UKE (11)

where ωcl is the relative speed of the generator at fault clearance. From Equation (11), the
accelerating area A1 is equal to the kinetic energy gained during the fault.

To maintain transient stability for any given fault, a synchronous machine must be
able to convert the total transient kinetic energy gained during the fault to potential energy
after the fault has been released. Figure 5a shows the power–angle curve of the OMIB when
a 15-cycle fault is applied on the generator bus, and Figure 5b shows the corresponding plot
of the generator’s angle, speed, and acceleration. During the fault, the system gains excess
transient kinetic energy, represented by the area A1. However, the system goes transient
unstable for this particular fault, since there is not enough area A2 to match the accelerating
area A1.

Figure 5. (a) Power–angle relationship. (b) Angle, speed, and acceleration of the generator after a
15-cycle fault.

3. Feedback Control Analysis for Improving Transient Stability

To ensure that the system is able to absorb all of the excess kinetic energy gained during
the fault, we can increase the electrical power Pe such that the generator transfers some
of the excess energy to storage device. This will create more decelerating area A2 enough
to match the accelerating area A1. By installing a controlled power injection/absorption



Energies 2022, 15, 6016 8 of 20

device such as an energy storage device at the generator bus, as shown in Figure 6, the
decelerating area A2 can be written as

A2 =
∫ δ1

δcl

(Pm − (PeT + PeC))dδ (12)

where PeT is the output electrical power behind the generator bus terminal and PeC is the
controlled modulated power absorbed by the power injection/absorption device.

Figure 6. OMIB with power injection/absorption device connected to the generator bus.

The value of PeC can be estimated from a feedback signal such as the generators speed
or acceleration. To start with, let the controller power PeC be given as a linear combination
of the speed, δ̇, and acceleration, δ̈, of the generator, i.e.,

PeC = Kv δ̇ + Ka δ̈, (13)

where Kv is a speed feedback gain, δ̇ is the speed deviation of the generator, Ka is an
acceleration feedback gain, and δ̈ is the acceleration deviation of the generator.

This control law is applied to the OMIB system with a 15-cycle fault (the transient
unstable case described above). The responses of the OMIB to the following values and
combination of the feedback gains Ka and Kv are examined:

1. Combination 1: Ka = −0.004 and Kv = 0.
2. Combination 2: Ka = 0 and Kv = 0.02.
3. Combination 3: Ka = −0.004 and Kv = 0.02.

A fourth and special combination is considered, where

PeC = Ka|δ̈|sgn(δ̇) (14)

for Ka = 0.007.
To compare all four combinations, the two-state (δ,δ̇) phase-plane trajectories of each of

the four combinations are shown in Figure 7. With the selected gains for each combination,
the transient stability of the system is maintained. However, each of these combinations
had a unique effect on the system. For the pure acceleration feedback (PeC = Ka δ̈), after
the fault is cleared, there is a wide swing in the oscillation of the generator’s speed, δ̇. In
the pure speed feedback controller (i.e., PeC = Kv δ̇), there is less swing in the oscillation of
δ̇; however, after fault clearing, this controller gave the highest rotor angle advancement.
The pure speed feedback also dampens the oscillation of δand δ̇ with time. The third
combination, where PeC = Ka δ̈ + KV δ̇, performs better than the previous two combination,
in the sense that both δ and δ̇ do not swing as wide as it did in the previous combinations.
However, in the forth combination, where PeC = Ka|δ̈|sgn(δ̇), we achieve the minimum
swing. Additionally, the states δ̇ and δ tend to dampen quicker.
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Figure 7. Phase-plane plot of the acceleration and speed feedback controllers.

4. Transient Stability Control Perspectives

The acceleration and speed feedback control strategy works well when applied to
simple systems such as the OMIB. However, this strategy is not based on any mathematical
control theory or principle. More so, when applied to complex multi-machine power
systems, the strategy becomes less efficient. Another limitation to this strategy is the
complexity in selecting a suitable feedback gain, Ka, for the controller. In the studies
described in the preceding section, Ka is selected by trial and error. Depending on the
type of disturbance in the system, a suitable Ka needs to be selected. As a result of
these inadequacies, an alternative control strategy that could be applied to more complex
networks of synchronous machines is sought.

