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Abstract: Production of syngas from the gasification of a biomass is attracting attention with an eye
to the concepts of circularity, sustainability, and recent needs, triggered by socio-political events, to
increase the level of self-sufficiency of energy sources for a given community. This manuscript reports
on the gasification of spruce wood chips in a demonstration fluidised bed gasifier (1.5 MWth, height
of 5.40 m, internal diameter of 1.2 m), with 0.2–0.4 mm olivine inventory (1000 kg). Gasification
was carried out in air, at four different values of equivalence ratio (from 27% to 36%). The bed was
fluidised at about 0.6 m/s, and the bed temperature resulted in the range of about 960–1030 ◦C as a
function of the different tests. A mass flow rate of biomass in the range of about 360–480 kg/h (as
a function of the different tests) was fed to the fluidised bed gasifier. Syngas lower heating value,
specific mass and energetic yield, and chemical composition, were reported along with data on the
production of elutriated fines. Moreover, tar compounds were collected, quantified and chemically
speciated. The effect of the equivalence ratio on the main process parameter was critically discussed,
proposing useful analytical relationships for the prediction of syngas lower heating value, tar mass
flow rate and chemical composition.

Keywords: gasification; fluidised bed; biomass; spruce wood chips; equivalence ratio; syngas;
hydrogen; tar

1. Overview

Among the advantages of gasification over combustion of solid wastes, a lower pro-
duction of sulphur and nitrogen oxides, of dioxins, and a reduction in the reactor volume
are here recalled [1]. Syngas obtained via gasification, to be then flexibly used, e.g., as an
energy source also in places/times different from those of production, can be effectively
obtained using biomass as solid fuel, with an eye to the concepts of circularity and sus-
tainability (that can be, in turn, increased if gasification ashes are used in the construction
materials industry or as adsorbent for fluid streams purification [2–4]). In addition, recent
events are highlighting the need, for each community, to increase the level of self-sufficiency
in terms of energy sources. Furthermore, it is well known that syngas has wide poten-
tial for use as a material source, as well [5]. Finally, the concept gains further interest if
medium/low-quality biomass, such as that under scrutiny in this work (i.e., spruce wood
chips (SWC)), is used as a parent fuel [6–9].

Nonetheless, concerns arise when a biomass is used as fuel to produce syngas, and
they are mainly focused on the heterogeneous composition of these materials, which
may negatively affect both the gasifier performance and the generation of undesired
compounds such as tar, condensable organic compounds produced along with syngas that
are commonly not accepted in the devices for end-use application of the syngas [10]. Proper
selection of gasifier design and operating conditions, use of a catalyst during gasification,
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cleaning of the syngas (e.g., by thermo-catalytic tar cracking or by filtering) are means to
deal with this issue.

In this context, fluidised bed (FB) reactors are widely known to be appropriate as
gasifiers, due to the very good mass and heat transfer coefficients ensured by FB fluid-
dynamics, and to the possibility of controlling emissions through a proper design of the
gasifier and its operating conditions [11–18].

Gasification of wood biomass is a topic of interest in many research papers. A review
on the present state of wood biomass gasification technologies can be found in [19]. Most of
the research, indeed, has been focused on lab-scale FB gasifiers [20–22]. Less has been said
on the performance of this process at larger reactor scale. Accordingly, in this manuscript,
a FB facility (demonstration scale, 1.5 MWth) was used for investigating the effect of the
air/fuel equivalence ratio, as the most relevant operating condition, on syngas lower
heating value, specific mass and energetic yield, chemical composition, production of tar
compounds and their chemical speciation. Apart from the novelty represented by the use of
a large-scale fluidised bed gasifier, analytical relationships relating equivalence ratio, syngas
lower heating value, mass flow rate of tar, and concentration of groups of species in tar, are
obtained with the aim of offering an operative tool for the system under investigation.

2. Materials, Equipment, and Experimental Procedures
2.1. Biomass

The lignocellulosic biomass used as fuel is red spruce wood, coming from the Tuscan-
Emilian Apennines (Italy), collected in the surroundings of the gasification facility. The red
spruce logs are processed in a drum chipper and then sieved, in order to obtain SWC with
particle size distribution P45, according to the technical specification CEN/TS 14961:2005.

