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Abstract: The increasing popularity of electric vehicles (EVs) has been attributed to their low-carbon
and environmentally friendly attributes. Extensive research has been undertaken in view of the
depletion of fossil fuels, changes in climatic conditions due to air pollution, and the goal of developing
EVs capable of matching or exceeding the performance of today’s internal combustion engines (ICEs).
The transition from ICE vehicles to EVs can reduce greenhouse gases significantly over a vehicle’s
lifetime. Across the different types of EVs, the widespread usage of batteries is due to their high power
density and steady output voltage, making them an excellent energy storage device (ESD). The current
downsides of battery-powered electric vehicles include long recharge times, the impact of additional
strain on the grid, poor societal acceptance due to high initial costs, and a lack of adequate charging
infrastructure. Even more problematic is their short driving range when compared to standard ICE
and fuel cell EVs. Battery degradation occurs when the capacity of a battery degrades, resulting
in a reduction in travel range. This review article includes a description of battery degradation,
degradation mechanisms, and types of degradation. A detailed investigation of the methods used to
address and reduce battery degeneration is presented. Finally, some future orientation in terms of EV
research is offered as vital guidance for academic and industrial partners.

Keywords: lithium-ion; batteries; energy management system; electric vehicle; energy storage
devices; degradation; microgrid; 4IR enabling technologies

1. Introduction

Energy management systems (EMS) are highly optimized automated systems that take
field-measured energy data, analyze it, and then make it available to end-users via visuals
and online monitoring tools [1]. By studying EMS, experts in energy management can
grasp the system’s state in real-time and ensure that the system works effectively through
reasonable adjustments, improving productivity, energy balance, and comprehension of
the energy demand and consumption situation. As a result, the EMS ecosystem efficiently
reduces load energy consumption and pollutant emissions [2]. An EMS utilizes energy
scheduling technologies to ensure that end-users maximize the energy saving potential of
energy storage devices (ESDs).

Smart homes and electric automobiles are two examples of loads in the EMS ecosystem.
The development of electric vehicles was aided by advancements in battery and motor
technology. An EV can act as both a load and a distributed energy resource for the microgrid
(MG) [3]. An EV is propelled by an electric motor and powered by stored energy in the
batteries. EVs stand in stark contrast to conventional internal combustion engine (ICE)
automobiles. In addition to this, they generate zero-emission and are significantly more
environmentally beneficial than vehicles fuelled by liquid petroleum gas [4–6]. In addition,
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EVs use less fuel and produce less noise than cars fuelled by gasoline. ICE vehicles have
more moving parts than electric vehicles, which results in more frequent maintenance needs.
Oil changes, tune-ups, or timing adjustments are not required when there is no engine
or exhaust. Over the last decade, EVs have awakened much interest as one of the most
favorable ways to reduce greenhouse gas (GHG) emissions. Additionally, they generate
a more hygienic and calmer environment. The growing demand for global fossil fuels
and their steady depletion has fuelled the early adoption of EVs. Furthermore, EVs have
a particular advantage in terms of integration flexibility, which translates into increased
transportation performance. EVs can incorporate a variety of energy sources, including
fuel cells, solar panels, regenerative braking, ultra-capacitors and supercapacitors (SCs),
and others [5].

The following EV variants have been produced and are currently being explored for
improvement: the Battery EV (BEV), Hybrid EV (HEV), Plug-In Hybrid EV (PHEV), Range
Extender EV (REEV), and Fuel Cell EV (FCEV) [7–10]. An HEV is propelled by an ICE and
an electric motor. Vehicle propulsion requires chemical energy, which the ICE provides
through its combustion chamber [11]. A BEV obtains all of its power from the grid and
has batteries on board for energy storage only. The manufacture of batteries for BEVs
consumes a lot of energy and emits many GHGs [12]. PHEVs are hybrid cars that combine
the benefits of electric vehicles and traditional cars. This allows them to improve fuel
efficiency while avoiding the mileage anxiety that comes with electric cars [13,14]. PHEVs
have electric propulsion systems that work with conventional ICEs to make them more
efficient. They can be charged at home or work. This means that secondary energy sources
can help keep the ICEs in hybrid powertrains running at their best all the time, which
improves both the vehicle’s dynamics and performance. REEVs are viewed as a viable
solution to short-range electric vehicles and high costs. The auxiliary power unit (APU) is
used in a REEV to provide additional energy to support the primary battery in propulsion.
The APU is mounted to the EV as a trailer [15,16]. FCEVs are EVs that utilize compressed
hydrogen fuel as the primary source of power [10], resulting in significant reductions in
GHG emissions [17].

Unique characteristics distinguish each type of EV: the ESDs (batteries, fuel cells,
ultra-capacitors, SCs, and flywheels), the energy source, electric range, power units,
and regenerative braking characteristics. Despite technological breakthroughs and EV
subsidies, such as low operating costs and access to renewable energy, the general adop-
tion of EVs has been gradual, with retail purchases dominating the EV industry [18–20].
The most significant hindrances to their adoption include expensive investment costs,
greater upfront purchase costs, and short driving ranges, resulting from EVs’ critical
weakness—their battery. Additionally, charger compatibility, charging infrastructure
availability, grid capacity, and car costs all pose significant challenges to the implemen-
tation and global acceptance of EV vehicles. The ESD system, particularly the batteries,
must meet specific requirements regarding safety, charging and discharging rates, energy,
and power density for the efficient operation of an EV [21–24]. Currently, batteries have
several disadvantages, including low energy density, considerable weight, and high cost.
Even with ongoing research into battery development, the current roadblock to the full
embrace of EVs is the issue of battery degradation [24]. An evaluation of the attributes
associated with each type of EV is provided in Table 1.

The electric vehicle’s battery degradation results in high investment costs and a limited
operating range. Lithium-ion (Li-ion), lead-acid, nickel/metal-hydride batteries, and ultra-
capacitors can be used in HEVs, PHEVs, and EVs. Because of their relatively low rate
of self-discharge while being stored, lithium-ion batteries are frequently used in electric
vehicles (EVs). This is in contrast to the other battery technologies that have been utilized
in the creation of EVs [8,25]. Additionally, they offer appropriate power density and a high
energy density. However, despite their robustness, they suffer from a reduced life cycle, as
evidenced by the depreciation of the battery life [26].
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Table 1. Different types of EVs and their characteristic features [11].

Braking
Mechanism Motor Battery ICE Fuel Cells

BEV Applicable Electric motor Battery Not Applicable Not Applicable
PHEV Applicable Electric motor Battery Driving the wheel Fossil fuel cell
HEV Applicable Electric motor Battery Applicable Fossil fuel cell
FCEV Applicable Electric motor Battery Not Applicable Fuel cell + Hydrogen tank

REEV Applicable
(Partially) Electric motor Battery Applicable

(Generating power) Not Applicable

Many researchers have attempted to solve the problem of EV battery degeneration.
In [27], the central research concerns regarding lithium-ion batteries that were focused
on included capacity estimation, battery sorting, remaining battery life, battery circuit
modeling, and SOC techniques, while the merits and downsides of battery sorting were
also discussed. In addition [28], presents a concise summary of many areas of LIB safety and
an overview of thermal runaway, with a particular focus on the consequences of mechanical,
electrical, and thermal abuse. The authors investigated various methods for enhancing cell
safety, such as those involving cell chemistry, cooling, and balancing. They also described
existing safety standards and the subsequent testing that corresponds to them.

None of these reviews has taken a comprehensive approach. While charging and
discharging cycles undoubtedly reduce practical battery life, the factors that must be con-
sidered for the complete theoretical and practical modeling of a battery’s degradation have
not been addressed to the expected extent due to the enormously complex mathematical
modeling of the electrolytic process. EV adoption will be delayed until a viable strategy to
overcome the hurdles can be devised.

An EMS enhances the power output of numerous ESD sources, such as the battery
and supercapacitor, providing essential power while optimizing certain cost functions in
the EV, such as fuel consumption, battery life, emissions, and driving control. ESDs can
be categorized broadly into mechanical energy storage systems, electrical energy storage
systems, and chemical energy storage systems. Typical examples include the flywheel,
compressed air, superconducting magnetic energy storage, supercapacitor, Li-ion batteries,
and fuel cells.

Therefore, this article addresses the degradation mechanisms of batteries used in EMS,
focusing on EVs. Additionally, the literature on battery deterioration will be analyzed to
consider the scope of previous work, identify areas of inadequacy, and determine what may
be carried out to improve the EV. The advantages and disadvantages of various electric
vehicle technologies will also be discussed. Given the focus on electric vehicles (EVs) and
the strategies for a smooth transition away from the usage of fossil fuels in transportation,
we shall attempt to answer the following questions:

• What are the overall factors contributing to degradation in batteries?
• What methods have been used to reduce the degradation of batteries in EVs?
• What is the way forward in handling the problem of battery degradation as far as the

EMS is concerned?

