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Abstract: To improve the prediction accuracy of short-term load series, this paper proposes a hybrid
model based on a multi-trait-driven methodology and secondary decomposition. In detail, four steps
were performed sequentially, i.e., data decomposition, secondary decomposition, individual predic-
tion, and ensemble output, all of which were designed based on a multi-trait-driven methodology.
In particular, the multi-period identification method and the judgment basis of secondary decom-
position were designed to assist the construction of the hybrid model. In the numerical experiment,
the short-term load data with 15 min intervals was collected as the research object. By analyzing the
results of multi-step-ahead forecasting and the Diebold–Mariano (DM) test, the proposed hybrid
model was proven to outperform all benchmark models, which can be regarded as an effective
solution for short-term load forecasting.

Keywords: multi-trait-driven methodology; secondary decomposition; multiple periodicity patterns;
hybrid model; energy forecasting

1. Introduction

As a clean energy carrier, electricity plays an essential role in global energy conser-
vation and emission reduction. Accordingly, its demand is also increasing rapidly. Based
on research from the International Renewable Energy Agency, electricity will become the
central energy carrier and account for nearly 50% of final consumption by 2050. Therefore,
the rational planning of the deployment schedule to meet the ever-increasing electricity
demand is a challenging task in the power system, which requires maintaining an opti-
mal balance between the generated and consumed energy [1,2]. However, affected by
economic activities, weather conditions, and calendar effects, the time series of short-term
load exhibits periodicity, nonlinearity, and mutability traits [3,4]. This brings uncertainty
to power dispatch. Correspondingly, accurate forecasting of short-term load is helpful to
balance electricity supply and demand [5], as well as improve energy efficiency and reduce
grid operating costs [6]. Therefore, an accurate forecast of the short-term load is vital for
power dispatching. To this end, different models have been constructed to improve the
prediction performance of the short-term load. Overall, these models can broadly fall into
three groups: (1) classical statistical models, (2) machine learning techniques, and (3) hybrid
learning methodologies.

As for classical statistical methods, autoregressive (AR) model [7], exponential smooth-
ing (ES) model [8], seasonal autoregressive integrated moving average (SARIMA) model [9],
and kernel ridge regression (KRR) model [10] have been utilized by the electricity de-
mand [11]. For example, Cai et al. [12] combined the support vector regression (SVR) model
and the SARIMA model to predict short-term load. By contrast, Elamin and Fukushige [13]
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incorporated exogenous and interaction variables into the SARIMA model to model load
accurately. However, limited by strict statistical assumptions, classical statistical models
often exhibit unsatisfactory performance when dealing with nonlinear load time series [14].

In the second category, different machine learning techniques have been proven to be
effective in exploring nonlinear mapping relationships between input and output datasets,
which are constructed to predict the short-term load, such as support vector regression
(SVR) model [15], random vector functional link network (RVFL) model [16], artificial
neural network (ANN) model [17], extreme learning machine (ELM) model [18], long short-
term memory (LSTM) model [19], and bi-directional long short-term memory (Bi-LSTM)
model [20]. For instance, Zhu et al. [21] employed the extreme gradient boosting (XGBoost)
model and achieved a higher prediction accuracy for holiday load forecasting. Nevertheless,
machine learning techniques also suffer from their limitations, such as parameter sensitivity
and local optimal [14,22].

As for the third category, guided by the idea of “divide and conquer” [23], various
hybrid learning methodologies have been developed to reduce modeling complexity and
combine the advantages of different prediction models, thereby achieving better perfor-
mance in forecasting accuracy [24]. In detail, different decomposition methods, including
ensemble empirical mode decomposition (EEMD) [25], wavelet transform (WT) [26], vari-
ational modal decomposition (VMD) [27,28], and complete ensemble empirical mode
decomposition adaptive noise (CEEMDAN) [29] are first extracted as regular modes from
complex load time series. Then, various statistical methods or machine learning techniques
are selected to predict each mode, which are further integrated to output the prediction of
short-term load. For example, Alipour et al. [30] proposed a hybrid learning methodology
that combines the WT and deep neural networks (DNNs) for load forecasting. From the ex-
isting literature, the hybrid learning methodologies exhibit superior prediction performance
compared with classical statistical methods and machine learning techniques [31].