SWC has been characterised by elemental and proximate analysis (LECO CHN628
analyser with ASTM D5373 standard procedure for C, H, N determination; LECO SC-
144DR analyser with UNI 7584 standard procedure for S determination; TGA701 LECO
thermobalance, UNI 9903/ASTM D5142 standard procedures for proximate analysis).
Results are reported, on dry and wet basis, in Table 1. The contents of C (44–48%), H
(circa 6%), N (<1%) and S (not detected) are in line with typical ranges for such kinds of
biomasses. SWC moisture amount is about 9%, and its ash content about 0.15%.

Table 1. Elemental and proximate analysis of spruce wood chips (% by weight).

Dry Basis Wet Basis

C 48.16 43.67
H 6.38 5.79
N 0.20 0.18
S n.d. n.d.

Ash 0.16 0.15
Moisture – 9.32

O (by difference) 45.10 40.89

2.2. Fluidised Bed Gasifier

The experimental runs were carried out using a demonstration bubbling fluidised bed
gasifier (BFBG) with maximum thermal input of 1.5 MWth, located in Emilia-Romagna
region, Italy. The gasification facility consists of three main sections: the FB gasifier, the gas
treatment section, and the energy generation unit. A schematic illustration of the system is
shown in Figure 1.

The BFBG has a cylindrical shape with total height of 5.40 m and internal diameter of
1.20 m. During the start-up phase, the BFBG is heated-up to 350 ◦C, thanks to the sensible
heat generated by a 250 kW methane burner. Then, the gasification starting bed temperature
of 800 ◦C (measured with three K-type thermocouples positioned at 120 degrees in the
splashing zone of the bed) is reached operating the FB reactor in combustion mode, using
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air as comburent and SWC as fuel. A blower, with maximum flow rate of 1000 kg/h,
provides air supply to the reactor.

Figure 1. Scheme of the 1.5 MWth spruce wood chips gasification facility.

During the gasification process, the burner is turned-off and air is pre-heated at about
550 ◦C (at steady state conditions) by a shell and tube heat exchanger (air flows through
the shell, while syngas flows through the tubes). The pre-heated air enters the plenum of
the reactor from the bottom, and then into the bed through nozzles specifically designed to
ensure a homogeneous distribution of the fluidising/gasifying gas in the bed cross-section.

SWC coming from the storage shed is dried in a belt dryer, and then it is sent to a wood
chip hopper. From the hopper, through a screw-feeder, SWC is continuously over-bed
fed to the reactor. An air flow of 10 Nm3/h is used to help the fuel feeding and to avoid
the back flow of the hot gas to the feedstock hopper. The SWC and the air flow rates are
mutually adjusted so that, at the fixed fluidising velocity, the desired air/fuel equivalence
ratio (ER; defined, as usual, as the ratio between the actual flow rate of oxygen in air supply
and that theoretically required for the stoichiometric combustion of the fuel fed to the
reactor) is obtained.

The gas generated in the reactor is sent to the gas treatment section composed of a
high efficiency cyclone, a wet scrubber, a wood chip filter, and a flare zone. The cyclone
removes large part of the particulate (elutriated fines) contained in the gas. At the exit of
the cyclone, there is the heat exchanger and then the water scrubber which provides for
the removal of almost all the remaining solid particles, NH3, HCl, H2S and tars. Then, the
gas is sent to the wood chip filter, which eliminates moisture and tar residues from the gas.
Finally, the syngas, when it is not being used for electric power generation, is burned in the
flare section.

The gasification facility is equipped with a 500 kWel Guascor gas engine generator, for
the conversion of syngas into electric power.

2.3. Analytical Equipment for Gasification Products Characterisation

Syngas coming from the gas cleaning section was analysed by using an Agilent 490
Micro GC QUAD gas chromatograph (µGC) which provides the gas composition in terms
of CO2, CO, H2, CH4, N2 and light hydrocarbons (CnHm), i.e., hydrocarbons containing
2–4 atoms of C, such as C2H2, C2H4, C2H6, C3H6, C3H8 and C4H10. The flow rate of
syngas was measured by using a Pitot tube flowmeter and calculated by applying the
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tie component method to the nitrogen content in the dry gas, as obtained by on-line
µGC measurements.

Elutriated particles collected by the cyclone were analysed with a LECO CHN628
instrument for C, H, N determination.

For the sampling of tars, a system composed of a heated probe, a heated particle filter
and a series of four impinger bottles (containing dichloromethane to dissolve tars) was
used. The gas was sampled for 1 h at a flow rate of 0.10 Nm3/min. The sampler probe was
inserted into a pipeline downstream of the reactor, where the temperature of the syngas was
about 400 ◦C. The condensed tars are then washed from the sampling line and impinger
bottles using dichloromethane, and collected in dark glass bottles. After, the condensate
is off-line analysed in an Agilent 7890A gas chromatograph (GC) with MSD5975C mass
spectrometric (MS) detector.