This paper is presented in the following sections: Section 2 presents the procedure
used to identify and select existing literature for this article. Section 3 describes battery
degradation and reports on the consequences of battery degeneration. Section 4 considers
the many methodologies described in the literature for modeling and simulating battery
degradation. Section 5 provides a systematic evaluation of studies highlighting the degra-
dation of the battery as an essential component of an electric vehicle’s EMS. The literature
is then summarized in Section 6, followed by some proposed future research directions and
priorities before concluding in Sections 7 and 8, respectively.
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2. Approach to Literature Review

The subject of this review study, battery degradation in relation to EMS, was ap-
proached using a methodical literature review strategy. Through theoretical synthesis of
the field and its subfields, this strategy attempts to provide collective insights into the
area. Initially, a systematic search was undertaken. The search was carried out with the
help of the Science Research Assistant (SRA). Using SRA, essential information on any
web page, including lengthy scientific papers, can be quickly retrieved. Subsequently, any
keyword on any web page can be efficiently searched for in scientific journals via tabs
such as general science publishers (Elsevier, Hindawi, Taylor & Francis, Springer, Wiley);
medicine, agriculture, chemistry, and biology (Nature); physics, mathematics, technology,
computer science (arXiv, CiteSeerX, IEEE, DPLP); and metasearch (Google scholar, +journal,
+research, and news).

The keywords used in the search were “degradation” and “electric vehicles”, among
others. “Degradation of batteries”, “Degradation of fuel cells”, and “Energy management
system” were among the search terms used later. Following that, a thorough review of
the literature identified during the search was carried out. It was important to summarize
and present the findings from such detailed review work in a meaningful way. The initial
findings prompted a search for additional literature that elaborated on the factors that cause
degradation in storage systems. The definitions for different degradation models, such as
the semi-empirical and electrochemical models, were also investigated to ensure a compre-
hensive literature search that would provide an accurate state-of-the-art representation of
the most significant factors. By removing book chapters and internet pages, the number of
articles discovered decreased. Only conference proceedings, articles, publications in the
press, and review papers were displayed in the search results. A final list of articles for the
review was compiled, with each article focusing specifically on the interaction between
electric vehicles and battery degradation.

3. Key Assumptions and Equations

In modeling the degradation of a lithium battery, several parameters such as the bat-
tery State of Charge (SOC), ambient cell temperature, depth of cycling C-rate, ampere-hour
throughput, and ampere-hour-count are considered. The SOC limits (minimum and maxi-
mum), calendar aging, and cyclical aging are necessary to find out how healthy a battery
is and its expected lifetime, the latter two being the critical parameters for identifying the
performance degradation of a battery [29]. It is also assumed that any battery used in the
drive cycle, with or without additional energy sources such as supercapacitors or fuel cells,
will have been used and must be recharged. In addition, it is reasonable to assume that the
capacity of the battery to complete a required driving cycle is available before it reaches
the End-of-life (EOL). This, in turn, significantly impacts how the battery charges and
discharges. This is carried out while considering SOC, which is typically set between a min-
imum and maximum value of 0.2 to 0.9, respectively. Systems for managing batteries are
also installed to control the battery’s operating temperature. Another central assumption is
that the energy at a particular period is a function of the energy at the previous time, t − 1,
and loss in the capacity at the same time. This is denoted mathematically in Equation (1):

EBat(t) = EBat(t−1) + QBat(t−1) (1)

where EBat(t) is the energy at present, EBat(t−1) is the energy at (t − 1), and QBat(t−1) is the
loss experienced at (t − 1).

The CBRated, the battery rated capacity, is assumed to be established by the ratio
between the current in the battery, IBat, and the charge in the battery, QBat [30]. After that, it
is possible to estimate the SOH of the battery using Equation (2).

SOH =
CBMax
CBrated

× 100% (2)
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where CBMax is the maximum releasable battery capacity, while CBRated is the battery rated
capacity which reduces over time giving rise to CBMax. A high CBRated and a higher depth of
discharge (DOD) accelerate the degradation of lithium batteries. The relationship between
DOD and CBRated is expressed mathematically in Equation (3) [31]:

t ≈ 2N ×DOD
CBrated

. (3)

Another parameter that is important in simulating how a Li battery degrades is
the DOD. The SOC’s numerical complement is called the DOD. It could be considered
the battery power that has been used up before a new charging phase begins. This can
be expressed as (100 − SOC) % or (1 − SOC) [32], where SOC is the state of charge. The
relationship between the SOC and CBRated is described by the expression in Equation (4) [33]:

SOCt =

∣∣∣∣− 1
CBrated

∣∣∣∣. (4)

The SOC can be seen as designating the upper limit and is expressed as the difference
between the upper and lower cutoff SOC [34]. This is expressed in Equation (5) as:

SOCmin(lower) ≤ SOC(t) ≥ SOCmax(upper). (5)

The minimum and maximum values are assumed and limited to a specific limit to
prevent overcharge and overdischarge of the battery. In simplifying the expression for
DOD, the DOD at an instantaneous time, t, can be introduced, involving the rated battery
energy capacity, EBEC(t), and the charging and discharging energy capacity of the battery
ECDEC(t). This is described in Equation (6):

DOD(t) =

(
EBEC(t) − ECDEC(t)

)
EBEC(t)

. (6)

SOC over a step k can also be expressed in Equation (7) as follows: [35]:

SOC(k+1) = SOC(k) −
IBat∆t

QBat(t=0)
(7)

where ∆t is the discretization time interval between initial time and final time. This can be
represented mathematically as equal to t(n+1) minus t(n). This can be expanded further in
Equation (8) to be:

SOC = 100%−
∫

IBatdt
QBat

(8)

where QBat is the initial capacity of the battery at a given time, t, IBat is the current of the
battery, ∆t is the discretization time interval, and SOC(k) is the present time.

Different approaches can be deployed when charging the battery in an EV. Such
approaches include multi-stage constant current charging, high rate constant charging,
and the multi-stage constant current constant voltage approach. The charging time of the
current profile is determined by the cutoff voltage, Vcut-off, and the corresponding current
associated with each phase represented by Ic(i) to Ic(n), where i to n represent the number
of profile phases.

Vcut−off is the prescribed lower-limit voltage at which battery discharge is considered
fully complete. The relationship between the cutoff voltage and battery capacity can be
expressed as follows in Equation (9):

Vcut−o f f =
h

CBrated_lt
(9)
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where h is the size of the battery.
The power matching strategy is central to the best performance of the hybrid power

train. Among the factors to be checked when trying to ensure a proper power matching
strategy is the degree of hybridization. With the DoH, the EV can be powered by the battery
and supplemented by other power supply sources. It is also possible that the EV can be
powered by the other power supply sources and supplemented by a battery source. The
relationship is depicted in Equation (10) below [36]:

DoH =
PBS

PBS + PAES
(10)

where PBS is the battery’s maximum capacity, and PAES is the capacity associated with
any other energy source in the FCHEV. Since the capacity is equal to the energy stored,
Equation (10) can be expressed as follows in Equation (11):

DoH =
QBS

QBS + QAES
. (11)

If DoH is greater or less than 0.375, this can be expressed mathematically as follows [37]
in Equation (12):

0 ≤ DoH ≤ 0.375
0.375 ≤ DoH ≤ 1

(12)

The energy used in an EV at any time, t based on the DoH is assumed to be modeled
using Equation (13):

p(t) =
{

x, ∀ DoH > 0.375
y, ∀ DoH < 0.375

}
(13)

where p(t) is the energy source for the FCHEV at any instant, t, and x is higher energy
density battery and low fuel cell, while y is high power fuel cell and low battery capacity.
These come into play when either of the energy sources cannot sustain the entire journey.

Since batteries have a finite amount of energy that can be used until a limit is reached,
this limit is the EOL, which is assumed to be 80 percent of the initial battery capacity.
This loss cannot be reversed. In contrast, battery energy is commonly restored by the
“recharging process.” The relationship between the nominal or rated capacity of the battery
and Eol can be described in Equation (14) as follows [38]:

Eol = 0.8× CBrated (14)

where CBrated is the useable battery capacity and Eol is the end-of-life level.

4. Battery Degradation

A battery’s capacity to store energy and deliver power decreases over time, making
it unsuitable for applications that call for high-capacity batteries. Battery degradation is
a well-known consequence of battery use and is known to be conditional upon driving,
storage, and charging/discharge cycles. In a battery, degradation is unavoidable and can
occur slowly and quickly [39]. Battery degradation cannot be discussed holistically without
first considering battery life. Battery life is frequently measured using two inter-reliant
metrics: calendar life and cycling life. The calendar life of a battery is the number of
years it is predicted to last. In contrast, the term “cycling life” refers to the anticipated
number of charge–discharge cycles that the battery will be subjected to before it reaches
either its capacity loss or its resistance increase threshold [40,41]. Understanding battery
degradation is essential to designing high-performance batteries that can be used in various
applications. Analysis of a Li-ion battery’s health is typically conducted by looking at its
internal resistance and maximum functional capacity [42].

