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Abstract: The article deals with the issue of the influence of selected material and construction
solutions for a floor in a historic wooden building on heat exchange with the ground. The scope
of the work included continuous measurements of selected parameters of internal and external
microclimate, which were later used for numerical analysis of selected calculation variants. The
research was carried out in a historic wooden church located in southern Poland. The research
period covered 2019, while all measurements were performed every 1 h. For the variant analysis, a
building with a wooden and stone floor was adopted. The influence of the heating system on the heat
exchange with the ground for wooden and stone floors was also analysed. As a result of a detailed
analysis, it was found that the material and construction solutions, as well as the heating system,
have a significant impact on the formation of heat exchange with the ground. The building with
a wooden floor was characterised by significantly higher values of energy losses to the ground in
relation to heat gains. During the year, the total energy losses to land amounted to 1005 kWh, while
the gain was 47 kWh. The energy flow from inside the building to the ground in August was 2.4 times
higher in variant 2 than in variant 1. In February, heat losses to the ground were 1.6 times higher in
variant 2 compared to variant 1.

Keywords: numerical methods; elementary balances; heat exchange; wooden building; historic building

1. Introduction

The material and construction solutions of buildings have a significant impact on the
internal microclimate and thermal comfort of people staying inside them, as well as on
the interaction with the external environment [1–3]. Depending on the purpose, buildings
are characterised by different materials and construction solutions [4–6]. However, the
overriding goal is always to ensure an appropriate internal microclimate that has a direct
impact on the people inside, animals or elements constituting interior furnishings [7–10].
The microclimate of the interior is mainly determined by the multidimensional heat and
humidity phenomena. The quality of indoor air is also very important, as it has a direct
impact on the comfort of users but can also affect interior elements [11].

Historical objects constitute a very important resource of cultural heritage all over
the world. Among the wide group of historical buildings, religious cult objects can be
distinguished. They are characterised by a specific form of use. Buildings of this type are
used periodically; therefore, the amplitude of changes in the physical parameters of the
internal microclimate may be greater than in buildings that are constantly used [12,13].
The cyclical nature of the operation of facilities may pose a risk of large fluctuations in the
amplitude of temperature and relative humidity of the air, which may be a phenomenon
contributing to the negative impact of the internal microclimate on building partitions and
interior fittings [14,15]. The influence of external factors, such as air pollution or radiation,
which may adversely affect the interior of the building, is also important [16,17]. The indoor

Energies 2022, 15, 5924. https://doi.org/10.3390/en15165924 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15165924
https://doi.org/10.3390/en15165924
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-5774-281X
https://doi.org/10.3390/en15165924
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15165924?type=check_update&version=3


Energies 2022, 15, 5924 2 of 17

microclimate in this type of building must therefore be adjusted to the requirements of the
works of art, artifacts or materials used in them. In sacred buildings, stone floors, mostly
marble, are most often used. Wooden floors are also used in historic buildings. Regardless
of the material used, regular and thorough maintenance of the floor should be remembered
in order to ensure many years of operation while maintaining its values [18,19]. Obtaining
appropriate internal conditions can be achieved through the use of heating, ventilation or
the introduction of thermal and anti-moisture insulation in the partitions [20–22].

In historical buildings, interference with vertical partitions can be complicated due
to the fact that they are most often covered with ornaments, polychromes and paintings.
One of the partitions that can be modernised in most of these types of buildings is the
ground floor. Depending on the material used and the insulation of the floor, it may have a
different share in the energy management of a building [23,24]. Before commencing the
modernisation of the floor, it is necessary to conduct a thorough analysis of the influence of
the applied solutions on the obtained results. In field conditions, conducting such research
is extremely complicated, but such research can be based to some extent on numerical
methods, using specialised computational tools such as Wufi®Plus, EnergyPlus, Trnsys,
CFD and DesignBuilder [25,26].

The aim of the article is to show the influence of selected floor material and construction
solutions on heat exchange with the ground in a historic wooden building. An analysis of
the influence of introducing a heating system on heat exchange with the ground and on
heat flow was also carried out. The analysis was based on the results of field research in
the existing historic building. The work attempts to solve the following problems: Will
the use of a stone floor increase the heat flow to the ground? In which periods of the year
does the change in material and construction solutions have the greatest impact? Will
the use of a heating system increase the heat gains from the ground as a result of the
accumulation phenomenon?

