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Abstract: In this paper, renewable resources, namely photovoltaic panels (PV), are placed in a
specific configuration to obtain the maximum reliability and availability of a microgrid and study the
subcomponent-level reliability and availability. The reliability of components can be increased by
trying different configurations of the components. We identify the preferred configuration used for
the PV panels as bridged linked. The overall reliability of the microgrid is increased when component-
wise reliability is considered. Even components are further divided into subcomponents, and the
multiple faults of each component are considered. The method used for the reliability evaluation and
availability study is Markov state transition modeling. The microgrid’s reliability and availability are
plotted concerning time using Matlab. The optimization of reliability and availability is conducted
through optimization techniques such as the genetic algorithm (GA) and artificial neural networks
(ANN). The results are compared and validated for the optimal values of mean time to failure (MTTF)
and mean time to repair (MTTR). Using a genetic algorithm, there is a 96% of improvement in the
reliability, and after applying the neural networks, a significant improvement of 97% along with
quick results is achieved.

Keywords: microgrid; reliability; bridge-linked configuration; failure rate; Markov model; state
transition diagram

1. Introduction

The microgrid adds distributed energy resources with advanced power electronic
interface modules along with utility grid connections for serving local loads [1]. It also
adds digital, control, advanced operations, and advanced resources to the electrical grid.
Many changes are needed in the existing legacy electrical grid, including adding renewable
resources at generation, adding smart appliances at consumption, and the addition of new
technologies, such as smart meters, IoT, scheduling, cronjobs, etc. [1]. The smart grid needs
to be energy-efficient, reliable, and secure in the same way as the existing electrical grid
despite having new changes from new technologies and optimizations [2]. The technologies
applied for the smart grid are still in the process of real world implementation [2]. There
are a lot of challenges to their implementations, such as the two-way flow of information,
adding renewable resources, adding smart appliances on the consumer side, the reliability
and cost effectiveness of the flow of information, and self-healing. The idea to replace the
existing system with a new, improved, and optimized smart power grid infrastructure
presents multiple challenges and threats to effectively integrating smartness without im-
pacting the use of the existing grid. The various indices for visualizing the performance of
the integrated system are energy efficiency, reliability, security, and flexibility. The electricity
generation at the consumer end is done through renewable sources.

The year 2021 is considered the dark year of electricity due to longer duration power
cuts or blackouts or brownouts all across the world [3]. There were two transmission
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line failures that happened in Mexico in January 2021, with blackouts in one-third of the
country [3]. In the same month and year, Pakistan faced a technical fault in the Guddu
thermal plant, which is at the center of the Pakistan grid, causing a cascading blackout
across the whole country. Similarly, Winter Storm Uri in Japan in February 2021 caused
a complete shutdown of 10 GW of a thermal power plant. A technical issue on main
transmission lines between Prestea and Obuasi caused a national power outage in Ghana
on 7 March according to grid operator GRIDCo. After a trip to the 4.3 GW coal-fired Hsinta
Power Plant in the southern city of Kaohsiung, several cities in Taiwan, including the
capital Taipei, experienced rolling blackouts in May 2021. Jordan was likewise hit by a
widespread power outage on 21 May. China was confronted with yet another electricity
shortage. Thus, to reduce the impacts of electrical failures, we need to study reliability and
availability thoroughly. This is all about the world, but when we consider Indian rural
areas, people are still receiving electricity for only a few hours although they have enough
renewable resources are wasting till this concept came into mind.