From this perspective, the most common degradation mechanisms in a battery are
the following: the formation of solid electrolyte interphase (SEI) layers, positive electrode
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structural decomposition, lithium plating, and negative electrode particle fracturing, which
is visible in negative electrodes, whereas the positive electrode is influenced by particle
fracture and by positive electrode breakdown [43]. During cycling, diffusion-induced stress
associated with lithium ions (Li-ions) intercalation causes electrode material deformation,
cracking, pulverization, and fracture, with Li-ions intercalation manifesting as lithiation
or delithiation [44,45]. Consequently, the open circuits render the active electrode plate
incapable of Li-ion storage [46]. Other contributing factors to stress include particle size,
insertion and extraction rates, and solid-state diffusivity. The fragmentation of the electrode
surface raises the electrical resistance, isolating the entire particle and directly contributing
to capacity fade and, eventually, loss [47].

When the 5 basic degradation mechanisms outlined above interact, 13 secondary
degradation pathways result. The negative electrode is affected by graphite exfoliation,
island creation for the negative electrode, dendrite production, and SEI decomposition. The
positive terminals are adversely affected due to island development in the positive electrode,
positive SEI growth, nickel–lithium site exchange, transition metal dissolution [48], and O2
dissolution. Over a limited period, it is possible for lithium dendrites to grow on a lithium
anode when Li-ions are deposited on the anode from a non-aqueous liquid electrolyte, such
as the type used in Li-ion batteries. Dendrites are formed when Li-ion batteries are plated
rather than alloyed with their anode, which can be either silicon or graphite. The production
of dendrites, which is common in both solid and liquid electrolytes, accelerates electrolyte
degradation, produces a thermal runway, and among other consequences, results in an
internal short circuit and capacity loss in the battery [49–53].

An SEI layer is a passivation and protective surface layer that is formed on the negative
electrode by deposition of an electrolyte solution’s reductive breakdown products on
the surface of the negative electrode. A crucial function of the SEI layer is to prevent
additional electrolyte breakdown while allowing Li-ions to pass through the layer. This is
accomplished by its electron-insulating and ion-conducting capabilities [54–57]. Lithium
plating on the graphite anode occurs as a side effect of Li-ions intercalation under severe
charge circumstances, i.e., high charge rates and low charge temperatures. Such plated
lithium is detrimental to Li-ion batteries’ performance, durability, and safety. Due to
the closeness of graphite electrodes to Li-ions, graphite anodes are more vulnerable to
lithium plating. Hard carbons and lithium titanate anodes, on the other hand, are less
vulnerable to lithium plating [58–60]. A Li-ion battery is composed of an electrolyte and
two electrodes. Each electrode is composed of an atomic framework that contains a small
amount of mobile lithium. During the charging or discharging of the battery, Li-ions are
extracted from one electrode, migrate through the electrolyte, and are injected into the other
electrode. At the same time, electrons move between the electrodes via an external metallic
wire. When lithium is extracted or inserted, diffusion-induced stresses are applied to the
electrodes, resulting in deformation and fracture [44]. The loss of structural integrity may
decrease electric conductivity, reducing the battery’s capacity in the process [61,62]. These
degradation pathways result in five distinct cell-level regimes: loss of Li-ion inventory,
impedance change, stoichiometric drift, and loss of active material at both electrodes, which
is marked operationally as capacity or as power fading.

A sketch of the degradation mechanism is presented in [43]. Three major modes
can quantify degradation: change in the ohmic and faradic resistances, change in active
materials, and change in lithium inventory. These modalities reveal themselves as an
increase in resistance, kinetic limitation, depletion of active materials, and depletion of
lithium inventory [43,63,64]. The battery degradation pathways through which degradation
mechanisms are revealed are typically divided into cycle aging (resulting from usage) and
calendar aging (resulting from storage) [43,65]. The aging mechanism that contributes to
the degradation process of Li-ion batteries manifests in different forms and this is presented
in Table 2.

Frequent and intensive use of the battery causes rapid deterioration of its perfor-
mance, requiring the battery system to be replaced after a few years at increased warranty
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costs [64,66]. Batteries in storage can also degrade due to various chemical mechanisms,
including limited thermal stability of storage materials and metal electrodes’ corrosion.
Corrosion of metal electrodes manifests in silver oxide in silver–zinc batteries, lead in
lead-acid batteries, and lithium in lithium/thionyl chloride batteries [67]. The perfor-
mance of lithium metal rechargeable batteries also diminishes during use due to charging
cycles and parasitic processes, such as interactions between lithium metal and the battery
electrolyte in such batteries. In recent years, there has been a significant increase in the
development of secondary batteries, including nickel-metal hydride batteries [68,69],
Li-ion batteries, and sodium-ion batteries [70]. Examples of Li-ion batteries include
lithium nickel cobalt aluminum oxide (NCA) batteries, Li-ion phosphate batteries, and
Li-ion batteries with Li4Ti5O12 anodes. Additional battery types include nickel-metal
hydride and sodium-ion batteries [41,71]. Their rapid ascension can be attributed to their
high power and energy densities, long cycle life, and improved efficiency. They have
vast and diverse applications in energy systems, including bulk storage, peak shaving,
frequency regulation, voltage support, and reserve capacity.

Table 2. Degradation mechanisms and noticeable signs associated with each mechanism [43,71–74].

Degradation Forms Indications

Mechanical Mechanical stress and deformation manifest in the form of external and internal stress.
Automotive vibration in the form of Z-axis vibration of the cylindrical cells.

Chemical Lithium plating during overcharge, operation at a low temperature, and high discharge.

Electrochemical Side reactions, solvent dissolution, solid electrolyte layer growth and decomposition, and
electrolyte oxidation.

Electrochemical and mechanical Active site area loss due to cycling is better described with two processes: fracture of
particles in both electrodes and particle isolation.

Thermal coupling Reaction rate increases with higher temperature.

5. Modeling Approaches Used in Battery Degradation

Modeling battery degradation is a multi-parameter and highly non-linear process [75].
The parameters primarily affecting battery degradation include battery temperature, av-
erage state of charge (SoC), depth of charge, depth of discharge (DoD), variation of SoC,
C-rate current, time, and the number of complete equivalent cycles (charge/discharge
rate), voltage exposure, and current profile [76–81]. Batteries must be put through many
expensive and time-consuming tests to ensure they are safe, to see how well they work,
and how they will change over time.

5.1. Mechanistic Modeling

The mechanistic modeling approach has proven to be highly flexible and valuable
for lithium-ion battery diagnosis and prognosis [82]. Diagnostic models are typically
employed for classifying and identifying problems; prognostic models incorporate the
dimension of time, adding a stochastic element through which the problem’s conclusion
is speculated or projected. Historically, battery diagnosis has been approached from two
opposing perspectives. A common approach aims for maximal precision, which is achieved
by applying several resources: post-mortem characterization and comprehensive modeling.
Studying a single battery is time-consuming, expensive, and often harmful, so it cannot be
used in the field. The second path, commonly utilized in deployed systems, is as resource-
efficient as possible and is often limited to extrapolating how capacity and resistance have
changed over time, which is not enough to predict things such as the state of health.

Applying theory and assumptions to any problem allows a mechanistic model to
forecast what will occur in the real world. Two processes are engaged in the development
of such models. To proceed, the mathematical equations must be written down. The
second phase of model development is called a parametric investigation. This approach
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ensures that the computer-aided design and the simulation models are a good match [83].
Mechanistic models use theories to understand and predict what would happen in real-
world models, so they have input–output links [84,85]. Battery degradation is modeled
using mechanistic models. It is physical in nature and considers the following parameters:
charge loss due to SEI generation, active material isolation, and lithium plating. It is
possible to use an electrochemical model to simulate the behavior of a half-cell electrode,
which can help figure out how the cell will charge and discharge. In [86], another example
is simulating the evolution of the incremental capacity and differential voltage curves
using an artificial, mechanistic model based on half-cell data gathered from studies or the
literature. This methodology allows for identifying the electrode’s role in cell degradation
mode. Empirical models investigate real-world models to establish theories via observation
and experimentation rather than through mechanical relationships, i.e., mathematically
defined frameworks. This discipline of modeling has increased dramatically in popularity
since the rise in popularity of sophisticated machine learning methodologies.

5.2. Semi-Empirical Modeling

Battery degradation can be modeled using semi-empirical battery degradation models,
an approach of moderate complexity, moderate accuracy, and adequate scalability that
has been developed incrementally by fitting equations and parameters to experimental
data [34]. The described approach arrives at the simulated behavior from equations that
accurately capture the underlying physical behavior. It is critical to emphasize that the
equations underlying empirical models may be meaningless and are employed to simulate
the battery’s behavior, which is considered a black box. Empirical models are frequently
constrained by the experimental data and hence unable to provide detailed insights into
the electrochemical interactions occurring within the battery. An example of this technique
is equivalent circuit models (ECMs), which simulate and define the electrical behavior of
batteries through electronics circuit elements such as resistors, inductors, and capacitors.
This method enables the prediction of the SoC and state of health of batteries for vehicle
power and energy management control. Other models are simpler to develop and utilize
because they are based on equivalent ECMs. They do not, however, connect these circuit
parameters to physical qualities. Table 3 shows the differences between mechanistic and
empirical models.

Table 3. Difference between the mechanistic and empirical model.