2.4. Operating Conditions of the Gasification Tests

Four gasification tests have been carried out, as listed in Table 2.

Table 2. Main operating conditions of FB gasification tests of spruce wood chips.

Test ER27 Test ER30 Test ER33 Test ER36

Bed material Olivine, 0.2–0.3 mm, inventory = 1000 kg
Fuel biomass Spruce wood chips

WF [kg/h] 478.0 434.0 391.0 359.0
TB [◦C] 957 976 991 1032

Fluidising gas Air, WA = 680 kg/h
UG (@TB) [m/s] 0.59 0.59 0.60 0.62

ER 0.27 0.30 0.33 0.36

Olivine was chosen as bed material for its ability to act as catalyst for in situ tar decom-
position and to favourably adjust the syngas composition [23–25]. For each experimental
run, an inventory of 1000 kg of olivine with particles size range of 0.2–0.4 mm was used.
The olivine used in this work was provided by Magnolithe GmbH (Austria), and was
mainly composed of MgO (49%), SiO2 (40%), and Fe2O3 (10%) oxides, while traces of
Al2O3, CaO and Cr2O3 were present.

The bed was fluidised at a velocity UG of about 0.6 m/s (calculated at process condi-
tions), so to operate the FB under bubbling regime. Fluidising agent was air (mass flow rate
WA = 680 kg/h). The fuel biomass mass flow rate, WF, ranged between 359 and 478 kg/h.
Knowing the SWC characteristics as in Table 1, these values result in ER of 0.27, 0.30, 0.33
and 0.36 of the stoichiometric value for test termed ER27, ER30, ER33 and ER36, respec-
tively, so ensuring operating conditions sufficiently far from ER = 100% and able to favour
the desired gasification (rather than combustion) kinetic patterns. The bed temperature TB
ranged between 960 and 1030 ◦C, increasing at increasing ER value.

3. Results and Discussion
3.1. Production of Syngas and Fines Elutriation

We start our analysis with the outcomes of the test ER27 (Table 3 and Figure 2). Values
of the average absolute deviation δ, taken on n = 10 measurements, have been reported:

δ =
∑i=n

i=1 |ξi − µ|
n

(1)

where ξ is the measurement value of a given parameter, and µ is the average value for ξ
over ten measures. FB gasification of SWC determined a syngas whose H2 and CO content
(dry basis) was 12.29% and 18.44%, respectively. The methane amount was 4.76%, while
the content of other hydrocarbons (indicated with CnHm and represented by acetylene,
ethylene, ethane, propylene, propane, isobutane) was 1.56%. The rest is CO2 (14.81%) and
N2 (48.14%). The lower heating value (LHV) was calculated, from the syngas chemical
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composition, as 6352 kJ/Nm3. The syngas specific mass yield, defined as the ratio between
the syngas volumetric flow rate (QSG) and the fuel mass flow rate:

YSG =
QSG
WF

(2)

was 1.81 Nm3/kg for this test. The product between the last two parameters gives the
syngas specific energetic yield:

YE
SG = LHV ×YSG (3)

the result of which is 11,525 kJ/kg.

Table 3. Main outcomes of the spruce wood chips FB gasification tests (chemical composition for
syngas is reported in Figure 2). Average absolute deviation (on ten measurements) is reported.

Test ER27 Test ER30 Test ER33 Test ER36

LHV (dry basis) [kJ/Nm3] 6352 ± 217 5519 ± 194 5195 ± 185 4607 ± 172
YSG [Nm3/kg of fuel], Equation (2) 1.81 ± 0.04 1.91 ± 0.04 2.09 ± 0.04 2.14 ± 0.03

YE
SG [kJ/kg of fuel], Equation (3) 11525 ± 619 10537 ± 561 10852 ± 576 9845 ± 514

WT [kg/h] 3.35 ± 0.07 2.47 ± 0.05 2.04 ± 0.04 1.32 ± 0.02
CT [g/Nm3], Equation (6) 3.86 ± 0.00 2.98 ± 0.00 2.50 ± 0.00 1.72 ± 0.00

Figure 2. Cont.
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Figure 2. Chemical speciation of syngas (% by vol.) produced by FB gasification of spruce wood chips,
at different values of the equivalence ratio (CnHm = C2H2 + C2H4 + C2H6 + C3H6 + C3H8 + C4H10).
The scheme below the figure reports values for average absolute deviation, on ten measurements.