Various methodologies, such as the intelligent state space pruning with a local search
for the evaluation of power system reliability, are used to assess the smart grid’s reliabil-
ity. This novel method is utilized to assess the smart grid’s reliability, as are numerous
optimization techniques such as PSO [4]. Multiple publications on the reliability of smart
grid components have been published where only component-level reliability is consid-
ered. The interconnected optimum filtering issue for distributed dynamic state estimation
considering packet losses is used in the smart grid to estimate dispersed states via unre-
liable communication networks [5]. The component’s reliabilities are used to assess the
reliability. In a smart grid, different components are used, as well as multiple modes of
operation. Because PV panels are inexpensive, they are commonly employed as a solar
energy source. PV panels can operate in two modes: redundancy and parallel. The DC to
DC converters are used to calculate the system’s reliability when renewable resources are
blended, such as solar panels and wind turbines. MPPT and MTTF, or maximum power
point tracking and maximum time to transfer, are two indexes used to determine a system’s
reliability. To boost DC to DC converters using PV, the reliability is computed using both
performance indices [6]. Reliability evaluation of distributed networks has been performed
in multiple papers where a specific component is studied and reliability was evaluated
for a superconducting fault current limiter (SFCL) [7]. Similarly, there are multiple papers
where component reliability parameters are studied; for example, solar farm generation
has been investigated using the Markov chain model [8]. Reliability was evaluated for a
microgrid using a chronological Monte Carlo simulation with Markov switching modeling.
A standard system was taken, and the performance indices of MTTR and MTTF were
evaluated, showing very little improvement [9]. Robustness is optimized in interconnected
microgrids using nash bargaining [10]. To study the uncertainty in the model, multiple
robust control techniques have been applied and optimized [11]. Robustness is how strong
the model is in case of any uncertainty due to renewable resources. There are multiple
indices for visualizing the performance of microgrids: energy efficiency, reliability, security,
flexibility, robustness, self-healing and demand-supply fulfillment. The demand and supply
gap should be fulfilled by distributors and retailers through planned strategies [12].

Using the methods described, in this paper, different configurations are used to
evaluate the best values of reliability and availability using Markov modeling and again
optimized using GA and ANN. The economic progress of developing countries such as
India is strongly reliant on the reliability and prominence of their electric power supply.
There can be many ways to arrange the components, such as in series, in parallel, in series
parallel, cross-linked, etc., but the best possible way is not thoroughly explained in most
reliability studies; therefore, we have considered that point in this study. This paper worked
on the below points: (a) component-level microgrid reliability was convoluted by many
researchers, but the effect of all the components has not been studied in any of the papers
which are worked on in this paper. Subcomponent configuration level studies have not been
performed yet; (b) an assessment of the reliability and availability at the component level
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and the level of the overall microgrid is performed in this paper using Markov modeling;
(c) the application of optimization techniques to increase reliability and availability is a
new area explored in this paper.

When designing any microgrid, design parameters play a crucial role in determining
reliability as well as availability based on the mean time to failure and repair, which are
calculated by failure rates. Any grid can be divided into generation systems, distribution
systems, transmission systems, and customer systems. Very few papers considered the
reliability of the overall grid. Most papers worked on the assesmsment of the reliability of
the distribution system [13]. To evaluate the reliability, multiple parameters are considered;
for example, mean time to failure and mean time to repair [14] of the different components
are modeled, which are taken from the literature [13]. The average system unavailability
index (ASUI), system average interruption frequency index (SAIFI), system average inter-
ruption duration index (SAIDI), customer average interruption duration index (CAIDI),
ref. [15] and other indices are used to assess microgrid dependability. The most widely
used renewable resource is solar power, and there are multiple papers where the reliability
of solar generation is studied thoroughly. Furthermore, its applications for the evaluation
of generation performance with different profiles are considered [16]. People around the
world are highly interested in incorporating renewable resources into the existing grid to
increase the performance of the grid with better environmental impacts. Thus, researchers
around the world study different models of grids in different areas [16]. The evaluations
are different for every researcher, as the localities considered are different, but the reliability
curve is almost the same concerning time across the globe [16]. This paper has considered
the solar profile of Bhiwani, Haryana, India.

Section 2 contains the proposed approach explained along with the component-wise
description discussed in Section 3. Section 4 contains the Markov modeling method
explained in detail, along with the state transition matrix. The results and discussions are
covered in Section 5. Conclusions are mentioned in Section 6.