Mechanistic Models Empirical Models

The mechanistic model provides higher fidelity based on the
first principle as it captures the loss of active material (LAM),
loss of lithium inventory (LLI), and ohmic resistance increase

(ORI) in its model.

It can only predict cell capacity because it does not consider
correlated degradation such as LAM, LLI, and ORI, which

distorts the predicted model result.

A mechanistic model is less computationally intensive
compared to a model which is physics-based.

A substantial amount of training data is required to derive the
fitting parameters and methods. This is prevalent in models

powered by data.

It provides material insight and inference without trading off
the accuracy and flexibility of the considered model.

Even though substantial resources are required, the result offers
limited adaptability and applicability and cannot be easily

adapted to real-life scenarios.

It is much more challenging to parameterize since it includes
other modeling approaches.

It is easy to parameterize since it does not includes other
modeling approaches.

Mechanistic models do not bind data availability, and a model
developed for one application scenario may apply to another.

Experimental data imposes constraints on empirical models,
and a model built for one application scenario may not

apply to another.
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5.3. Physics-Based Modeling

Several physics-based models use a set of partial differential equations (PDEs) linked
together to model the battery’s electrochemical and chemical interactions. These PDEs
include vector calculus, electrochemical, thermal, and mechanical partial differential equa-
tions. This first principle approach provides critical insights and benchmarks for other
approaches for modeling battery degradation [41]. The physical-based electrochemical
degradation models for real-time monitoring of batteries are complex and computation-
ally expensive [43]. Physical-based models, coupled with experimental validation, offer
more insight into the operation of the batteries [87]. While providing full physics-based
information for battery operation and appearing to be a time-saving measure, such models
cannot account for all the phenomena that occur throughout a battery due to the incredi-
ble complexity of the equations involved. The complex modeling process and excessive
computation intensity lessen their adoption and wide application [88,89]. It is difficult to
establish a link between physical-based degradation and experimental results [90].

5.4. Electrochemical-Based Modeling

The model is established using electrochemical methods and is based on the internal
physical and chemical interactions that occur within the battery during the charging
and discharging process. An electrochemical model can predict how Li-ion cells work by
considering the compounds’ chemical properties and design parameters. In electrochemical-
based modeling, the effects of various electrochemical reactions, most notably those at the
electrodes and those in the electrolyte, are expressed as PDE and non-linear differential
equations [91]. This approach enables the development of suitable but also efficient models
that describe a system and reveal a combination of electrochemical and electrical principles.
It also provides an accurate representation of what occurs inside the cell. Because of the
benefits of electrochemical models, these are expected to replace the ECM in an advanced
battery management system (BMS) which will observe and estimate the battery’s states
and properties as the battery ages [92,93]. In addition, this approach is significantly more
adaptable than any other model-based approach while providing an excellent response
when applied to diverse operational conditions and applications [94].

The lifeline battery modeling methodologies associated with the three modeling
approaches include applicability, model complexity, physical–chemical knowledge, experi-
mental data requirement, model accuracy, and computational effort. The characteristics of
the different models and their degree of intensity [95] are presented in Table 4.

Table 4. Comparison of the different models.

Characteristics Mechanistic Model Semi-Empirical Model Empirical Model

Applicability
*** (Applicable to the more

comprehensive range of
battery modeling).

*** (Applicable to the more
comprehensive range of

battery modeling).

* (Applicable to the minimum
range of battery modeling).

Model Complexity
*** (Physics-based

Electrochemical model from
the first principle).

** (Performance Based
modeling). * (Black-box modeling).

Physical–chemical Knowledge
*** (Based on physical,

mathematical, and
chemical laws).

** (Following mathematical
equation).

* (Trained with
advanced algorithms).

Experimental data
requirement * (Moderate data required). ** (Extensive data needed). *** (Big Data required).



Energies 2022, 15, 5889 11 of 29

Table 4. Cont.

Characteristics Mechanistic Model Semi-Empirical Model Empirical Model

Model accuracy *** (Highest level of accuracy). ** (Medium level of accuracy). * (Lowest level of accuracy).

Computational effort
*** (Highly computational,

especially with the
mathematical aspect).

* (Moderate computation).

*** (Highly computation,
especially with the simulation

and advanced
algorithm aspect).

*** Highest degree of intensity; ** Average level of intensity; * Minor level of intensity.

5.5. Hybrid Modelings

Hybrid models are models that incorporate both physics-based and data-driven ele-
ments. Data-driven models can also be constructed based on measured data to understand
the system’s behavior under consideration. Models deemed data-driven include empirical
models, electrical circuit models, and neural network models, to name a few. Data-driven
models rely solely on experimental data for feedback. In addition, they employ simple data-
driven models with data-fitting equations. While data-driven modeling techniques can
considerably reduce computation time, they lack trust in outcomes outside their calibration
range [96].

6. Literature-Based Methodologies for Battery Degradation Cost Minimization
6.1. Degradation Minimization Technique Based on Stochastic Optimization

Performance-based EMS emphasizes the need to optimize the performance of an
EMS in an EV by considering battery degradation and other aspects (associated parts and
parameters) that can reduce overall costs. This optimization technique aims to find the
variables that minimize or maximize the objective function while satisfying the constraints.
By resolving this objective function, which may involve single or multiobjective functions,
the degradation cost can be reduced.

A real-time predictive energy management strategy (PEMS) for plug-in hybrid electric
vehicles is proposed in ref. [97] to coordinate fuel economy with battery lifetime. The
engine-generator set (EGS), lithium-battery package, traction motor, and power inverter are
the four components that make up the powertrain idea for plug-in hybrid electric vehicle.
The EGS and the battery are both connected to the power inverter. The output of the power
inverter is then connected to the EV using the driveline axle and the traction motor. Based
on the longitudinal vehicle dynamics, this control-oriented model of battery SoC and SoH
for PEMS design was developed and mathematically constructed. The system for charging
and discharging is shown by a model of an equivalent circuit with an internal resistance of
the first order.

This allows a variation in voltage and power flow to be established. A semi-empirical
battery lifespan model based on a rechargeable lithium cell was used to quantify battery
capacity loss.

Among other features, the PEMS comprises a velocity predictor used to correctly
anticipate future drive velocity, an SoC reference generator, and an online optimization
technique. The velocity predictor uses the neural network technique based on radial basis
functions. The control objective was to minimize fuel consumption, electricity, and battery
degradation cost minimization. In addition, a SOC tracking reference was introduced
as part of the objective function. The physical constraints in the PHEV train include the
engine’s power, generator, current drawn from the battery, and the state of charge. The
cost minimization problem is formulated to resolve the model predictive control (MPC)
problem [40]. Multivariable and constrained issues in nonlinear and multivariable systems
can be resolved by MPC while maintaining high degrees of robustness and stability. A
high level of stability is commonly required while regulating and controlling the systems.
Hybridization systems, such as fuel cell and hybrid storage energy systems, can be utilized
for any hybridized system, regardless of the storage device combination [98]. The equations
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take into account the control target: fuel usage cost, the electricity costs for battery charging
and discharging, and the cost of corresponding battery degradation. In real-time, the
penalty-based continuation/generalized minimal residual (C/GMRES) algorithm deter-
mines the projected engine power command. This strategy is essential to alleviate the
significant stress of the optimization procedure. The external penalty function instead
of C/GMRES, which cannot handle inequality constraints, ensures that the powertrain’s
physical inequality limits are not exceeded.

In ref. [98], an EMS capable of implementing vehicle speed prediction and a predictive
control mechanism was created. The fuel cell hybrid system was modeled to meet the
vehicle’s power demand under different labor conditions. In the article, the hybrid power
system combines the fuel cell and battery. The batteries successfully handle poor dynamic
responses in the fuel cell system. It is possible to conserve braking energy from the vehicle
using the battery, and the battery can be recharged. The velocity speed predictor allows the
speed predictor to be fed into a Markov-based connection to forecast and make decisions
regarding the speed. A system response prediction is passed into the objective function via
the dynamic vehicle model, coupled with historical and current data, allowing interaction
between energy use and fuel cell degradation. An optimal solution is then fed into the EV’s
hybrid power system with the necessary constraints. This solution can also be modified as
the system becomes operational. The speed prediction and offline dynamic programming
were developed and utilized to solve and compare the model’s performance.

An analogous predictive approach to EMS is also described in ref. [99], where bat-
tery degradation costs are analyzed with distinctive emphasis on active power charging,
discharging, and providing reactive power service. The battery degradation capacity is
a function of charging/discharging power. Once modeled, it is converted from the asso-
ciated loss capacity to a cost term. Simulations are carried out in various EV operating
scenarios, including charging alone, charging and discharging, and charging/discharging
while providing reactive power service. The study concludes that overlooking the battery
degradation cost provides a false feasibility report regarding the optimal operating cost
calculation for the EV. The total cost minimization strategy, a low-cost energy management
formula, was used to keep the total cost of three items as low as possible. The reduced costs
include the energy used to recharge the battery, the damage to the battery, and the fuel
used to generate electricity. This strategy is a derivative of the energy cost minimization
strategy [100]. Since the dynamic programming (DP)-based solution needs information
concerning the driving cycle, which is currently unavailable, the minimization problem
was solved using Pontryagin’s Minimum Principle (PMP).