2. Materials and Methods
2.1. Conceptual Framework of the Study

The scope of the study and the individual stages of the research results development
are presented in Figure 1.
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2.2. Research Object

The object of the research was a historic wooden church located in the southern part
of Poland. The walls of the building were erected on stone foundations. They were made
in a carcass construction with external formwork. The floor of the building is made of
5 cm thick wooden boards placed on 14 × 14 cm joists. There was a 15 cm sand bed under
the joists. The building is dominated by flat ceilings, while at the junction of the transept
and the nave, an apparent dome-shaped vault was erected. The walls of the building are
covered with polychrome from the inside. The saddle roofs are covered with sheet metal
(Figure 2). The object in question dates from 1555.
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Figure 2. The elevations of the research object: (a) south; (b) northern; (c) eastern; (d) western.

2.3. Measuring Apparatus and Measurement Methods

In the tested object, continuous measurements of temperature and relative humidity
of the indoor air were carried out in the period: from 1 January 2019 to 31 December 2019.
Internal and external air temperature measurements were made using PT-100 sensors with a
resolution of 0.1 ◦C and a measurement error of±0.1 ◦C. A DTH22 sensor with a measuring
range of 0–100% and an accuracy of 0.3% was used to measure the relative humidity of
indoor and outdoor air. The sensors were connected to the HP multi-channel recorder. For
the computational analysis, 12 additional measurement points in the ground under the
building and in its vicinity were adopted. The floor and soil temperature monitors are
arranged in three measurement plumbs (Figure 3). Data were acquired every 1 h.
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C2, D1, E3—air temperature and relative humidity measurement points; I, II, III—floor and soil 
temperature measuring risers; 1–12—floor and soil temperature measuring points. 

After obtaining and analysing the results of field tests, the simulation of the influence 
of selected floor material and construction solutions on the heat exchange with the ground 
was started. For this purpose, a building model was used (Figure 4), which was subjected 
to a computational analysis based on the elementary balance method (MEB), implemented 
in the WUFIplus® computer software. The calculations were performed every 1 h. This 
program is a specialised tool in the field of building physics, allowing for calculations for 
non-stationary boundary conditions and taking into account the actual measurement 
data. 
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Figure 3. Location of measurement points: (a) projection; (b) cross-section; A1, B0, B1, B2, C0, C1,
C2, D1, E3—air temperature and relative humidity measurement points; I, II, III—floor and soil
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After obtaining and analysing the results of field tests, the simulation of the influence
of selected floor material and construction solutions on the heat exchange with the ground
was started. For this purpose, a building model was used (Figure 4), which was subjected
to a computational analysis based on the elementary balance method (MEB), implemented
in the WUFIplus® computer software. The calculations were performed every 1 h. This
program is a specialised tool in the field of building physics, allowing for calculations for
non-stationary boundary conditions and taking into account the actual measurement data.
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In the calculations, two variants of material and construction solutions were adopted
(Figure 5), i.e., a wooden floor (variant 1) and a slate stone floor (variant 2). Stone floors
are one of the most frequently used in this type of facility. In wooden buildings, especially
historical ones, there is, however, a wooden floor made of wooden joists.
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Figure 5. Material and construction solutions for the floor included in the analysis: (a) wooden floor;
(b) stone floor.

The computational analysis was extended with additional simulations of the building’s
heating system in the case of a wooden floor (variant 3) and a stone floor (variant 4). The
actual measurements of temperature and relative humidity of indoor air were used for
the calculations. The intensity of solar radiation and the sum of annual precipitation was
implemented for a typical meteorological year (TRY) for Krakow (Figure 6). The data
adopted relate to 2019, which corresponds to the actual research period.

The technical parameters of the materials used in the model are summarised in Table 1.

Table 1. Physical parameters of materials implemented in the computational model.

Material/Layer ρ [kg·m−3] c [J· kg−1· K−1] λ [W·m−1· K−1]

Pine transverse
direction 510.00 1600.00 0.13

Oak radial 685.00 1400.00 0.05
Sandy clay 1400.00 850.00 0.38

Sand 1579.00 850.00 0.51
Concrete 2104.00 776.00 1.37

Source: PN-EN:6946-2008.
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Figure 6. Characterisation of solar radiation and annual precipitation used in the model (Krakow,
Technical University Lodz).