To effectively explore the inner factors of the data, Yu et al. [32] proposed the principle
of data-trait-driven modeling, which requires that the selected model needs to match the
intrinsic traits of the data. Based on this principle, different research frameworks have been
proposed for energy forecasting and demonstrated their effectiveness [23,33]. However,
the existing literature only focuses on a specific aspect of the data, such as memory trait
or complexity trait, and fails to analyze the overall traits of the data. Considering that
the short-term load is affected by economic activities and weather conditions, it not only
exhibits main multi-period trait (such as daily and weekly periodicities), but also has
nonlinearity and mutability traits [3,34]. Therefore, it is necessary to analyze the multi-trait
of the short-term load data. Then, the appropriate hybrid model can be constructed to
improve the forecasting accuracy. In addition, combined data decomposition methods
such as secondary decomposition (SD) have been employed to decrease the interference
of the energy data, which improve the prediction accuracy compared with the separate
decomposition method [35–37]. Nevertheless, the aforementioned studies directly selected
the high-frequency decomposition mode for secondary decomposition, which lacks the
judgment basis for the implementation of SD.

In summary, different research frameworks have been constructed to predict short-
term load, but there exist some research gaps that need to be further improved. Firstly,
affected by economic activities and weather conditions, although the short-term load time
series exhibits apparent multiple periodicities, the existence of nonlinearity and mutability
traits lead to the high complexity of the short-term load data. Meanwhile, affected by
multiple periodicity patterns and calendar effects [38], the period length of the short-
term load data is neither constant nor integral, which increases the difficulty of analyzing
periodicity patterns. Therefore, the multiple traits of the short-term load data need to be
recognized first, and correspondingly extract modes with different periodicity patterns
or data traits. Secondly, for the construction of SD, reasonable criteria are required to
determine which modes need to be further decomposed to reduce modeling complexity.
Additionally, given that each decomposed mode has different data traits, the appropriate
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prediction model should be selected for different modes, thereby improving the prediction
accuracy of short-term load.

Given the aforementioned background, this paper aims to propose a hybrid model
based on a multi-trait-driven methodology and secondary decomposition for short-term
load forecasting. Specifically, four steps were performed sequentially, i.e., data decomposi-
tion, secondary decomposition, individual prediction, and ensemble output, all of which
were designed based on a multi-trait-driven methodology. Firstly, after analyzing the multi-
trait (e.g., stationarity trait, nonlinearity trait, and periodicity trait, etc.) and recognizing the
multiple periodicities of the short-term load data, the improved Multiple Seasonal-Trend
decomposition using Loess (IMSTL) model was performed to decompose the short-term
load series. Secondly, through detecting the data traits of each decomposition mode, the
mode with high-level complexity was further decomposed by the improved CEEMDAN
(ICEEMDAN) model for simplifying. Thirdly, the K-fold walk forward validation (FV)
method was employed to determine the forecasting model for the decomposed modes with
different data traits. Finally, the prediction result of the short-term load can be obtained
by integrating the forecasting results of each decomposed mode. Furthermore, various
benchmark models and multi-step-ahead forecasting (i.e., one step, two steps, and three
steps) are performed for comparison purposes.

Different from existing literature, the scientific contributions of the proposed method-
ology can be summarized below.

(1) Based on the multi-trait analysis of the short-term load data, an appropriate decompo-
sition method was constructed to extract modes with different periodicity patterns or
data traits;

(2) By embedding the method of multiple periodicities recognition, the IMSTL model can
effectively identify and extract the multi-period patterns of the data;

(3) A suitable judgment criterion is proposed to determine whether the modes need to be
further decomposed, thereby improving the performance of the hybrid model.

The paper is organized as follows: The proposed multi-trait-driven methodology is
introduced in Section 2. The results of the experiments and further discussion are shown in
Section 3. Section 4 presents the conclusions and future research directions.

2. Material and Methodology

The proposed hybrid model based on multi-trait-driven methodology and secondary
decomposition is introduced in this section. Specifically, the research framework is de-
scribed in Section 2.1. The details of each step are elaborated in Sections 2.2–2.5.