Consequently, near-optimal performance is attained in real-time via the PMP, indepen-
dent of driving cycle information. The powertrain model and optimization problem were
altered to account for battery aging. Finally, it was proved that such a real-time technique
is comparable to the benchmark for overall energy expenses. Authors in ref. [101] identify
and evaluate battery capacity deterioration under a variety of SoC conditions, including the
optimal way of charging, the worst possible way of charging, and the systematic manner of
charging. These three methods were utilized to estimate the cost of battery capacity decline,
with economic analysis and numerical examples being presented for each methodology.
It was demonstrated that by modifying the charging pattern of electric vehicles, battery
capacity degradation, which is a non-negligible and elastic component of the total cost,
may significantly decrease. In ref. [102], the authors aim to reduce the cost of EV battery
charging deterioration while meeting the battery charging characteristics of a park-and-
charge system. The development of a practical charging system that incorporates the
consequences of battery degradation into the EV charging scheduling problem was made
possible using a battery degradation cost model to capture the characteristics of battery
performance degradation while the battery is being charged. When designing the ideal EV
charging scheduling scheme, the above battery degradation cost model was used to reduce
the total battery deterioration cost to the absolute minimum. In order to tackle the linked
optimization problem, a technique for allocating vacant resources and a dynamic power
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adjusting algorithm were proposed. Customers and charging operators would benefit from
the findings, which revealed that the proposed method outperformed the competition in
terms of battery deterioration cost minimization and peak power load reduction.

In ref. [33], another strategy for ensuring and lowering the energy cost of EVs and
MGs was proposed, which described the hybridization of energy-source devices as a
hybrid energy storage system (HESS). During the vehicle modeling process, two distinct
power train designs were examined. The first is an electric power train with a single
type of battery, while the second is made of HESS. The HESS comprises a direct parallel
combination of a battery, a supercapacitor, and a DC/DC converter, which is missing in
the first configuration. Using an internal resistance model, the energy storage system was
theoretically calculated using the battery pack and supercapacitor. The engine and traction
motor were also recreated using vehicle parts, demonstrating their contribution to the
braking energy recovery required for charging the energy storage device. The driving cycle
and charging pattern were also recognized and documented. In this case, the objective
function involves the cost of battery deterioration and the total cost of plug-in hybrid
electric buses (PHEB) equipped with a HESS consisting of lithium iron phosphate (LFP)
batteries and SCs, was included. The optimization goal is to reduce the life-cycle cost,
including fuel, power, battery, and supercapacitor costs, compared to the same life cycle.
This is true for configurations A (two energy sources: engine and battery) and B (the
engine and HESS). The optimization constraints are determined by each configuration’s
power and voltage and state constraints such as state of charge (related to the battery) and
energy condition (associated with the supercapacitor). The 2D PMP strategy optimization
technique is used to accelerate strategy creation, aid in online implementation, and reduce
computing costs.

The cost of installing a single battery to achieve the same benefits was calculated and
compared using an offline technique based on a semi-empirical battery-degradation model.
As a result of the envisaged connectivity, battery life for all three energy sources (engine,
battery, and storage capacitor) is expected to be extended. To determine the concept’s
practicality, the economic cost of the HESS system’s life cycle was evaluated and compared
to that of a bus with a single battery. While obtaining the required electric range with a
single battery of appropriate power capacity is impractical, the suggested technique would
result in a more excellent engine, battery, and SC control due to the HESS, reduced battery
deterioration, and overall cost saving through PHEBs. On the other hand, using a single
battery bus would increase fuel consumption and exacerbate battery deterioration. The
battery would have to be replaced several times to keep the EV running for its entire service
life, resulting in substantial maintenance expenditure.

It is necessary to account for battery degradation when calculating the operating
costs of a battery energy storage system because the life of electrochemical battery cells
is highly sensitive to the number of charge and discharge cycles the battery undergoes.
This, in turn, is directly affected by how the battery is maintained and operated. Batteries
degrade in numerous ways, and current models of battery degradation either do not match
published calculations or do not adequately depict the actual mechanism of battery degra-
dation. Sizing guides and energy management (EM) benchmarks of the HESS of battery-SC
arrangements deployed in EV applications are presented in ref. [103]. The approach of
HESS size optimization in order to minimize battery degradation and financial costs in EVs
was explored. The optimal EM benchmarks that can minimize battery degradation were
likewise presented, irrespective of the EM technique implemented. By decoupling the EM
problem from the issues surrounding the HESS sizing, the factors of battery degradation
and HESS sizing, which are inconsequential to the specifications of batteries and SCs, and
the design parameters of EV, were highlighted. The semi-empirical model used in this
work follows the Arrhenius Law.

In ref. [37], the authors optimized power matching algorithms by considering the cost
of the hybrid system, the equivalent energy consumption of hydrogen fuel, and the cost of
battery deterioration. The hybrid power train’s structure, specifications, and configuration
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were identified to analyze the different degrees of hybridization of the fuel cell and battery
energy storage system. The motor model, fuel cell model, battery model and configuration,
battery degradation, and the elements that contribute to the degradation are all highlighted
in the description. In order to solve this non-linear, multiobjective problem, a bionic
optimization strategy based on particle swarm optimization (PSO) was applied, and the
optimization variable, the degree of hybridization (DOH), was identified. To obtain the
ideal degree of hybridization (DoH) values for various hybrid schemes and weighting
factor groups, the particle swarm optimization (PSO) approach was used. Four groups of
weighting factors were selected and used to improve the objective optimization function
for each level of hybridization by this method. The weighting factors were also set up to
evaluate the objective functions.

Finding an ideal DOH achieves a balance of cost, fuel usage, and battery aging.
The optimization goal was separated into three parts: equivalent hydrogen consumption
per 100 km, the cost of the hybrid energy storage system (battery and PEMFC), and
battery capacity degradation. The optimization constraint is a one-dimensional parameter
consisting of the particle velocity and position. In terms of the DOH, several approaches
were utilized to share the required motor power between the PEMFC and the battery.
The battery took over when the FC could not supply the requirement from the motor.
Battery life was prolonged, energy consumption optimized, and powertrain costs lowered
based on individual requirements, the multiobjective optimization applied, and the proper
hybridization degrees of the provided hybrid powertrain.

A vehicle model proposed in ref. [30] was based on an existing vehicle that was initially
a pure electric automobile. However, in order to increase its autonomy, a proton exchange
membrane FC was added. A model that illustrates dynamic behavior was included when
creating the objective function and limitations. Following that, an evaluation of the energy
management system was performed to aid in measuring the damage caused to the battery
during any profile, specifically the current profile, taking into account fuel economy and
battery degradation. After completing the previous modeling, the high-efficiency hydrogen
fuel cell used in the car was modeled with clear accommodation of the boost converter,
which is helpful for power flow management between the fuel cell and the DC bus. The
equivalent consumption minimization technique, an online EMS, was utilized with a
comprehensive vehicle model to solve the local optimization problem. The control input
or command flow for the vehicle can be computed. A weight factor ranging from 0 to 1
is significant in altering the performance of the suggested technique from maximum fuel
economy to maximum fuel economy of the battery. The objective function was specified
to accommodate fuel consumption and battery usage, and a single weight factor was also
introduced. The control input, the change in fuel cell power, and the state vector are all
limitations. The state vectors are the SoC, the battery current, and the power connected to
the fuel cell. In addition, an additional optimal strategy though offline in nature, based on
the dynamic programming strategy, was also employed.

A power management system that simultaneously accounts for fuel cell degradation
and consumption and battery degradation was proposed and reported in ref. [104]. The
simulation model considered for the fuel cell degradation model is based on the electro-
chemical active surface area (ECSA) loss. The platinum dissolution models, consisting of a
comprehensive set of electrochemical equations, were used to build the ECSA degradation.
Subsequently, the influence of ECSA decay on the polarization curve was investigated.
The data from the ECSA decay model was then validated by comparing it to what was
available in the literature. Only then was the lithium battery degradation modeled as a
function of Ah throughput, a standard bus drive cycle in the optimization process. The
objective function was designed to reduce the overall lifetime cost of the hybrid system by
decreasing fuel cell use and optimizing fuel cell and battery lifetime. This is dependent on
the power cell’s SOC.
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6.2. Degradation Minimization Technique Based on Stochastic Optimization and 4IR Enabling Tools

Another strategy utilized in the literature to lower the cost of battery degradation is
to use single-objective or multiobjective stochastic optimization with artificial intelligence.
Random variables emerge in the formulation of stochastic optimization problems that
incorporate random objective functions or constraints. Almost every real-world problem
has some degree of vagueness in its parameters. Historically, these uncertainties have
been dealt with primarily by approximating them with projected values, which fail to
generate robust results even when the most practical forecasting algorithms are used [37].
It is currently becoming more popular to monitor batteries and the accompanying battery
deterioration costs utilizing the fourth industrial revolution (4IR) enabling technologies
such as Blockchain, Big Data, machine learning, and the Internet of Things. There has
already been significant research, development, and presentation of solutions relating
to EMS, with an unusual emphasis on MG, EV, and other related areas. As the energy
cost of an EMS with a particular focus on BMS continues to rise in the electric vehicle
space, the application of the 4IR enabling technologies in this space [105], particularly in
monitoring, evaluating, and albeit indirectly computing the total energy cost, is becoming
increasingly important.