The model includes assumptions about the power of the central heating system and
the ventilation system. After a series of preliminary calculations, the simulations assumed
the maximum heating power of 80 kW. The ventilation in the building was assumed to
be a natural 0.5·h−1. A constant infiltration through leaks of 0.3·h−1 was also assumed.
The obtained results were analysed statistically. The average error of real and theoretical
tests was also verified based on Formula (1), where: ∆θ—mean error; θm—measured
temperature; θc—calculated temperature; N—number of measurements.

∆θ =
∑|θm − θc|

N
(1)

The scope of the study included:

- Obtaining field data of the internal and external microclimate of the above-
mentioned parameters;

- Creating a geometric model of the building;
- Implementation of the calculation model (MEB) and its specification corresponding to

the tested object;
- Conducting several dozen validation simulations;
- Simulations of selected calculation variants;
- Analysis of calculation variants.

3. Results
3.1. The Results of the Field Measurements

The field research made it possible to obtain selected parameters of the internal and
external microclimate, which were used as boundary conditions for further computational
analysis. The measured parameters were classified according to a given variant. In an
unheated church with a wooden floor, the temperature of the internal air (Θi,w) ranged
from 12.5 ◦C to 25.4 ◦C during the year (Figure 7). The outside air temperature (Θe,w) in the
audited year reached the maximum value of 31.0 ◦C in June. In February, the minimum
value of the outside air temperature of 5.0 ◦C was recorded.
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Figure 7. Temperature course of internal (Θi,w) and external (Θe,w) air in an unheated church with a
wooden floor.

Measurements of the relative humidity of indoor (RHi,w) and external (RHe,w) air did
not show a significant risk of water vapour condensation on the surfaces of the internal
partitions. The values of RHi,w fluctuated in the range of 55.6–78.0% during the year, while
RHe,w values ranged from 34.0 to 100% (Figure 8). The mean annual RHi,w value was 68.6%
(median 68.5%), while RHe,w was 75.0%, with the median 77.7%.
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unheated church with a wooden floor.

3.2. Computer Simulations

The analysis of the parameters obtained as a result of field tests and simulations
revealed no significant statistical differences (Kruskal–Wallis test), with a very strong
correlation of data (0.92). The selected curves of the actual and calculated temperature
are presented in Figure 9. The mean error calculated from Formula (1) was 1.23 ◦C for the
entire measurement year.
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Figure 9. Selected curves of real and calculated indoor temperature in points E3, C0 and A1.

The field tests were supplemented with the results of the temperature of the floor and
soil lying under the tested object. Simulations of this parameter in three measurement
divisions allowed for obtaining detailed waveforms in the time interval every 1 h (Figure 10).
The highest value of the ground temperature was recorded at point 1w (30.5 ◦C), located
0.05 m below the ground surface, on the eastern side of the tested object. The maximum
value of the floor temperature at a point 0.50 m away from the eastern outer wall, at a
depth of 0.05 m (point 5w), was 6.0 ◦C lower than point 1w and amounted to 24.5 ◦C. The
floor temperature in point 9w was similar to the temperature recorded in point 5w. The
differences in the obtained maximum, minimum and average values did not exceed 0.2 ◦C.
Detailed characteristics of the minimum, maximum and average temperature of the floor
and soil are presented in Figure 11.
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Figure 10. Temperature of the floor and soil in variant 1.
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Figure 11. Fluctuation amplitude and average floor and soil temperature in variant 1; (a) measurement
plumb I; (b) measurement plumb II; (c) measurement plumb III.

The analysis of temperature variation in variant 2 showed significant differences in
the temperature of the floor inside the church at points 5w and 5s as well as 9w and 9s
(Figure 12). The use of a stone floor contributed to the reduction in the annual amplitude of
floor temperature fluctuations by 1.8 ◦C. In summer, a favourable phenomenon was found
in the lower floor temperature by 1.3 ◦C compared to the wooden floor. In the autumn,
winter and spring periods, a higher temperature of the stone floor was observed by 0.7 ◦C
compared to the wooden floor, which should also be considered a favourable phenomenon.