2.1. The Framework of the Proposed Model

To explore the multi-trait (e.g., multi-period trait, nonlinearity trait, mutability trait,
etc.) of short-term load data and improve the prediction performance, this paper proposes
a hybrid model based on a multi-trait-driven methodology and secondary decomposition.
In detail, the main variation patterns of the short-term load data are first identified by
performing a multi-feature analysis. Meanwhile, based on the data traits analysis and
multi-period recognition, the IMSTL model with a rolling mechanism is utilized to extract
modes with different periodicity patterns or data traits. Then, different trait testing methods
are selected to explore each decomposed mode, while the mode with high-level complexity
is further decomposed. Meanwhile, considering the inherent serial correlation of the time
series, the FV is employed to select the prediction model for each mode with different data
traits. At last, the forecasting results of each mode are ensembled by an efficient method,
simple addition (ADD), to output the final prediction of the short-term load.

As illustrated in Figure 1, the four steps are performed sequentially, i.e., data decom-
position, secondary decomposition, individual prediction, and ensemble output, all of
which are designed based on a multi-trait-driven methodology. The details of each step are
elaborated as follows.
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Figure 1. The framework of the proposed model.

Step 1: Multi-trait-driven data decomposition
In Step 1, the multi-trait and main variation pattern of the short-term load are analyzed

by using different data trait metrics. Correspondingly, the nature traits such as nonstation-
arity trait, nonlinearity trait, and complexity trait, as well as pattern traits (i.e., periodicity
trait, mutability trait, and randomicity trait) of the raw data can be explored. Then, given
the potential multi-period trait of the data, an appropriate procedure is designed to recog-
nize the multiple periodicities and determine the length of each periodicity. Finally, based
on the data traits analysis and multi-period recognition, the raw data are decomposed by
the IMSTL model into a series of modes with different periodicity patterns or data traits, as
shown in Step 1 of Figure 1.

Step 2: Multi-trait-driven secondary decomposition
In multi-trait-driven secondary decomposition, the data traits of each decomposed

mode are investigated to determine whether the modes need to be further decomposed.
Specifically, the mode with the nonstationary trait, nonlinearity trait and complexity trait,
as well as dominated by randomicity pattern can be judged to have high-level complexity,
which needs to be further decomposed for simplifying. Considering that the ICEEMDAN
model can effectively deal with the complexity data by solving the end effect issue. There-
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fore, the ICEEMDAN model is selected to perform the SD of the mode with high-level
complexity into different components, as exhibited in Step 2 of Figure 1.

Step 3: Multi-trait-driven individual prediction
In Step 3, various types of models are determined to predict each decomposed mode

with different periodicity patterns or data traits. Accordingly, the classical statistical
methods (i.e., ES, KRR and SARIMA), and machine learning techniques (i.e., SVR, ELM,
RVFL and Bi-LSTM), are first employed as candidate models. At the same time, considering
the inherent serial correlation of the time series data, the FV method is employed to assist
in determining the prediction model for the decomposed modes with different data traits.
Finally, based on the prediction performance of candidate models in K-data subsets (i.e.,
K = 5), the most appropriate model for each mode is selected for individual prediction.

Step 4: Multi-trait-driven ensemble output
In Step 4, the individual prediction of each decomposed mode is ensembled to output

the final forecasting result of short-term load. Given the completeness of the decomposition
method, that is, each decomposed mode can restore the initial data through linear addition.
Therefore, to reduce computation time and avoid amplifying prediction errors, the simple
addition (ADD) method is performed as the ensemble model. In detail, after performing
Step 1 to Step 3, the prediction results of short-term load can be output by summing
the forecasting results of each decomposed mode. Moreover, the rolling mechanism is
performed to avoid misusing future information.

2.2. Multi-Trait-Driven Data Decomposition

In this section, the details of the multi-trait-driven data decomposition are given,
along with the introduction of the corresponding methods. In detail, the data trait testing
techniques are introduced in Section 2.2.1, and the decomposition method used in Step 1 is
given in Section 2.2.2.

2.2.1. Data Trait Testing Technique

Affected by economic activities and the behaviors of household consumption, short-
term load data show apparent multiple periodicities. For example, the power load data
have a regular daily periodicity pattern, and the consumption of electricity on weekends
and weekdays is quite different [39,40]. However, due to the superposition of calendar
effects (i.e., moving festivals and holidays) and other factors such as weather conditions
and geography, the short-term load data also exhibit high volatility and mutability, as well
as a certain degree of randomness [34,38], which are typical complex data. Therefore, it is
necessary to analyze multiple traits of short-term load data for subsequent model selection
and prediction.