A Q-learning-based strategy in tabular form was proposed in ref. [106] to minimize
battery degradation and energy consumption. The authors recommended and optimized
two heuristic energy management strategies by combining the PSO algorithm with a Q-
learning strategy, a comparative examination of four distinct energy management strategies.
A baseline option was proposed that does not require the usage of an ultracapacitor,
whereas two heuristic methods and a Q-learning method do. A genetic algorithm was used
to validate the battery aging model against experimental data.

In ref. [107], a two-stage stochastic programming approach was used in a smart home
application to reduce the cost of power procurement for a typical household. The stochastic
choice variables represented the charge–discharge power of these components. An excellent
analytical battery degrading cost model was used to account for the uncertainties resulting
from the power generation of roof-mounted photovoltaic (PV) panels, household load
demand, real-time electricity price, and other factors. In addition, an artificial neural net-
work (ANN) was trained using historical time series data in order to develop the stochastic
process model. Because of these uncertainties, various charging schemes were researched,
including those with and without degradation cost, those with and without battery energy
storage systems, and those uncoordinated. The susceptibility to different electric vehicle
and battery energy storage systems and their charging rates was also investigated.

An ANN prediction model that can connect numerous properties of this battery type
to improve battery performance was proposed in ref. [108]. Experimental samples, an
upgraded Thévenin model, and MATLAB programs were used to train and test the ANN-
Predictive model, which was then performed and again tested. When learning values
are in between, this neural model can predict them and distinguish between expectations
to learn and adapt information of varying qualities. This was followed by a discussion
about non-linear arithmetical capacities, interfaces between information sources, yields for
neural networks, and the corresponding Simulink model. The time and SoC are the model’s
information sources. The results are the average degradation function, degradation density
function, cycle life, DoD, and capacity rate.

In ref. [109], a proposal was put forward for a battery degradation model that may
be used to estimate capacity fading in an unbalanced battery operation. A number of
essential concepts in battery degradation were considered in this model, including the
Arrhenius connection and the formation of solid electrolyte interface films. The parameters
for the study were derived from real-world data collected with a specific battery type. In
addition, the suggested model and parameter tuning method can also be utilized to model
Li-ion battery degradation in various batteries. An empirical DoD stress model was found
to be the most accurate for the lithium manganese oxide battery cycle dataset utilized.
Using multiple DoD stress models, the case study shows that the suggested deterioration
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model can be applied to Lithium–Iron–Phosphate and Lithium–Nickel–Manganese–Cobalt–
Oxide batteries.

In ref. [110], a real-time approach for calculating and tracking battery degradation
costs in EVs was proposed using a blockchain system. A critical factor for the efficient
operation of an EV while monitoring battery degradation are decisions regarding charging
and discharging. Based on the current state of the battery in an electric vehicle, the cost of
the battery’s initial degradation was calculated. At the same time, the EV range and age
were the two additional factors examined. The battery degradation cost was calculated
using battery specifications and constant tracking of the variables that affect battery energy
capacity, which determine the economic cost for EV consumers involved in the vehicle-
to-grid ecosystem. In addition, a cost-minimizing Mixed Integer Linear Program that
accommodates degradation cost in its objective function was utilized to make the best
decision as to when the EV connects to the grid. The battery degradation cost was updated
at the end of each 24 h cycle based on the charging/discharging transactions conducted
throughout the cycle and the temperature conditions. These transactions and battery
degradation costs are stored in a consortium blockchain shared by all parties involved.

On the other hand, data-driven machine learning models have recently become more
popular for estimating state and lifetime prediction because they can learn from data [111].
By examining published synthetic low-rate charge curves created by a mechanistic model
for various thermodynamic degradation modes, the physical foundations of mechanistic
models are merged with the power of machine learning. The investigation is performed
on LFP, nickel manganese cobalt (NMC), and nickel cobalt aluminum batteries. Another
approach that evaluates and estimates the effect and cost of battery degradation for a
real-life application is discussed in ref. [112]. A new notion of traveled distance between
two consecutive recharging events (CRE) was developed to characterize battery capacity
degradation based on an analysis of large-scale electric taxi global positioning satellite (GPS)
data. Using historical CRE readings from electric taxis, a box-plot-based statistical analysis
method was provided to understand better battery aging and its effects on performance.
This method was chosen because BMS data is unavailable in the public domain. The data in
the experiments came from over four years of real-world EV taxi GPS data, which was used
to evaluate battery performance and degradation in real-world EV operation. The result of
the study proves that external circumstances, such as temperature, road conditions, and
charging rate, will impact battery degradation in real-life EV use. A large volume of data
has cleared the pathway for Big Data analytics in the EMS, especially the BMS. In ref. [113],
the capabilities of Big Data analytics in BMS applications, emphasizing the properties of Big
Data in intelligent BMS, Big Data software frameworks, sources, and infrastructure, were
addressed. A feasible semi-empirical mathematical evaluation model, the extended wear
density function (WDF), to be used to determine the remaining battery life was proposed
in ref. [114]. In addition to analyzing the data, the authors developed an enhanced WDF
model to create a more practical WDF. A transformation was performed to convert the
measured operating temperature, current, and operating SoC values into coefficients for
the extended WDF. The suggested data platform saves the measured data along with the
parameters of the batteries. It is used to train the extended WDF model, which estimates
battery degradation based on new experimental data with the same characteristics as the
training data. The simulation results verify that the suggested extended WDF and data
structure in the proposed platform are accurate.

Given that it is commonly recognized that power train modeling is a fundamental step
in developing an effective and efficient EMS, the power source of the FC and lithium-ion
battery is discussed in ref. [35]. The fuel cell manages the current flow to the DC bus when
in operation, and the battery is directly connected to the DC bus. The required power
for the engine, the input into the fuel cell hybrid car, is generated based on the vehicle’s
longitudinal dynamics. Because reinforcement learning is used for the EMS, state variables,
and action space, utilizing the reward function to be optimized is critical in performing deep
reinforcement learning. The state variables required, including vehicle speed, battery SOC,
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and FCS output power, are accommodated in the expression and input to the assessment
network. The reward function equation considers how much fuel is used, how quickly the
FC deteriorates, and how much hydrogen is used at each point in time.

A summary of work carried out in literature relating to battery degradation is pre-
sented in Table 5.

Table 5. Summary of findings from literature review [30,33,35,38,91,97,98,104,107,115–120].

Reference Type of EV Description Pros Limitations

[17] FCEV

The cost minimization
considers hydrogen

consumption, hybrid cost of
battery and fuel cell, and

battery degradation while
using PSO to find optimal

DoH.

PSO used allows a fast
convergence rate for an optimal

solution.
It can thus be employed to solve

non-linear and multiobjective
optimization problems.

The DoH is designed for each
objective variable, i.e.,

prolonging battery life, reducing
system cost, or reducing fuel

consumption. Despite this, it has
not been demonstrated whether

it is possible to handle all the
objective variables due to their

varied weights.

[30] FCEV Heuristic EMS strategy.

The heuristic strategy might
provide acceptable performance

and lower the computational
burden in real-time applications.

The solution might not be
optimal.

The decision made might be
inaccurate.

[33] PHEV

A semi-empirical model is
used. The 2D PMP

algorithm/strategy minimizes
the system’s life-cycle cost.

The bus service chosen for
modeling the driving cycle and

charging patterns around a fixed
route, following the same route
daily, makes the model simpler
than using a passenger vehicle
with an ever-changing route.

The PMP strategy includes one
more state variable and can be

used in a real-time control
situation.

Computational costs are reduced
due to the 2D PMP algorithm.

The mechanisms governing
degradation are complex,
non-linear, and strongly

interrelated.
They are susceptible to varying

operational conditions; thus,
practical analysis is complex.

Variation in electrodes,
electrolytes, and manufacturing
processes significantly increases

the difficulty level.
Not all predominant

mechanisms are considered in
the study

[35] FCEV

Powertrain system modeling
with proton exchange

membrane FC and Li-ion
battery power sources is
designed and modeled.

Subsequently, a prioritized
experience replay Deep
Q-Network algorithm is

applied.

The SoC in the analysis is kept at
0.7, resulting in less battery

power.
With the help of continuous

training, the actions selected can
bring about better rewards and

stability in the system.

With the increasing number of
layers comes the increased

complexity associated with the
training process.

[97] PHEV
RBF-Neural network plus

C/GMRES algorithm used for
cost minimization.

Driving velocity can be
predicted based on the algorithm
used. Therefore, the potential for

practical use is enormous.
The C/GMRES algorithm is used
to mitigate the burden associated

with real-time optimization.

The extra penalty method used
in handling inequality

constraints, heuristic in nature,
might only trade off precision for

speed.
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Table 5. Cont.

Reference Type of EV Description Pros Limitations

[103] All EV
types

HESS sizing is used to
minimize battery degradation
and financial cost using the DP

approach.