2. Research Method

There are multiple components that are used which are connected with different
configurations, which can improve or decrease the reliability of the microgrid. Thus, it
is equally important to discuss the component-level reliability and configuration-based
reliability of the microgrid. To estimate the reliability of the microgrid [17], the failure
rate of the manufacturer needs to be considered, as well as how to best use it in the best
configuration to optimize the reliability of the microgrid. Multiple PV panels are used
with other components of the microgrid with different configurations, such as in series, in
parallel, in series-parallel, cross-linked, bridge-linked, and cross-tied [18]. The reliability of
PV panels is computed based on the configuration it is arranged in, and the failure rate of
each panel is considered. From the estimate of the reliability of PV panels, the overall failure
rate of PV panels is computed and combined with the converter. These two components
are more focused upon in this study, where PV panels and converters are combined as a
single unit, and Markov modeling is performed based on different states at different points
of time. The components considered a part of the microgrid in this study are PV panels,
converters, transformers, and load, as shown in Figure 1.

The reliability of PV panels was computed first. The PV panels were connected in a
bridge-linked configuration, where every panel’s reliability, i.e., cell reliability was con-
sidered. Using Equations (1), the overall PV panel reliability was computed. Similarly,
the reliability of every component, such as converters and transformers, was computed
using different states of the microgrid. Based on different states, reliability is again com-
puted using the Markov reliability model, and the overall reliability and availability of the
microgrid were evaluated. The different modes that were also considered are a success
(i.e., a good state), failure mode (i.e., component failure), repair mode (i.e., the component
being in a repair state), and maintenance mode (the regular check of components after
a specific duration). Then, the same model is simulated through a genetic algorithm as
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well as artificial neural networks to obtain better results of mean time to failure (MTTF)
for microgrid reliability. The component level reliability and availability are calculated, so
every component is discussed below. The flow chart to compute reliability is shown in
Figure 2.

Figure 1. Transition diagram of proposed microgrid model.

Figure 2. Flow chart of proposed methodology.

3. Model Development of Each Component
3.1. Bridge-Linked PV Panels

PV panels are the first components in the microgrid’s overall construction. If the PV
panels are connected in series, the voltage level is increased, but the current remains the
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same. The PV panels can be connected in parallel, for which the current will increase but
the voltage will remain the same. To solve this problem, two other configurations are
tried: series parallel and cross-tied configurations. In the series parallel configuration, the
power increases. Here in this paper, we have considered the lifetime of PV panels when
they are in the active state [18]. When the reliability is evaluated for these systems, the
best configuration is considered based on the operational lifetime of the networks [18].
The operational lifetime is maxed when the bridge-linked array is used. Thus, we used
bridge-linked connections between solar cells [19] as shown in Figure 3. The dotted lines
show multiple panels connected in a bridge shape. Abbreviations are mentioned in the
last section.

Figure 3. Bridge-linked PV panel configuration.

Equation (1) demonstrates the mathematical formula for solar PV panels:

RPV(τ) = 1−
(

m

∑
x=1

(
(1− Rmodxy(τ))

n
))

(1)

From this reliability, the failure rate of the PV panels can be calculated. The function
considered is concerning density and calculated using probability theory. The parameter
x is the number of PV panels in rows, and y is the number of PV panels in columns. The
function is evaluated based on the active time of the components considered. The chance
of failure for the time interval [t, t + τ] is given in Equation (1). The mean time to failure is
calculated with probability theory, where the condition is that the components would not
fail until time t.

3.2. Converters

There are multiple papers where converters are studied and the reliability of converters
is estimated based on the mode of use [17,20]. The interleaved boost converter has multiple
stages with a diode, inductor, and switch in each stage [21]. In this paper, the reliability
of the converter is calculated and connected with PV panels as shown below, where
subcomponents of the boost converter have similar failure rates [20,22] calculated from
Equations (5)–(7) [23]. The failure rate of subcomponents MOSFET, diode, and inductor are
shown in Equations (2)–(4), respectively. Abbreviations are mentioned in the last section.