The obtained test results for the floor made of wood and stone were used for the
analysis of heat exchange with the ground.

3.3. Heat Exchange with the Ground for Various Types of Flooring

In the first stage of the analysis, two types of flooring were taken into account—wooden
(variant 1) and stone (variant 2), and the lack of a heating system in the tested building was
also assumed. The obtained results made it possible to estimate the energy flow (kWh).

The building with a wooden floor was characterised by significantly higher values
of energy losses to the ground in relation to heat gains (Figure 13). During the year, the
total energy losses to land amounted to 1005 kWh, while the gain was 47 kWh. The highest
energy losses to the ground were recorded in October (141.7 kWh), while in August, the
highest heat flux from the ground to the interior of the church was found (19.7 kWh).
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The use of a stone floor (variant 2) contributed to a significant increase in the energy
flow between the interior of the tested object and the ground (Figure 14). On an annual
basis, the total energy losses to the ground were higher by 42% compared to the building
with a wooden floor. The amount of energy gained from the ground still remained very
low (62 kWh per annum) but was higher than the wooden floor by 32%.
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The analysis of the obtained results of heat exchange with the ground also showed
that the greatest impact of changing the material and construction solution of the floor
occurred in the summer (August) and winter (February) periods. The energy flow from
inside the building to the ground in August was 2.4 times higher in variant 2 than in variant
1. In February, heat losses to the ground were 1.6 times higher in variant 2 compared to
variant 1.

3.4. Influence of Heating on Heat Exchange with the Ground

The use of central heating in the tested facility allowed analysis of the impact of this
system on heat exchange with the ground in two variants of material and construction
solutions: a wooden floor (variant 3) and a stone floor (variant 4).

As a result of the operation of the heating system in variant 3, it was found that the
heat gain from the ground decreased by 20% in winter (January) in relation to variant 1.
As a result of the continuous operation of the heating system, the ground under the floor
was warming up. As a result, the heat flux from the ground to the building increased in
the spring (May). During this period, ground energy gains were 51% higher in variant 3
compared to variant 1 (Figure 15).

In variant 4, an increase in heat gains from the ground was found by 61% compared to
variant 2, in which the heating system was not taken into account (Figure 16). The greatest
increase in energy flow from the ground to the building was observed in winter and spring.
The ground warmed up in winter, contributing to a 16-fold increase in heat flow from the
ground to the building in May compared to the variant with a stone floor without heating.
On the scale of the whole year, energy losses to the soil decreased in variant 4 compared to
variant 2 by about 4%.
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3.5. Strengths and Limitations of Study

The conducted field research allowed determining the characteristics of the internal
microclimate of the examined historic object against the background of the external mi-
croclimate. The obtained data were used to carry out a series of simulations using the
numerical method of elementary balances after prior validation of the computational model.
The obtained results allowed determining the energy flow between the building and the
ground with a frequency of 1 h. In the course of conducting research and processing the
results, some limitations were also noted, which will be subject to attempts to solve in the
future (Table 2).
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Table 2. Strengths and limitations of study.

Strengths Limitations

The obtained field data were consistent and precise.

Calculations and measurements were performed with a
frequency of 1 h. During the service period, the sampling
frequency should be increased, e.g., every 1 min, in order to
precisely determine the variability of the interior microclimate.

Obtaining precise data of the ground temperature at the
imposed temperature of internal and external air from
real measurements.

The conducted simulations have limitations in the form of the
inability to take into account the variability of the snow
cover thickness.

The applied method gives great freedom to modify the adopted
variants, which makes the scope of its application very wide.

Modification of calculation variants requires each time
verification of technical parameters of materials entered into the
model. The validation of the computational model requires
several dozen simulations in order to match the actual research
with the theoretical results.

Possibility to carry out further analysis based on the obtained
test results, which can be used to optimise the energy of the
tested object.

The obtained results are not universal and relate only to the
tested research object.