This approach makes the
decoupling of EMS from the

HESS sizing problem realizable.
Therefore, it is possible to

minimize battery degradation
regardless of the HESS size.

The decoupling of EMS from the
HESS makes it impossible to

investigate co-dependence and
co-existing variables that EM

and HESS share.
The solution provided due to the
isolation of each system might

not be globally optimal.

[104] FCEV

A deterministic DP algorithm
uses a fuel cell degradation

model based on
electrochemical surface area

(ECSA) loss and a battery
capacity model (minimizing

fuel consumption and
maximizing fuel cell lifetime

plus battery).

Other frameworks for fuel cell
degradation mechanisms can be
incorporated whenever available.
Since the EMS is rule-based, it is

easy to implement.
Even though only one

mechanism of the fuel cell was
considered (degradation of the

platinum catalyst), the
possibility of converting other

degradation mechanisms found
in transient load into ECSA
allows a more dynamic and

accurate representation.

Drive cycles are representative of
the typical urban transit system.

This system does not
accommodate the variability
associated with personal cars

that use different routes.

[107] BEV

Two stochastic stage systems
plus ANN are supplied with

historical time series lag
(Software based: GAMS +

KNITRO Solver).

KNITRO Solver supports a wide
range of linear and non-linear

problems.
The low level of SoC employed

in the design limits the
degradation rate.

When ANN produces a probing
solution, it does not indicate why
and how. This approach reduces
trust and the ability to replicate
such results within the network.

There is no specific rule for
determining the structure of

ANN. The appropriate network
structure is achieved through
experience and trial and error.

[117] HEV

Cost minimization using
adaptive EMS based on

dynamic source resistance
splitting plus heuristic
optimization using the

quantum butterfly
optimization algorithm.

It is simple to implement since it
accommodates dynamic source

conditions (battery and
ultracapacitor).

Through optimal sizing, the
energy and power requirements

are satisfied.
The stress on the battery packs is
alleviated; thus, the battery life is

extended.
High peak charging and

discharging is avoided. With
this, the incidence of current

drain is reduced.

Even though an electrical model
was investigated, it has been

established that electrochemical
models are advantageous as an
accurate representation of what

occurs in cells is revealed.

[119] FCEV

Fuzzy logic-controlled EMS
relies on the genetic algorithm.

The cost of the battery, fuel
degradation, and fuel

consumption were considered
part of the objective function.

The EMS system is formulated
as an optimization problem,

allowing the fuzzy controller to
be tuned to objective functions.

Cycling ageing has been
considered while avoiding

calendar ageing.
The rule-based EMS might not

be optimal for driving scenarios
experienced on the road.

A single SoC value was used; it
was unclear whether it was the
minimum or maximum value.
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7. Summary of Findings from the Literature

An intelligently designed EMS is highly crucial for the complete embrace of EVs. This
approach has massive implications for future development, especially when considering
the degradation of batteries. Some offline and online EMS approaches provide reliable EV
power management. While the offline approach requires precise future drive information
prior to the journey, an online approach provides such information during any journey. The
accuracy of the real-time online strategy still needs to be tested continuously, given that the
offline EMS approach cannot be deployed in online applications. In order to reduce cost, an
optimization strategy is used that relies on analytical or digital operation [60]. Optimization
control can also be utilized to determine the best ways of applying EMS in the future. There
are two types of optimizations: global optimization (GO) and real-time optimization (RTO).
GO [61,62] is based on ascertaining what needs to change in the future and what needs
to stay the same in order to cut costs in fixed driving cycles while maintaining the same
performance. A typical example of GO is the DP. Transforming a multi-stage optimum
decision problem into several single-stage optimal decision problems is a feasible solution
strategy in optimization. Nevertheless, because of its high computing cost, DP can only
be optimized offline for a defined driving cycle, making real-time control impossible [63].
Nonetheless, the GO control method is possible when used with linear programming,
DP [63], stochastic DP, and genetic algorithms.

On the other hand, the PMP, the equivalent fuel consumption minimization strategy,
the robust control approach, decoupling control, and optimal predictive control are all
components of real-time optimization (RTO) [118]. An instantaneous computing burden
makes real-time optimization control difficult to achieve [119]. Achieving optimum fuel
usage in each real-time period is necessary for real-time optimization applications.

Both approaches depend on meta-heuristic and heuristic strategies to produce a near-
optimal solution within minimal time and with minimal space computational cost [120].
Heuristic techniques are more suited for real-time applications because they provide
adequate performance while requiring less computing effort [30]. Such optimization
methods include mixed-integer, convex programming, linear programming, DP, the Markov
decision process, PSO, fuzzy logic, stochastic optimization, predictive energy management,
and equivalent consumption minimization. These problems are formulated using the listed
optimization methods and built on the predictive control model, a dynamic model that
efficiently controls the process while satisfying the ensuing constraints.

Another data-driven approach can be applied to the EMS while considering battery
degradation. Some sensors have been deployed to track the usage and gradual loss of
capacity in the process of generating data. Some data-driven approaches have manifested
in using Blockchain, Internet of Things (IoT), Big Data analytics, etc., to help make informed
decisions around the energy costs associated with the EV design. Artificial intelligence
methods such as ANN, regression, correlation, and deep learning are currently being
applied to understand better the phenomena linked to battery degradation. The summary
of the literature survey is presented in Table 6.
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Table 6. A summary of models and various approaches used in the literature.

Models Characteristics Approach Merits

Mechanistic (mechanical
relationships are used to

develop theories)

Online (real-time) or offline
approach.

Stochastic optimization
(Optimization-based EMS):

[30,33,97,117,121,122]
The control approach is based
on observed driving patterns
or on expected future driving
patterns. It is necessary to use

an iterative procedure that
includes an optimizer and a
model (objectives, variables,

and constraints).

High level of robustness and
stability

Single or multiobjective
function.

Multivariable and constraint
problems.

A globally optimal result can
be realized.

Single or multiple constraints.

Provide causality missing
from the machine learning

approach

The preferred approach can
involve the maximization or
minimization of the objective

function.

Single or hybrid energy
sources.

An inequality constraints
handler, such as an external
penalty, can be applied in

some cases.

Empirical (By observing and
experimenting, you can

develop a theory.)

Diverse optimization
techniques include PSO,

genetic algorithms,
Mixed-integer Linear

programming, etc.

Stochastic optimization
(Optimization-based EMS)

+
4IR technologies, i.e.,

Blockchain, machine learning,
Artificial intelligence

(Learning-based EMS): [107]
+

(Rule-based EMS):
[104,119,123] The rule-based
approaches are built upon

expert knowledge, intuition,
and the retrieval of findings

from GO techniques.
(Hybrid based optimization):

[35,124]

This approach enables the
integration of mathematical

modeling with the exploratory
nature of observation and

experiment.
Without any prior knowledge

or established rules, it is
possible to select actions

directly from states.
Simple.

Low computational burden.
Ease of implementation.

8. Guide and Suggestions for Implementation

Any model that does not explicitly consider a battery aging factor, i.e., does not
include a degradation model, will yield an inefficient cost-competitive model. Over the
short term, the cost of degradation might not be readily seen. However, the consequences of
degradation are undoubtedly seen over the extended term and impact on the profit obtained.
Even if the electrochemical model represents the behavior of a real battery, semi-empirical
or empirical models must be used to evaluate the variables. In most cases, it is difficult
to obtain empirical data because the manufacturer does not provide this information.
Data-driven approaches need to be introduced to complement the existing approaches
for estimating battery degradation as precisely as possible. Such approaches can clarify
the interdependencies between variables and parameters observed in the electrochemical,
empirical, and data-driven approaches.

However, hybrid models incorporating both electrochemical and empirical approaches
are available, such as the model developed by ref. [125], which incorporates lithium dif-
fusion in the solid phase. This is in addition to the empirical Peukert’s law [126], which
employs electric lumped elements to simulate porous electrodes. With the use of modeling,
it is possible to obtain a better understanding of physicochemical phenomena. Using the
chemical features of the compounds and the design parameters, an electrochemical model
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may simulate the behavior of Li-ion cells. An artificial intelligence approach that establishes
variable relationships can also confirm which variables have a relationship and which do
not. Thus, semi-empirical and electrochemical approaches can then be brought together. In
this way, a robust but scalable approach for estimating the degradation cost contribution to
the whole EV ecosystem can be laid out. Even though the model’s effectiveness is limited,
and this approach is best described as imperfect because some variables, such as the kinetic
rate constant, have no definite measure, this model is expected to produce viable results.

Batteries that use Li-ion technology can be used in everything from electric automobiles
to large-scale energy storage. The materials utilized, the system architecture, and the
operating conditions significantly impact how long these devices last. These factors have
made it harder to operate battery systems in the real world. Combining this information
with the development of machine learning methodologies to construct a digital twin for
batteries becomes possible with a better understanding of battery degradation, modeling
approaches, simulation tools, and the analytical approaches that may be used. Even though
publications on this subject have appeared [127–129], more research into battery modeling,
deterioration, and cost analysis over a short and extended period of economic implications
is required. Such studies must translate from proposals to actual implementation and
deployment in EMS. Such studies would shift perspectives and build a solid foundation
for increasing the number of scientists and engineers who wish to make a significant
contribution to intelligent BMS.