λL = λMOSFET = λb πT πA πQ πE (2)

λD = λDiode = λbπTπSπCπQπE (3)

λQ = λInductor = λb πT πQ πE (4)

Mosfet

πT = exp

[
−1925

(
1

Tj + 273
− 1

298

)]
(5)
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Diode

πT = exp

[
−3091

(
1

Tj + 273
− 1

298

)]
(6)

Inductor

πT = exp
[

−0.11
8.617× 10−5

(
1

THS + 273
− 1

298

)]
(7)

The reliability of the converter is calculated based on the below formula in Equation (8):

R1−2(t) = e−λt + λ PRte−λt (8)

The failure rates of inductor, diode, and MOSFET are as follows in Equation (9):

λ1 = λ2 = λ3 = λL + λD + λQ (9)

The overall failure rate of the converter is calculated based on the reliability calculated above.

R(t) = e−
∫ t1

0 λ(t)dt (10)

Using the above formula, the failure rate of the converter is calculated from Equation (10).

3.3. Transformer

The transformer is made up of nine components [24]: a core, winding, tank, oil
insulation, solid insulation, bushing, tap-changer, cooling pump and cooling fan [24]. The
unwavering mass submodel was originally evolved for each part individually and finally
incorporated into the general reliability model of the transformer [24]. S. No.1 to 9 in Table 1
shows the reliability functions for submodels of the transformer. The transformer has eight
submodels, as shown in Table 1. λc, λW , λT , λ0, λSI , λB, λTC, λP and λCF are the failure
rates of the submodels, i.e., the core, winding, tank, oil coating, solid coating or insulation,
bushing, tap-changer, cooling pump and cooling fan, respectively. Rc, RW , RT , RO, RSI ,
RB, RTC, RP and RCF are the reliabilities of the core, winding, tank, coil coating, solid
coating or insulation, bushing, tap-changer, cooling pump and cooling fan, respectively.
Information about assorted reliability is enlisted as follows. Abbreviations are mentioned
in the last section.

When the cooling fan and oil pump are running, the transformer is loaded to its maxi-
mum capacity. However, if any of these pumps and cooling fans [24] fail, the transformer
can still run with less load. Therefore, a parallel reliability structure of the cooling system
reliability model [24] is constructed, calculating the reliability when both the pump and
the fan are [24] operating normally or when one of the components fails [25]. If (λP) is the
failure rate of an oil pump, then the reliability (Rp) [24] of the oil pump is measured as
from Equation (11).

Rp(t) = e−
∫ t

0 λp(τ)dτ (11)

If λCF is the failure rate of fans [24] which cools, then the cooling [24] fan’s reliability
(RCF) is measured by Equation (12).

RCF(t) = e−
∫ t

0 λCF(τ)dτ (12)

The overall cooling system’s reliability (RCS) is measured from Equation (13).

RCS = 1− (1− RPRCF)(1− RP)(1− RCF) (13)

The numerical articulation for complete reliability of subsystems (RMAN) is communi-
cated by Equation (14).

RMAN = RCRW RT RORSI RB (14)
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Finally, the articulation for total transformer reliability (RTXR) is given as [24] in
Equation (15).

RTXR = RMAN RCSRTC (15)

Table 1. Reliability submodels of transformer.

S. No. Component Name Failure Modes Reliability Functions for Submodels

1 Core
The core lamination, core joints, and lamination gaps

were found to be the most common causes of
core failure [24].

Rc(t) = e−
∫ t

0 λc(τ)dτ

2 Winding
A normal winding non-success occurs when the

coating on the winding fails owing to widespread or
local overheating [24].

RW(t) = e−
∫ t

0 λW (τ)dτ

3 Tank
The high pressure in a transformer’s tank caused by
gases, as well as corrosion caused by moisture and
aging, are the main causes of the tank’s failure [25].