At increasing values of the equivalence ratio (and, therefore, of bed temperature from
about 960 ◦C to 1030 ◦C, cf. Table 2), biomass decomposition into syngas was enhanced.
Therefore, higher values for YSG at increasing ER (i.e., going from test ER27 to test ER36,
YSG increases from 1.81 to 2.14) were observed. Nonetheless, the less reducing conditions,
experienced by the SWC biomass in the FB gasifier when ER was increased, determined a
lower quality of the syngas. As a matter of fact, H2, CH4, CO and CnHm content decreased
down to 11.34%, 3.84%, 12.08% and 0.76%, respectively, while that of carbon dioxide
increased (it was 17.56% for ER = 0.36) in close relationship with the larger oxygen content
available for higher values of the equivalence ratio. In terms of LHV, a loss of 27.5% was
recorded in test ER36 vs. test ER27. More in detail, an almost linear effect of ER on LHV
was observed (Figure 3) under our operating conditions:

LHV = −18530ER + 11255 (4)

Figure 3. Fluidised bed gasification of spruce wood chips: effect of equivalence ratio on lower heating
value (dry basis) of the produced syngas.
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Equation (4) gives LHV in [kJ/Nm3], for ER expressed on 1-basis. In Equation (3), the
role of decreasing LHV overtakes that of increasing YSG; therefore, a loss of 14.6% in YE

SG
was observed in test ER36 vs. test ER27.

Indeed, our values for LHV (dry basis), when reported on a N2-free basis, range
between 10.1 and 12.2 MJ/Nm3, i.e., within the range reported by NETL-DOE, USA [26],
where data from industrial gasifiers to produce syngas as energetic vector are reported
(LHV = 8.3–13.0 MJ/Nm3 on a dry and N2-free basis). In addition, it is observed that a
qualitative relationship between ER and LHV, similar to the one depicted in Figure 3, has
been highlighted by Lan et al. in their Figure 9 [20], although using a different biomass (pine
wood chips) and under different operating conditions (temperature from 700 to 800 ◦C,
ER from 0.15 to 0.25). Moreover, the quality of the obtained syngas is satisfying when
compared with the data present in the literature. For example, it has been reported [21] that,
at ER = 0.26, gasification of a biomass based on spruce wood chips yielded a syngas with
values for the H2/CO and H2/CH4 ratios of 0.49 and 1.73, respectively. From Figure 2, at a
similar ER (= 0.27), it is H2/CH4 = 0.67 and H2/CH4 = 2.58, to highlight the high hydrogen
yield obtained in our demonstration FB gasifier. Finally, the absence of oxygen in syngas
(cf. Figure 2) confirms its full involvement in the biomass gasification process.

The amount of elutriated fines ranged between 8.99 and 26.85 kg/h, values that,
reported vs. WF, lie between 1.88 and 4.00%, while when reported vs. QSG, the fines
concentration was in the range 10.36–20.33 g/Nm3.

3.2. Tar Production and Characterisation

As listed in Table 3, tar production accounted for a mass flow rate WT decreasing
from 3.35 kg/h to 1.32 kg/h (i.e., from 0.70% to 0.37% of WF) when the equivalence ratio
increased from 0.27 to 0.36. While, as reported in Figure 3, lower ER values increase the
syngas quality, the less oxidising conditions (and the lower bed temperatures) associated
with low equivalence ratios orient the kinetic patterns towards the production of tar (rather
than to tar conversion towards less harmful species), with an influence of ER on the % of
produced tar (respect to the inlet biomass) which, again, results in an almost linear effect
(Figure 4):

WT
WF

100 = −3.4737ER + 1.6343 (5)

with ER expressed on 1-basis. If the tar production is expressed as CT, concentration in
syngas (Table 3):

CT =
1000WT
YSGWF

(6)

it can be seen that values, decreasing from 3.86 to 1.72 g/Nm3, are in line with the literature
indications when starting from biomass as a parent fuel [27,28]. This highlights the efficacy
of both the operating conditions employed and reactor design. The general circumstance
that at higher temperatures (i.e., cf. Table 2, higher equivalence ratio), the syngas yield is
higher, and the tar yield is lower, is in line with the literature indications [22].