Since solving a multi-machine power system’s differential equations is very complex,
we develop a basic representation of a multimachine power system as a two-machine
equivalent system. Let us assume that the synchronous machine, G1, is connected to a
dynamic equivalent of the rest of the multi-machine power system as shown in Figure 8 .
GCOI represents the dynamic equivalent of all other generators in the system.

Figure 8. Two-machine equivalent system.

Using classical generator models, the equation of motion for the two-machine equiva-
lent system can be written as

2H1

ωb
δ̈1 = Pm1 − Pe1 (15)

2HCOI
ωb

δ̈COI = PmCOI − PeCOI (16)

δ̇1 = ωb(ω1 − 1) (17)

δ̇COI = ωb(ωCOI − 1) (18)
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where Hi is the inertia of generator i, ωb is the synchronous speed, Pmi and Pei are the input
mechanical power and output electrical power of generator i, respectively, δi is the rotor
angle of the generator i with respect to a synchronously rotating reference, and ωi is the
speed of generator i.

For energy balance, Pm1 = −PmCOI ; therefore, the power flow solution dictates that
Pe1 = −PeCOI . If we subtract Equation (16) from Equation (15), we obtain

2H
ωb

(δ̈1 − δ̈COI) = Pm1 − Pe1 (19)

2H1

ωb
δ̈1 +

2HCOI
ωb

δ̈COI = 0 (20)

such that
H =

H1HCOI
H1 + HCOI

Equations (19) and (20) represent the synchronous stability between δ1 and δCOI . Hence,
the equation of motion for the two-machine equivalent system can be rewritten as

2H
ωb

δ̈ = Pm1 − Pe1 (21)

δ̇ = ωb(ω− 1) (22)

such that;
δ = δ1 − δCOI

Pe1 =
V1VCOI

X
sin δ (23)

ω = ω1 −ωCOI

where V1 and VCOI are the voltage magnitude at terminal bus of G1 and GCOI , respectively.
X is the sum of the synchronous reactance and the transmission line reactance between
the terminals of G1 and GCOI . Similarly to the OMIB, an energy function, U(δ, ω), for the
two-machine equivalent system can be written as [24]

U(δ, ω) =
1
2

Mω2 − (Pm1δ +
V1VCOI

X
cos δ)

U(δ, ω) = UKE + UPE

(24)

where the moment of inertia, M = 2H/ωb. The EAC for a three-phase fault applied on the
system is shown in Figure 9a. From (11), the accelerating area, A1 can be rewritten as

A1 =
∫ δr

δs
(Pm1 − Pe1)dδ (25)

where δs is the pre-fault value of δ, and δr is the value of δ when the fault is released.
From (21),

A1 =
∫ δr

δs
M

dω

dt
dδ

=
∫ δr

δs
M

dω

dt
ωdt

=
∫ ωr

ωs
Mωdω

A1 =
1
2

Mω2 =
1
2

M(ω1 −ωCOI)
2 = UKE (26)
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Figure 9. (a) EAC of the two machine equivalent system. (b) EAC of the controlled two-machine system.

At pre-fault state, ωs = 0; hence, the accelerating area A1 is equal to the kinetic energy
function at the time the fault is cleared. Similarly, the decelerating area A2 is the potential
energy absorbed into the system. To maintain transient stability for any given fault, a
synchronous machine must be able to convert the transient kinetic energy gained during
the fault to potential energy after the fault is released.

If the post-fault system is controlled by installing an energy storage device at the
terminal bus of G1 to absorb active power from G1, some of the kinetic energy gained
during the fault will be absorbed quickly by the storage device before it is converted to
potential energy into the system. If the energy storage device is modeled as a real power
absorption, PC(t), at Bus 1, then the system (21) can be written in state space form as

x1 = δ

x2 = δ̇

ẋ1 = x2 (27)

ẋ2 =
1
M

(
Pm1 −

V1VCOI
X

sin x1

)
− 1

M1
PC(t) (28)

x1 and x2 are the state, and M1 = 2H1/ωb. The previous discussion suggests that the con-
trol input to the system PC(t) should be selected such that the kinetic energy is dissipated
as quickly as possible.