RT(t) = e−
∫ t

0 λT(τ)dτ

4 Oil Coating
The main causes are partial discharge and moisture
infiltration; other causes include suspended particles

in oil and arcing [24].
RO(t) = e−

∫ t
0 λ0(τ)dτ

5 Solid Coating
Insulation failure is primarily caused by short
circuiting or cellulose aging, according to the

electrical survey [24].
RSI(t) = e−

∫ t
0 λSI (τ)dτ

6 Bushing Overheating and insulation failure cause failure due
to dust, water infiltration, and effects on the bushing. RB(t) = e−

∫ t
0 λB(τ)dτ

7 Tap-changer
Its operation is mechanical, which means it could
break down. Other problems could be caused by

motor drives or contact cooking [24].
RTC(t) = e−

∫ t
0 λTC(τ)dτ

8 Cooling Pump RP(t) = e−
∫ t

0 λP(τ)dτ

9 Cooling Fan RCF(t) = e−
∫ t

0 λCF(τ)dτ

4. Markov Modeling

The microgrid consists of multiple components and multiple states, such as good,
repair, failure, and maintenance states [17]. There will be 3n conditions of the parts of
the microgrid. After time passed the working t, every component of the microgrid can
be in a failure state [26] in the following time frame, ∆t [27]. If the failure is detected, the
component can be repaired, and if the failure is not detected, then it can be repaired only in
maintenance mode. The λ, mean failure rate, µc recovery rate, and µp maintenance rate can
be constant [24]. The state change of the components will change the state of the microgrid
with the state probability transition. The system state changes from an i to a j state when
a failure is found, as shown below in Equation (16). Abbreviations are mentioned in the
last section.

Pij = λk × ∆t× C (16)

If non-success i.e., failure, is not found, Equation (17) is used.

Pij = λK × ∆t× (1− C) (17)

After repairing the component, the component will be in a normal state (i.e., a good
state), as shown in Equation (18).

Pij = µCk × ∆t (18)
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After a failure is not captured and repaired through maintenance through Equation (19).

Pij = µpk × ∆t (19)

The microgrid has two components, i.e., PV panels and converters. Each component
can be in one of the three states: bood (G), non-success (F), or repair (R) [26]. Each
component can be moved from a good state to a failure state, a failure state to a repair state,
and vice versa, but not from a good to a repair state [19]. A two-component system with
three states is explained below, and a similar approach has been used for a three-component
system, for which results are shown in this paper. Since a three-component system is very
complex to explain in this paper, the two-component system is explained below, but the
same approach has been used in this paper for the three-component system [21]. When the
system is in an optimal state, that means it is in a GG state [24]; after ∆t, it can be moved
to any of the following states. GF: if a non-success on the next component is found, then
the state change is P = λ2∆tc [17]. FG: if a non-success on the Ist component is found [26],
then the state change is P = λ1∆tc. GR: if the system did not identify the non-success on
the next component, the state change probability is: P = λ2∆t(1− c). RG: if the model
did not identify the non-success on the Ist element, then P = λ1∆t(1− c) [24]. GG: this
state is still present in the same condition with P = 1− (λ1 + λ2)∆t. Similarly, for the next
interval of time ∆t, GF will be moved to any of the below states. If the 2nd component is
mended, then the model will be back to good condition, GG, with probability P = µC2∆t.
If the first component fails and failure is found, the system will move to the FF state with
probability [28] P = λ1∆tc. If the system did not found a non-success on the 1st component,
then P = λ1∆t(1− c), and the remainng terms are calculated similarly. The state transition
diagram of the microgrid model shown in Figure 1 is depicted in Figure 4 below.

The A matrix shown below is the state transition matrix. Using this matrix, the
reliability [29] of the microgrid is calculated concerning time [29].

A =



1− (λ1 + λ2)∆t µC2∆t µp1∆t µC2∆t 0 0 µp2∆t 0 0
λ1C∆t 1− (λ2 + µC1)∆t 0 0 µC2∆t 0 0 µp2∆t 0

λ1(1− C)∆t 0 1− (λ2 + µp1)∆t 0 0 µC2∆t 0 0 µp2∆t
λ2C∆t 0 0 1− (λ1 + µC2)∆t µC1∆t µp1∆t 0 0 0

0 λ2C∆t 0 λ1C∆t 1− (µC2 + µC1)∆t 0 0 0 0
0 λ2C∆t 0 λ1C∆t 1− (µC2 + µC1)∆t 0 0 0 0
0 0 λ2C∆t λ1(1− C)∆t 0 1− (µC2 + µp1)∆t 0 0 0

λ2(1− C)∆t 0 0 0 0 0 1− (λ1 + µp2)∆tµC1∆t µp1∆t 0
0 λ2(1− C)∆t 0 0 0 0 λ1C∆t 1− (µC1 + µp2)∆t 0
0 0 λ2(1− C)∆t 0 0 0 λ1(1− C)∆t 0 1− (µp2 + µp1)∆t


Using the above approach, the reliability of a microgrid is calculated as shown below in

the results. Similarly, the approach with which availability is evaluated is explained below.