4. Discussion

Research on the shaping of the internal microclimate and energy of the building is very
important, especially now with the constantly growing prices of energy carriers [27,28]. In
the existing publications, one can find the results of research on unheated and unventilated
churches, in which the internal climate depends on the external conditions. This state
of affairs is to have a positive impact on works of art, as the introduction of heating or
ventilation may disturb the air temperature and relative humidity inside the building and
thus lead to the destruction of the objects located there [21,29,30]. The introduction of
heating aimed only at improving the thermal comfort of people may lead to a change in
the historical microclimate to which artifacts have already acclimatised. The conditions
guaranteeing the protection of monuments are placed above conditions that are comfortable
for humans [31]. The internal microclimate, which depends only on external conditions,
also creates unfavourable conditions for works of art [13,29]. The modernisation of historic
buildings should be planned to take into account the protection of monuments while
improving the thermal comfort of people. The improvement of internal conditions can
be achieved through the use of heating, ventilation or the introduction of thermal and
anti-moisture insulation of the partitions [20–22].

Research on the microclimate of historic buildings is not limited only to the analysis
of the conditions inside the building and their assessment [32–34] but also the impact of
modernisation on the microclimate and the impact of climate change [35,36]. The current
research results indicate that not only the requirements for historic buildings should be
taken into account, but also the thermal comfort of the congregation [37,38]. In terms of
planning modernisation projects and their impact on shaping the internal microclimate, the
use of computational tools based on numerical models can be very helpful [39–41].

In connection with the above, it is necessary to constantly develop knowledge about
the influence of various factors on the shaping of physical phenomena in historic buildings
and in their surroundings. Any modernisation of historic buildings requires an in-depth
analysis of the impact of the intended activities on the subsequent changes in the micro-
climate. It should also be noted that not all partitions can be modernised without the risk
of damaging the paintings or polychrome. The floor is a partition, the modernisation of
which has little effect on the historical elements of the interior; therefore, research in this
area is characterised by a much easier process of subsequent implementation in practice,
unlike other partitions in facilities of this type.

Further research in this area will concern the possible application of thermal insulation
of partitions. A very important issue is also to analyse the type of heating system and the
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method of heat distribution (CFD simulations), as well as to analyse the influence of the
heat carrier used on the emission of greenhouse gases.

5. Conclusions

The field research conducted during the full 12 months allowed for the acquisition of
boundary conditions for further detailed numerical analyses. The adopted four variants
illustrated the impact of selected material and construction solutions and the operation of
the heating system on the formation of heat exchange with the ground. As a result of the
detailed analysis, the following conclusions were formed:

1. In annual terms, the total energy losses to the ground in the building with a stone
floor were higher by 42% compared to the building with a wooden floor;

2. Ground energy gains in a building with a stone floor were higher than the wooden
floor by 32% over the entire year;

3. The greatest impact of changing the floor material and construction solution occurred
in the summer (August) and winter (February) periods. The energy flow from inside
the building to the ground in August was 2.4 times greater for the stone floor than for
the wooden floor. In February, heat losses to the ground were 1.6 times greater in a
building with a stone floor compared to a wooden floor;

4. As a result of the operation of the heating system in the variant with a wooden floor,
it was found that the heat gain from the ground decreased by 20% in winter (January)
in relation to the building with a wooden floor without heating;

5. In the spring, the energy gains from the ground were 51% higher in a heated building
with a wooden floor compared to an unheated building with the same type of flooring;

6. Increased heat gains in the spring are due to the heating of the ground in winter
thanks to the operation of the heating system;

7. In the case of a stone floor, the use of a heating system increases the annual heat
gains from the ground by 61% compared to a building with the same material and
construction solutions but unheated.

Author Contributions: Conceptualization, P.S. and G.N.; Data curation, M.M.; Formal analysis, P.S.,
G.N. and M.M.; Investigation, P.S.; Methodology, P.S., G.N. and M.M.; Software, P.S.; Supervision,
P.S. and G.N.; Validation, P.S.; Visualization, P.S. and M.M.; Writing—original draft, P.S. and M.M.;
Writing—review & editing, P.S. and G.N. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thormark, C. A low energy building in a life cycle—Its embodied energy, energy need for operation and recycling potential.

Build. Environ. 2002, 37, 429–435. [CrossRef]
2. Nawalany, G.; Sokołowski, P. Building–Soil Thermal Interaction: A Case Study. Energies 2019, 12, 2922. [CrossRef]
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