An optimal control problem can be formulated to determine the best trajectory for
PC(t). Formally, it is desired to find PC(t) that minimizes the performance index,

J =
∫ tr+T

tr
dt = T (29)

subject to the constraints
Pmin ≤ PC(t) ≤ Pmax (30)

ω(tr + T) = 0 (31)

where tr is the time at which the fault is released. The first constraint (30) limits the maxi-
mum power absorption and delivery of the storage device, and the second (31) guarantees
that the kinetic energy is gone at the end of the active control period. The state equations
are (27) and (28). The Hamiltonian associated with this optimal control problem is

H = 1 + λ1δ̇ + λ2

(
1
M

(Pm1 − Pe1)−
1

M1
Pc(t)

)
(32)

where λ1 and λ2 are the co-states subject to
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λ̇1 = −∂H
∂δ

=
λ2

M
V1VCOI

X
cos(δ) (33)

λ̇2 = −∂H
∂δ̇

= −λ1. (34)

The states Equations (27) and (28), along with the co-state Equations (33) and (34), make
the optimal control problem a fourth-order system.

Boundary Conditions

The boundary conditions for this problem are the following:

1. The initial states (angle and speed at the time of fault release), i.e., x1(tr) = δr and
x2(tr) = δ̇r. The values of δr and δ̇r can be calculated by integrating the state equations
during fault.

2. The desired final state of x2, i.e., ω(tr + T) = 0.

3. In [27], given a performance measure of J = h(x(t f ), tr + T) +
∫ t f

tr
g(x(t), u(t), t)dt, a

necessary condition for optimal control is

[
∂h
∂x

∣∣∣∣
t f

− λ(t f )

]T

∂x f +

[
H(t f ) +

∂h
∂t

∣∣∣∣
t f

]
∂t f = 0 (35)

where t f = tr + T and λ is the co-state vector. In this particular optimal control
problem, h = 0, therefore (35) reduces to

[
−λ1(t f ) −λ2(t f )

][∂x1 f
∂x2 f

]
+ H(t f )∂t f = 0 (36)

∂x2 f = 0 because the problem is set up to make w(tr + T) = x2(t f ) = 0. Therefore,
the condition given in (36) becomes

− λ1(t f )∂x1 f = 0 (37)

H(t f )∂t f = 0 (38)

∂x1 f 6= 0 and ∂t f 6= 0; hence, to satisfy the necessary condition of (35), λ1(tr + T) = 0
and H(tr + T) = 0.

This is a classical constrained-input, minimum-time optimal control problem, and
the application of Pontryagin’s minimum principle (see, e.g., [27]) yields the well-known
bang-bang solution. For this particular problem, the optimal input takes the form

PC(t) =

{
PCmax λ2(t) > 0
PCmin λ2(t) < 0.

(39)

Given numerical parameters, the boundary value problem can be solved using a numerical
optimization procedure. For a fault scenario described above, the optimal solution will al-
ways be an absorbing pulse PC(t) = PCmax for the full active power duration tr ≤ t ≤ tr + T.
This can be seen by recognizing that the boundary conditions imply that λ2(tr + T) > 0.
If the control is effective, δ should change only a small amount during the active control
period, so linearizing (33) and (34) about δ = δr is informative. For reasonable system
parameters, the dynamics of this linearized system are quite slow relative to the time
periods of interest for transient stability.

For example, given the parameters in Table 2 for the two-machine equivalent system
shown in Figure 8, a six-cycle fault is applied on Bus 1 at t = 0.5 s. Solving the optimal
control problem with an initial guess for the value of the co-state as λ1(t = tr) = −0.03 and
λ2(t = tr) = 0.005, Figure 10 shows the trajectory of the states (x1 and x2) and the co-states
(λ1 and λ2) from t = tr to t = tr + T, while Figure 11 shows the input control power
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PC(t) for the optimal control problem. Projecting the slow linearized co-state dynamics
backwards from tr + T to tr yields a trajectory for λ2 that is always positive. Combine
this with (39) and we see that the optimal control is simply a maximum positive pulse of
duration T.