Figure 4. Transition diagram of proposed microgrid model.
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5. Availability

The mathematical modeling of availability is done using a probabilistic [24] approach
and difference differential equations [24]. These equations are solved for steady-state
conditions. Probabilistic considerations give the following differential equations associated
with the microgrid [30], as shown in Equations (20)–(29). Abbreviations are mentioned in
the last section.

P = ȦP (20)

P′GG(t + ∆t) = P′GG(t)− (λ1 + λ2)PGG(t) + µc1PGF(t) + µp1PRG(t) + µc2PFG(t) + µp2PGR(t) (21)

P′GF(t + ∆t) = λ1CPGG(t) + P′GF(t)− (λ2 + µc1)PGF(t) + µc2PFF(t) + µp2PFR(t); (22)

P′RG(t + ∆t) = λ1(1− C)PGG(t) + P′RG(t)− (λ2 + µp1)PRG(t) + µc2PRF(t) + µp2PRR(t); (23)

P′FG(t + ∆t) = λ2CPGG(t) + P′FG(t)− (λ1 + µc2)PFG(t) + µc1PFF(t) + µp1PRF(t); (24)

P′FF(t + ∆t) = λ2CPGF(t) + λ1CPFG(t) + P′FF(t)− (µc2 + µc1)PFF(t); (25)

P′RF(t + ∆t) = λ2CPRG(t) + λ1(1− C)PFG(t) + P′RF(t)− (µc2 + µp1)PRF(t); (26)

P′GR(t + ∆t) = λ2(1− C)PGG(t) + P′GR(t)− (λ1 + µp2)PGR(t) + µC1PFR(t) + µP1PRR(t); (27)

P′FR(t + ∆t) = λ2(1− C)PGF(t) + λ1CPGR(t) + P′FR(t)− (µc1 + µp2)PFR(t); (28)

P′RR(t + ∆t) = λ2(1− C)PRG(t) + λ1(1− C)PGR(t) + P′RR(t)− (µp2 + µp1)PRR(t); (29)

By putting P′(t + ∆t), P′(t), and other probability function derivatives equal to
zero [26], t tends to ∞ in all differential equations [31] and solves the nine equations.
The probability of the full working condition is computed by using the normalizing
conditions [31,32], i.e.,

64

∑
i=0

Pi = 1; (30)

The steady state availability of the [33] microgrid may be obtained as the summation
of all nine working probabilities [33] obtained from Equation (30).

Availability = µc1PGF(t) + µp1PRG(t) + µc2PFG(t) + µp2PGR(t)−
(λ1 + λ2)PGG(t) + λ1CPGG(t)− (λ2 + µc1)PGF(t)+

µc2PFF(t) + µp2PFR(t) + λ1(1− C)PGG(t)− (λ2 + µp1)PRG(t)+
µc2PRF(t) + µp2PRR(t) + λ2CPGF(t) + λ1CPFG(t)− (µc2

+µc1)PFF(t) + λ2CPRG(t) + λ1(1− C)PFG(t)− (µc2 + µp1)PRF(t)+
λ2(1− C)PGG(t)− (λ1 + µp2)PGR(t) + µc1PFR(t)+

µp1PRR(t) + λ2(1− C)PGF(t) + λ1CPGR(t)− (µc1 + µp2)PFR(t)+
λ2(1− C)PRG(t) + λ1(1− C)PGR(t)− (µp2 + µp1)PRR(t);

(31)

The availability is evaluated based on different values of failure rates, repair rates, and
C (i.e., coverage factor), and it is plotted concerning time using Equation (31).