Based on the existing literature, the data traits mainly include two categories: nature
traits and pattern traits. In detail, nature traits are used to analyze the regularity of the data
generation process, such as nonstationarity trait, nonlinearity trait, and complexity trait.
In contrast, pattern traits, namely periodicity trait, mutability trait, and randomicity trait,
are used to analyze the impacts of different change patterns on the original data [41]. For
example, if the data do not have a complexity trait and mainly exhibits periodic variation
patterns, it means that the data have strong regularity. Correspondingly, the methods
of the Augmented Dickey–Fuller (ADF) test [42], sample entropy [43], and the method
of surrogate data [44] are used to recognize the nonstationarity trait, nonlinearity trait
and complexity trait, respectively. As for the detection of the pattern traits, the dummy
variables of average seasonal and structural change are used to extract the periodicity
pattern and mutability pattern of the data, while the remainder of the data are used as
a measure of randomicity pattern [32,41]. Meanwhile, the variance ratio is calculated to
judge the importance of each pattern trait.

Furthermore, due to the existence of calendar effects (i.e., holidays occur on different
days in different years), coupled with the influence of factors such as weather conditions
and geography, the short-term load data may have multiple periodicity patterns and the
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period lengths are not constant or integral [38]. Therefore, an appropriate procedure was
designed in this paper to recognize the multiple periodicities of the data and determine
the length of each periodicity. As shown in Figure 2, the periodogram method [45] was
first used to obtain the possible period lengths of the short-term load data. Then, the 95%
confidence level of these period lengths was set as a threshold to filter out the pseudo-
periods caused by the random permutation process [46]. Subsequently, an efficient method,
the Qs test [47], was used to statistically test the remaining periodicity patterns. Meanwhile,
considering that spectral leakage may lead to multiple similar periodicity patterns [48],
the K-nearest neighbors (KNNs) method was used to solve this problem by clustering the
period lengths that pass the periodicity test. Finally, the center point of each cluster was
selected as the multi-period length of short-term load data. More details of each technique
can be found in the literature [32,38,41–48].
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2.2.2. Decomposition Method

The short-term load has multiple data traits and change patterns, which is a typical
complex data. Meanwhile, given the potential multi-period trait of the data, the candidate
model needs to be able to efficiently extract modes with different periodicity patterns or
data traits. Therefore, the MSTL model is chosen to decompose the short-term load data.
As an extension of the Seasonal-Trend decomposition Procedure Based on Loess (STL)
model [49], the MSTL model is capable of decomposing data with multiple periodicity
patterns [50]. However, the multi-period length of the data must be determined in advance
when using the MSTL model, and inappropriate extraction of multi-period patterns may
ultimately degrade the prediction performance of the hybrid model. Therefore, the IMSTL
model is proposed to efficiently recognize the multiple periodicities of the data and extract
the multi-period modes accordingly, as shown in Figure 3.
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In detail, the proposed IMSTL model can be performed by the following processes:

(1) Based on the multi-period recognition procedure mentioned above, the length of each
periodicity pi, (i = 1, . . . , M), can be determined and sorted in ascending order.

(2) Decompose the time series data x(t) by STL to obtain their first periodicity mode with
period length p1:

r1(t) = x(t)−Mode1(t) (1)

where Mode1(t) is the first periodicity mode, and r1(t) is the corresponding residual.
(3) Calculate the i-th periodicity mode and the i-th residual until all periodicity modes

are extracted:
r(i+1)(t) = x(t)−∑M

i=1 Modei(t) (2)

(4) Smooth r(i+1)(t) by loess to obtain the trend mode T(t), and x(t) can be expressed as:

x(t) = ∑M
i=1 Modei(t) + T(t) + R(t) (3)

where Modei(t) is the i-th periodicity mode, T(t) is the trend mode, and R(t) is the
remainder mode.
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2.3. Multi-Trait-Driven Secondary Decomposition