According to the literature, degradation cost is temperature-dependent, and tem-
perature varies across geographical regions; thus, battery degradation costs are similarly
location-based. As a result, it is critical to identify an optimal point of best fit that will
guarantee accelerated degradation due to climatic factors such as temperature can be
managed wherever the battery is used. To better understand Li-ion battery degradation, it
is necessary to research both hot and cold temperature locations. Having a near-optimal
point would reduce the overall cost of battery manufacturing and the degradation rate.

Dimensionality reduction (DR) is a data preparation technique used prior to modeling
that minimizes the number of input variables in a dataset. It must, however, be performed
following data cleansing and scaling and prior to training a predictive model. Increased
input features frequently complicate predictive modeling tasks, a phenomenon referred to
more broadly as the curse of dimensionality. With an excessive number of input variables,
the performance of machine learning algorithms can suffer. High-dimensional statistics
and DR techniques are commonly utilized for data visualization [130].

Nevertheless, similar strategies can optimize the fit of a classification or regression
dataset in applied machine learning. Regression analysis is used to assess whether two
variables have a relationship. Correlation demonstrates the link between two variables,
whereas regression analysis demonstrates how one variable influences another. In the
field of EMS, many features are associated with the simulation and modeling of battery
degradation. It is commonly recognized that these models are overly complex. Utilizing the
DR technique makes it possible to reduce the number of input characteristics. This results
in a more concise, easily interpretable form that focuses the user’s attention on the critical
factors. The electrochemical model defines the physics of the underlying phenomena,
which include ion diffusion, mechanical strain, charge transfer, and ion migration.

Furthermore, the inclusion of input characteristics or variables is required by empirical
equations and representations of similar electric circuits. DR is relevant since the electro-
chemical, empirical, semi-empirical, and data-driven approaches all rely on a combination
of input features. DR reduces the number of features in the dataset to only the most impor-
tant ones, preserving as much information as possible while improving the model’s overall
performance. Because substantial amounts of data can sometimes cause poor performance
in data analytics applications, some columns containing information are discarded. Despite
the removal of some columns, the data characteristics remain relatively unchanged. The
most widely used and accepted methods are backward elimination, forward selection,
and random forests. DR techniques are used in the data analytics landscape. Backward
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elimination allows the fewest features to achieve the desired classification performance,
whereas forward selection creates new features by combining existing ones. The set of
features is correctly modified in the forward selection method.

Solid-state batteries, a next-generation lithium-metal battery, are being developed
with an eye toward electric vehicle powertrains. A small, ultra-compact solid-state battery
would take up little room, significantly increase battery life, and enhance safety. Addition-
ally, it would have better energy and power density and charge far faster than the standard
and widely used Li-ion batteries found in smartphones, smartwatches, and electric vehi-
cles [131]. Despite these merits, making solid-state batteries is a complicated and expensive
science. Another limitation with solid-state batteries is the dendrites which are microscopic
fissures that occur in the solid electrolyte while charging and discharging and which even-
tually become large enough to short-circuit the battery. No one has worked out how to do
this affordably or sustainably. Thus, the foremost advancement in solid-state batteries is
developing dendrite-resistant solid-state batteries. In view of the research review presented
above, the authors in this paper propose the approach depicted in Figure 1 below. The
approach in Figure 1 can be applied to any type of battery that has been developed for
use in an electric vehicle or hybrid vehicle applications. The process is iterative to find an
optimal solution that can slow down battery degradation.

According to Figure 1, the battery is developed with IoT capabilities to measure asso-
ciated features surrounding the electrochemical parameters at least for two years and store
the data. Subsequently, the data could be kept in the cloud, where it could be accessible to
data scientists, engineers, and chemists researching ways to increase the battery’s capacity.
Due to the vast amount of data, DR techniques can be applied to minimize the number of
features focused on or to discover the more minor and significant variables to the overall
study. It will be possible to successfully execute the modeling and simulation of the battery
once the DR technique stage has been completed. A model that allows for converting
physical and electrochemical models into empirical models is essential, particularly when
addressing the loss of capacity. It is possible that mathematical modeling will be a mul-
tiobjective problem requiring stochastic optimization to minimize the objective function.
Once the set of unknowns or variables that control the objective function’s value has been
computed, the known variables can be reintroduced to optimize the battery manufacturing
process. 4IR technologies provide an alternative or complementary approach to mathemat-
ical modeling [132]. In particular, machine learning offers an algorithmic solution to the
multiobjective problem at the cost of computational power.
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Figure 1. Iterative procedure for defining the parameters that are critical in determining the rate of
degradation and, as a result, optimizing the performance of newly made batteries.

9. Conclusions

In this article, the deterioration mechanisms of batteries used in EMS, with emphasis
on EVs, were examined. In addition, the literature that has attempted to lower energy costs
in relation to the fundamental components of EVs, the MG, and the EMS was reviewed,
and the current and applied battery deterioration models for the EMS were examined. This
was carried out in terms of the hybridized system, widely used in the literature because
of deficiencies associated with each ESD. The literature reported the overall elements that
contribute to battery degradation. The various techniques for reducing battery degradation
in EVs were identified. The fundamental assumptions and equations common to all battery
models were identified and thoroughly addressed. In addition, the implications of each
modeling approach and the repercussions of the various degradation mechanisms and
patterns were explored. Finally, we proposed techniques for dealing with the issue of
battery degradation with respect to EMS.
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Despite the advances in the design of EVs and EMS, there are still some areas that are
deficient and which can be considered for future development:

Parameterization: Recognizing defective cells before catastrophic failure, developing
safer usage procedures, and creating materials to reduce degradation rates depends on
understanding Li-ion battery degeneration. Insight into the physical world and ease of
execution varies greatly among the methods utilized in this regard. The parameters of each
degradation model have yet to be determined; hence there is no method for predicting such
model parameters. It is vital to learn more about the interconnectedness of these degrada-
tion mechanisms and their effects rather than focusing only on the effects of deterioration.

Hydrogen storage technology: Despite the trend toward using hydrogen for EVs,
which cuts consumption costs and carbon dioxide emissions, there is still a lack of storage
technology due to the low volumetric energy density of hydrogen and its status as the
lightest element. The onboard storage quantity is also easily flammable.

Charging Infrastructure: Providing the charging infrastructure for the millions of
new electrified vehicles anticipated in the upcoming years may be more complicated than
designing and manufacturing BEVs. Installing and maintaining chargers is costly. When
utilizing electricity firms’ institutional capacity to build and maintain networks, policies
controlling the ownership of EV charging infrastructure utilities must be balanced to ensure
successful and competitive markets. Additionally, the situation is compounded in that not
all EV charging stations have grid access. At the same time, supraharmonics and harmonics
can be seen in places where EVs are connected to the grid for charging, which causes the
network to age and become unstable.

Battery Tech and the Transition to Solid State: transition from lithium to solid-state
batteries: Even though most cars are powered by lithium-ion batteries, automakers are
still trying to make solid-state batteries the industry standard. Solid-state batteries are
easier to charge and may reach 80% of their capacity in 15 min. They also have excellent
safety, compactness, and stability. In contrast to solid-state batteries, which keep 90% of
their capacity after 5000 cycles, lithium-ion batteries start to degrade after 1000 cycles.
For solid-state batteries to become practical for more extensive applications, such as EVs,
hardware and technology must be scaled up. Such an update is costly. Solid-state lithium
batteries are thought to be the best choice for the next generation of vehicle power batteries
because they have high energy density and are very safe.

Energy harvesting methods: In order to reduce their reliance on power grids, EVs
need to be incorporated into the mechanism for energy harvesting. Energy harvesting
strategies need to be studied and explored from four perspectives: waste heat recovery from
exhaust gas; mechanical energy recovery from braking, vibration, and shock; alternative
fuels; integration of renewable energy sources. Such mechanisms would aid in powering
vehicles in cases where the battery dies, so they can continue running during a disaster or
crisis. For instance, networked police, fire, and ambulance services could coordinate their
responses and services using the harvested energy.

EOL: Lithium-ion batteries, used in most commercial electric cars, reach their EOL at
80% of their initial capacity. When these batteries have lost almost 80% of their original
power, they should be recycled. There are specific difficulties in creating EOL battery
management systems and EV rules due to the anticipated increase in battery consumption
over the next few years. These include a lack of information as to the number of defective
batteries, battery kinds, the availability of technology, and recycled or remanufactured
goods. Remanufacturing, recycling, and reuse are at least three of the EOL options for
batteries that can lessen some of the environmental effects of disposing of Li batteries. If it
is assumed there are no practical ways to dispose of and handle the enormous quantities of
used batteries, severe environmental degradation, health issues, and resource depletion will
unavoidably result. Techniques for utilizing used batteries, such as enabling an EV battery
to be removed once it has passed its prime and repurposed as an energy storage system,
are crucial. This would improve the grid’s stability and dependability and accelerate the
rate at which renewable energy can be integrated.
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