Values of CT were quantitatively speciated through GC-MS analysis, to scrutinise the
chemical composition of tar (Table 4 and Figure 5). For the SWC gasification carried out at
ER = 0.27, CT was 3.86 g/Nm3, which comprised the following:

• Naphthalene, a 2-rings polycyclic aromatic hydrocarbon (PAH), along with small amounts
of 1- and 2-methylnaphthalene, accounted for the most relevant fraction (60.77%);

• Other PAH (from C9 to C16), prevailingly composed by indane (2-rings), acenaphthy-
lene (3-rings), phenanthrene (3-rings) and pyrene (4-rings), accounted for 20.79%;

• 15.52% was characterised by phenol;
• Styrene and dibenzofuran (a 3-rings PAH containing oxygen) accounted for 1.56% and

1.36%, respectively.
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Figure 4. Fluidised bed gasification of spruce wood chips: effect of equivalence ratio on % of produced
tar vs. inlet biomass.

Figure 5. Speciation (GC-MS analysis) of tar produced upon fluidised bed gasification of spruce
wood chips, as a function of the equivalence ratio and according to chemical classes of compounds as
defined in Table 4.
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Table 4. Chemical speciation (GC-MS analysis) of tar produced upon fluidised bed gasification of
spruce wood chips, as a function of the equivalence ratio. List of substances investigated but not
retrieved in tar samples: 1-Methylethylidene phenol; Benzene; Phenylacetylene; Benzonitrile; Indene;
Biphenylene; Cyclopenta[c,d]pyrene; Coronene; Dibenzo[a,i]pyrene; Perylene.

Test ER27 Test ER30 Test ER33 Test ER36

CT [g/Nm3], Equation (6) 3.86 2.98 2.50 1.72

of which

Phenol (C6H6O) 15.52% 10.68% 6.10% 1.44%
3-Methylphenol (C7H8O) - - 0.15% -
4-Methylphenol (C7H8O) - - 0.37% 0.05%

Total phenols 15.52% 10.68% 6.62% 1.49%

Benzofuran (C8H6O) - 2.68% 0.65% 0.96%
Dibenzofuran (C12H8O) 1.36% - - -

Total furans 1.36% 2.68% 0.65% 0.96%

Naphthalene (C10H8) 59.84% 53.54% 45.91% 29.47%
1-Methylnaphthalene (C11H10) 0.34% 1.62% 2.28% 9.60%
2-Methylnaphthalene (C11H10) 0.59% 2.80% 3.75% 7.85%

Total naphthalenes 60.77% 57.96% 51.94% 46.92%

Toluene (C7H8) - 0.61% 0.36% 0.38%
Styrene (C8H8) 1.56% 2.03% 1.52% 1.50%

Total (other) aromatics 1.56% 2.64% 1.88% 1.88%

Indane (C9H10) 10.48% 5.02% 10.62% 15.09%
Acenaphthylene (C12H8) 3.10% 3.93% 9.09% 11.92%

Biphenyl (C12H10) 0.35% 1.25% 2.99% 2.93%
Acenaphthene (C12H10) - 0.50% 1.10% 1.17%

Fluorene (C13H10) 0.77% 1.09% 2.16% 3.18%
Phenanthrene (C14H10) 2.93% 0.66% 5.64% 5.28%

Anthracene (C14H10) 0.37% 10.95% 3.74% 4.35%
Cyclopenta[d,e,f ]phenanthrene

(C15H10) 0.17% 0.25% 0.43% 0.51%

Fluoranthene (C16H10) 0.37% 1.01% 1.27% 1.19%
Pyrene (C16H10) 2.25% 1.12% 1.40% 1.39%

2-Phenylnaphthalene (C16H12) - 0.26% 0.38% 0.37%
Benzo[g,h,i]fluoranthene (C18H10) - - 0.01% 0.12%

Benzo[a]anthracene (C18H12) - - 0.01% 0.27%
Chrysene (C18H12) - - 0.02% 0.24%

Benzo[c]phenanthrene (C18H12) - - - 0.02%
Benzo[b]fluoranthene (C20H12) - - 0.05% 0.11%
Benzo[j]fluoranthene (C20H12) - - - 0.01%
Benzo[k]fluoranthene (C20H12) - - - 0.03%

Benzo[a]pyrene (C20H12) - - - 0.07%
Benzo[e]pyrene (C20H12) - - - 0.03%

Indeno[c,d,e]pyrene (C22H12) - - - 0.13%
Benzo[g,h,i]perylene (C22H12) - - - 0.26%