6. Results and Discussion

The reliability of the microgrid was calculated concerning time using Markov mod-
eling [29]. The total time considered was 150 years, and simulation iterations were set to
5000, so the delta per iteration was 0.3 times per division. At the moment the value of t is
zero, corresponding to A(0), which is supposed to be the normal state, GG, of the system,
then S(0) [26] is shown in Equation (32). Abbreviations are mentioned in the last section.

S(0) = [1; 0; 0; 0; 0; 0; 0; 0; 0; ] (31)

At t = n.∆ t, S (n t) = An S(0), where S(0) is the initial state, and accordingly, corre-
sponding states are calculated by multiplying with the transition matrix.
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The reliability computed with Markov modeling using Matlab code is shown in
Figure 5. It was computed concerning time. As long as the system performs its defined
task, it will increase its reliability, which is reduced concerning time. This has a very high
impact on the electrical world, so microgrids should have high reliability to achieve their
maximum benefits. The availability was computed by calculating the above availability
Equations (16) to (25) above for various failure rates and repair rates. The failure rates and
repair rates were varied, and the different values of availability were computed. Below is
the availability computed concerning different values of failure rates when the repair rates
were fixed i.e., 0.02, 0.08, 0.02, 0.02, and C is 0.8.

Figure 5. Bridge-linked PV panel configuration.

As shown in Figure 6, the availability increases concerning an increase in repair rate. It
shows that the frequency of failure reduces, although the frequency of repair increases. The
availability as well as reliability increases as compared to the baseline model of microgrid
since the component’s specific configuration impacts the increase in chances of a lifetime of
the system and reduce the faults that occurred in that duration. During the design phase,
the parameters of reliability and availability performance are considered for financial
benefits, reducing the cost to microgrid owners.

6.1. Genetic Algorithms

The genetic technique is a natural selection and genetics-based search algorithm [34].
The genetic algorithm was used to optimize the results explained above. The objective
function was maximizing concerning parameters. The parameters are the failure rates, of
which different values are added; i.e., a range is defined and the optimum value is picked
up to provide maximum reliability of the system [35]. The GA was set up with a range of
variable values, and stopping criteria were also defined [36]. The initial population was
created, which was iterated through generations. Mating was performed using single-
point crossover. Then, the population was mutated, and new offspring and mutated
chromosomes were evaluated. The results and associated parameters were sorted and
statistics were performed [34]. Additionally, a neural network was trained successfully
and helped to predict the data. In the reliability curve shown in Figure 4, a similar curve is
shown to Figure 7’s genetic algorithm results. It shows that reliability is highest in the initial
years, but later becomes reduced; however, when we compare the duration of reliability,
this effect completely diminishes, which is higher in the case of the genetic algorithm.
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This took around 51 years, which is earlier than 26 years (i.e., mean time to failure). Thus,
it can be concluded that genetic algorithms give better results compared to the Markov
modeling-based reliability of a microgrid.

Figure 6. Availability concerning failure rate and repair rate.

The different range of performance parameters was varied from 0.1 to 0.9 to get the
best possible results, as shown in Table 2, and specific values where reliability was highest
were considered for the design of microgrid. The parameter used in the genetic algorithm
computation is the bitstring population, which has been considered with single-point
crossover. The mutation rate is 0.1, the crossover rate is 0.907, and the number of iterations
are 51.

Figure 7. Genetic algorithm results.

Table 2. Parameter ranges.

Failure Rate or Repair Rate Minimum Maximum Value

λ1 0.1 0.9
λ2 0.1 1
λ3 0.1 0.9
µ1 0.1 0.5
µ2 0.1 0.9
µ3 0.1 0.7
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6.2. Artificial Neural Networks