Table 2. Parameters for the two-machine equivalent power system.

Parameter Value Parameter Value

H1 1 HCOI 6
V1 1 pu VCOI 1
Pm1 0.5 pu PmCOI −0.5 pu
Pe1 0.5 pu PeCOI −0.5 pu

PCmax 0.5 pu PCmin −0.5 pu
X (Pre-fault) 1 pu X (Post-fault) 1 pu
time of fault 0.5 s tr 0.60 s

x1(t = 0) 0.5236 rad x2(t = 0) 0 rad/s
x1(t = tr) 1.0734 rad x2(t = tr) 10.9956 rad/s

Figure 10. States trajectory for the optimal control problem.

Figure 11. Input control power for the optimal control problem.

5. Proposed Feedback Controller

The proposed control strategy involves modulating the real power absorbed or injected
by distributed ES devices connected to the power system. These ES devices are located at
the high-voltage bus of several generators in the system and are independently controlled.
Each ES controller action is based on its local generator frequency and the center of inertia
(COI) frequency of the remaining system, and is built on the optimal pulsed control
strategy described above. Though arrived at formally, the optimal pulsed control approach
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is intuitively appealing. In order to reduce the kinetic energy to zero as quickly as possible,
the storage device should absorb energy at its maximum rate from the time the fault is
released until the relative speed δ̇ is 0. This interpretation suggests a means of practical
implementation—simply use this relative speed δ̇ = δ̇1 − δ̇COI as a feedback signal to
modulate the controller output, where δ̇COI is the center of inertia speed of the system.
Figure 12 shows the control block of the strategy. Depending on the sign of δ̇, the energy
storage device either absorbs or injects Pcontrol in to the system. Table 3 shows a summary
of the controller’s actions.

δ̇COI =
∑ Hi δ̇i

∑ Hi
(40)

The loss of synchronism usually occurs during severe disturbances in the system;
therefore, it is very important that the ES devices are not in operation during minor
disturbances. The operation of the control devices for small speed deviations could have a
detrimental effect on the system, hence the need for a deadband. In [28], speed deviations
of up to 15 mHz are reported for minor disturbances in power systems. For the simulations
shown in this paper, a dead band of 100 mHz is used.

Figure 12. Block diagram of controller.

During a severe disturbance, such as a three-phase bus fault, there is usually a voltage
drop at the buses electrically close to the fault. To prevent the operation of the ES control
devices at such low fault, a voltage constraint of 0.8 pu is set at the control buses. Hence,
the controller close to the fault will only absorb or inject power when the fault has been
cleared and the bus voltage has been recovered.

Table 3. Summary of controller’s action.

Condition Action

δ̇i > ˙δcoi Absorb Real Power (+P)
δ̇i < ˙δcoi Inject Real Power (−P)
δ̇i = ˙δcoi No Operation

6. Simulation Result
6.1. Case 1

The performance of the proposed feedback control strategy is tested on a four-machine
two-area power system model described in [1]. The system consists of two similar areas
connected by a weak tie. Each area consists of two synchronous generators. The ES control
devices are connected to the high-voltage bus of each generator, as shown in Figure 13. The
size of each ES device is set to 0.5 pu, which is equal to five percent of the rated power of
its corresponding generator. The transient stability study on this model is performed using
MATLAB Power System Toolbox (PST). Exciters, governors, and power system stabilizers
are included in the simulation model.
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Figure 13. Four-machine two-area power system.

A three-phase fault is applied on one of the transmission lines from Bus 7 to Bus 8
at time t = 1 s. The fault is cleared after 21 cycles. Figure 14 shows the speed of the four
generators in the system. The plot on the left represents the speed of the generators when
there is no control, and the plot on the right represents the generators speed when the
proposed feedback control is implemented. Figure 15 shows the real power absorbed and
injected by the energy storage devices connected at each generator’s terminal. ES devices
C1 and C2 both absorbed real power, while C3 and C4 both injected power into the system
to ensure transient stability.

Figure 14. Generator frequency with no control and with control.

Figure 15. Power absorbed and ejected by the control devices.