Dibenzo[a,h]anthracene (C22H14) - - - 0.08%

Total (other) PAH 20.79% 26.04% 38.91% 48.75%

When ER is increased up to 0.36, the most noticeable observations are:

• The amount of phenols steadily decreases, down to 1.49% (on the basis of the value
of CT) for ER = 0.36; starting from ER = 0.33, 3- and 4-methylphenol are observed as
minor compounds in this class; the same happens for the three naphthalene-based
compounds (whose total concentration steadily decreases to 46.92% at ER = 0.36);

• Correspondingly, the higher temperatures associated with higher ER values favour
the formation of other (and, also, more complex) PAH (up to C16, C20 and C22 for
ER = 0.30, 0.33 and 0.36, respectively), whose total concentration steadily increases
up to 48.75% for ER = 0.36; starting from ER = 0.30 on, biphenyl (2-rings), fluorene
(3-rings) and anthracene (3-rings) appear as other relevant species, together with a
plethora of minor compounds.
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Figure 6a–c illustrates the linear relationship binding ER with the % of phenols,
naphthalenes, and other PAH, respectively. They are represented by the following fitting
equations (showing, as the others proposed in this work, very good values for the coefficient
of determination); it is recalled that, for “other PAH”, we mean those listed in Table 4; ER
in the following equations is, again, expressed on 1-basis:

CPHENOLS
CT

100 = −153.83ER + 57.035 (7)

CNAPHTHALENES
CT

100 = −158.57ER + 104.35 (8)

CPAH
CT

100 = 322.5ER− 67.965 (9)

Figure 6. Fluidised bed gasification of spruce wood chips: effect of equivalence ratio on % of
phenols (a), naphthalenes (b) and other PAH (c) retrieved in tar.
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4. Conclusions

From gasification tests of spruce wood chips, carried out in a demonstration bubbling
fluidised bed gasifier (1.5 MWth, fully equipped and operative; this, indeed, is represen-
tative of a reactor scale rarely investigated in the literature) at four different values of the
air/fuel equivalence ratio (ER), it resulted that tests at higher ER (i.e., less reducing condi-
tions and higher bed temperatures) determined a higher syngas specific mass yield (up to
2.14 Nm3/kg of fuel) but with a less favourable chemical composition. For example, a loss
of 14.6% and 27.5% in syngas specific energetic yield and lower heating value, respectively,
was recorded when ER was increased from 0.27 to 0.36. On a N2-free basis, the syngas lower
heating value was about 10–12 MJ/Nm3, falling in the range recommended for industrial
syngas seen as energetic vector. Hydrogen-to-carbon monoxide and hydrogen-to-methane
ratios in syngas were fully satisfying when compared with data reported in the literature
for fluidised bed gasification of the same kind of biomass.

On the other hand, the higher the ER, the less relevant is the tar production (decreas-
ing to 1.32 kg/h for ER = 0.36; tar concentration in syngas is in line with the literature
indications). This highlights the need of a proper trade-off in order to select the value of the
equivalence ratio (and, therefore, the inlet flow rates of air and fuel) most useful according
to the required specifics. To give a contribution in this sense, analytical linear relationships
connecting the equivalence ratio with (i) syngas lower heating value, (ii) mass flow rate of
tar (reported to inlet biomass flow rate), and (iii) concentration of phenols, naphthalenes,
and other polycyclic aromatic hydrocarbons in tar are proposed in this work as an operative
tool for the system under scrutiny.
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Abbreviations

CNAPHTHALENES Concentration of naphthalenes in tar [g/Nm3]
CPAH Concentration of other PAH in tar [g/Nm3]
CPHENOLS Concentration of phenols in tar [g/Nm3]
CT Tar concentration in syngas [g/Nm3]
ER Air/fuel equivalence ratio [–]
LHV Lower heating value [kJ/Nm3]
n Number of measurements [–]
QSG Syngas volumetric flow rate [Nm3/h]
TB Bed temperature [◦C]
UG Superficial fluidisation velocity [m/s]
WA Air inlet mass flow rate [kg/h]
WF Fuel (biomass) inlet mass flow rate [kg/h]
WT Tar mass flow rate [kg/h]
YSG Syngas specific mass yield [Nm3/kg]
YE

SG Syngas specific energetic yield [kJ/kg]
δ Average absolute deviation
µ Average value for a given parameter over n measures
ξ Measurement value of a given parameter
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