Artificial neural networks (ANN) come from the idea of natural biological neurons. As
human neurons work based on their learning instead of fed code, similarly, an ANN works
on data fed to it instead of logic. These networks are based on learning and do not follow
any substantial equations. Only data required in terms of inputs and corresponding output
generated from it are required, nothing else. An ANN enters the training process based
on this data to learn and grasp the relationship between the input and output data [37].
Upon successful completion of training, an ANN can provide accurate output for any input
variable without knowing the formula [38]. Therefore, the first step requires ANN data.
This is the first major requirement for ANN implementation. Here, the data were collected
by doing experiments. We collected data for 1000 output data with the following ranges of
inputs: mean time to failures and mean time to repairs, which lies between zero to one. This
means that the maximum and minimum ranges of the inputs were considered between 0
to 1. Matlab’s random function was used to create varied numbers of samples inside the
range to provide 1000 data samples. A new feed-forward neural network was introduced
here along with the Minimax function. The input layer had six neurons, the hidden layer
had five, and the output layer had one neuron for availability. The activation functions
for the input, hidden, and output layers were logsig, tansig, and purelin, respectively.
These activation functions were employed at the discretion of the user. At the start of the
training, these activation functions were employed [39]. However, of all training algorithms,
the Levenberg–Marquardt backpropagation algorithm is most commonly used for ANN
training because it provides fast results in most cases. This training algorithm was the
training algorithm by default. The ANN was initialized by the inputs, the output data,
and these layers [40]. Despite not knowing the exact equation, an artificial neural network
from its training can find the relationship between the input and output data [41]. The
comparison of the three methods implemented is shown in Table 3.

Table 3. Parameter ranges.

Methods MTTF (in Years)

Markov modelling 26
Genetic algorithm 51
Artificial networks 51.4

The present results indicate that the reliability and availability of microgrids decrease
with time and concern higher values of failure rates, as shown in Figures 8 and 9 . The results
are consistent when applied to the genetic algorithm as well as artificial neural networks,
i.e., around 51 years and 51.4 years, respectively. The results of the further analysis indicate
that fault frequency is highly reduced here; simultaneously, the frequency of repair is also
increased. The present findings on the reliability and availability of microgrids shows
significant improvement concerning previous findings with different values of failure rates
and repair rates.
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Figure 8. Artificial neural network results.

Figure 9. Artificial neural network results for a microgrid. (a) The model is trained for 1000 values
using the Levenberg–Marquardt training method. (b) The output of the ANN after the model is
fully trained.

7. Conclusions

This paper has investigated the reliability and availability of a microgrid based on
different values of failure rates as well as repair rates that change with time, along with
specific configurations of PV panels, using Markov modelling, GA and ANN to optimize
MTTF. It is shown that ANN results are achieved in the shortest time of 7 s, obtaining
an MTTF of 51.4 years and demonstrating the higher reliability and availability of the
microgrid as compared to GA and Markov modeling. A better configuration and best
possible values of failure rates and repair rates in designing the microgrid leads to almost
double the overall microgrid’s MTTF.

Possible future work is to use the same model on larger power and energy systems,
along with an islanded mode, where all the submodels are isolated individually. New
equipment is needed for studying the individual isolation of submodels to examine re-
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liability with cost analysis. This work is conducted by studying physical components
and submodels, but it can be extended by adding electronic communication devices (like
Zigbee, wireless sensor networks, etc.) for the two-way flow of information and power.
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Abbreviations
The following abbreviations are used in this manuscript:

λ Average failure rate
µ Repair rate
MTTF Mean time to failure
MTTR Mean time to repair
ANN Artificial neural networks
GA Genetic algorithm
PV Photovoltaic panels
Iot Internet of things
RPV PV panel’s reliability
Tj Temperature at device junction
THS Temperature at hot-spot for inductor
πT Function of Tj and THS
πi Factors that change the failure rate of submodels
πQ Fabrication factor
πE Environmental factor
πS Stress factor
πC Contact due to construction factor
λMOSFET Failure rate of MOSFET
λDiode Failure rate of diode
λInductor Failure rate of inductor
PR Probability of correct functioning of fault detection system
C coverage factor
λc Failure rate of core
λW Failure rate of winding
λT Failure rate of tank
λo Failure rate of oil coating
λSI Failure rate of solid insulation or solid coating
λB Failure rate of bushing
λTC Failure rate of tab changer
λP Failure rate of cooling pump
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λCF Failure rate of cooling fan
Pij System-state transition probability from state i to state j
λk Failure rate of kth element
µc Recovery rate
µp Maintenance rate
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