6.2. Case 2

The performance of the proposed control strategy is also tested on a reduced-order
model of the WNAPS. The system consists of 34 generators, 123 buses and 171 branches,
19 loads, and 2 HVDC lines [22]. The system is a good representation of the WNAPS for
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transient stability studies because it has approximately the same inertia and impedance
properties of the WNAPS. Figure 16 shows the one line diagram of the reduced-order
model of the WNAPS. Exciters, governors, and power system stabilizers are included in
the simulation model.

Figure 16. Reduced-order model of the WNAPS.

With a six-cycle three-phase fault at Bus 83, followed by the tripping of the trans-
mission line from Bus 83 to Bus 33, generator 13 on Bus 33 and generator 14 on Bus 31
lose synchronism with the rest of the system and become unstable, as shown in Figure 17.
The figure shows the speed of generators 13 and 14 as well as the speed of some selected
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generators in the system. Generators 13 and 14 are located very close to the fault, hence the
increase in their speed.

Figure 17. Speed of selected generators in the WNAPS.

To improve the transient stability of this system, the control device is installed at all
generator buses, just as in the four-machine power system in case 1. Figure 18 shows the
speed of the generators when the control strategy is in effect.

Figure 18. Speed of selected generators in the WNAPS.

Figure 19 shows the absorbed and injected real power by the control devices connected
in the system. Only the energy storage devices connected to the terminal of generators 13
and 14 reacted. Immediately after, the fault is cleared. ESD 13 and ESD 14 both absorbed
real power from the system. Subsequently, ESD 14 injected power into the system and,
again, absorbed power in response to the control strategy. With the each ESD power rated at
5% of its corresponding generator’s rated power, the critical clearing time for this fault was
increased by 20%. With higher ESD power, the critical fault clearing time can be increased
to 60%.
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Figure 19. Speed of selected generators in the WNAPS.

7. Discussion

One of the goals of this research is to help drive the requirements for energy stor-
age application in transient stability applications. With the penetration of inverter-based
resources, such as solar energy and wind turbines, the total inertia of the grid from the
replaced rotating machine responsible for maintaining transient stability is reducing. En-
ergy storage systems can play a major role in improving transient stability as the grid
slowly transitions from rotating generation. As shown in Table 4, the critical clearing time
of the reduced-order model of the WNAPS is improved by increasing the power rating
of the energy storage device. When each of the ESDs have a power that is 5% of their
corresponding generator’s rated power, the critical clearing time is increased by 20%. At
20% of the generator’s power, the maximum critical clearing time that can be gained using
this proposed control strategy is reached.

Table 4. Gained critical clearing time.

ESD Power Percentage Increase in
(In Percent of Gen Power) Critical Clearing Time

0 0%
5 20%
15 40%
20 60%
25 60%
30 60%

One major challenge in employing this proposed strategy is the feasibility in installing
energy storage devices at every generator bus. A better approach may be to find optimal
locations in the grid, especially in transient-stability-limited corridors where the operation
point is close to stability margins. In this work, it is assumed that there are no physical
limitations on the rate at which the distributed energy storage device absorbs or inject
power. Future research will address the capabilities of existing energy storage devices for
transient stability. Future work will explore consideration for the optimal location and
distribution of the energy storage devices as well as identify critical generators that are
transient-stability-limited. Finally, another important avenue of research will be developing
methods for defining adaptive areas during topology changes.

8. Conclusions

This paper provided a fundamental evaluation of the use of feedback control strategies
to improve transient stability in a power system. Thereafter, we developed and demon-
strated an optimal feedback control strategy that modulates the real power absorbed and
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injected by energy storage devices to improve transient stability in a multi-machine power
system. The control strategy is derived from two perspectives. The first is based on a well-
established energy function approach with the goal of removing as much kinetic energy
gained during a disturbance as quickly as possible before it is turned into potential energy.
With the second perspective, an optimal transient control cost function is minimized.

The performance of the control strategy is tested on a four-machine power system
and on the reduced-order model of the Western North American Power System. The result
shows that the strategy significantly improves the transient stability of power systems. In
the case of the study performed with the reduced-order model of the WNAPS, the critical
clearing time is improved by increasing the power rating of the energy storage device. The
critical fault clearing time could be improved to a maximum of 60%.
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