This section presents the judgment basis for implementing SD, which is utilized in
Step 2 of Figure 1. Given existing literature, the implementation of SD can decrease the
interference of the data, thereby improving the prediction accuracy as compared with
the separate decomposition method [35–37]. However, there is no standard to decide
which modes need to be further decomposed. To solve this problem, considering that the
purpose of SD is to reduce the modeling complexity, the judgment basis can be formulated
according to the data traits of each mode. Specifically, by performing data trait analysis on
each decomposed mode obtained by the IMSTL model, the mode with the nonstationary
trait, nonlinearity trait, and complexity trait, as well as dominated by randomicity pattern
can be judged to have high-level complexity, which requires further decomposition for
simplifying. Meanwhile, the ICEEMDAN model can effectively deal with the complexity
data [51], which can be further improved by extending extreme value data to solve the
end effect issue. Therefore, in the step of multi-trait-driven secondary decomposition, after
analyzing the data traits of each mode, the ICEEMDAN model was used to decompose the
mode with a high-level complexity.

2.4. Multi-Trait-Driven Individual Prediction

In Step 3 of Figure 1, the suitable model is selected to forecast each decomposed mode
with different data traits. In detail, the classical statistical methods (e.g., ES, KRR and
SARIMA), and machine learning techniques (e.g., SVR, ELM, RVFL and Bi-LSTM) are first
employed as candidate models. Meanwhile, considering the inherent serial correlation of
the time series data, the FV method [52] is employed to assist in determining the prediction
model. Subsequently, by dividing the training dataset for each fold in chronological order,
different candidate models are used to forecast each subset. Finally, according to the
prediction performance of each model on the subset, the model that achieves the highest
prediction accuracy is used to predict the corresponding mode. The detailed process of
each prediction method can refer to the literature [8,10,15,16,18,20,53].

2.5. Intermittency-Trait-Driven Ensemble Output

In Step 4 of Figure 1, for the models that decompose the original short-term load
data and the decomposed mode with high-level complexity, each mode can be linearly
added to obtain the original data. Therefore, to reduce computational complexity and
avoid amplifying prediction errors, the forecasting results of each decomposed mode
are ensembled by the simple addition (ADD) approach. Accordingly, by linearly adding
the predictions of each decomposed mode and quadratic decomposed component, the
forecasting results of short-term load can be obtained. Furthermore, to avoid misusing the
testing dataset information during decomposition, the rolling mechanism is performed [54].

3. Results

To demonstrate the effectiveness of the proposed model, the short-term load data with
15 min intervals was used in numerical experiments. Meanwhile, different benchmark
models were chosen for the purpose of comparison. In particular, Section 3.1 explains the
experimental design, the empirical results are analyzed in Section 3.2.

3.1. Experimental Design

In the numerical experiment, the short-term load data with 15 min intervals, collected
from the Bonville Power Administration (BPA), were used as the research object. Given the
data availability, the study period covers from 1 January to 7 January 2020, as presented in
Figure 4. Meanwhile, according to the ratio of 7:3, the data were divided into a training
dataset and a testing dataset. Among them, the training dataset was used for model selec-
tion and parameter estimation, and the testing dataset was applied to test the effectiveness
of each model. The experiment of modeling and analysis were implemented on R 4.1.2
and the main libraries used include “forecast”, “EEMDelm”, and “seatests”. Meanwhile,
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as for the hyperparameters that need to be set by the user, the method of trial-and-error
was selected to determine these parameters. Furthermore, the parameters of all benchmark
models and the proposed model were set to be the same for a fair comparison.
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Meanwhile, three popular metrics, namely root mean squared error (RMSE), mean
absolute error (MAE), and mean absolute percentage error (MAPE), were calculated to
measure the prediction accuracy of each model. The formulas of each metric are as follows:

RMSE =

√
1
N ∑N

t=1 (xt − x̂t)
2 (4)

MAE =
1
N ∑N

t=1|xt − x̂t| (5)

MAPE =
1
N ∑N

t=1

∣∣∣∣ xt − x̂t

xt

∣∣∣∣ (6)

where xt and x̂t are the real value and the predicted value in t period (t = 1, 2, . . . , N),
respectively, N is the length of the data.

As for the selection of benchmark models, different single methods (e.g., ES, KRR,
SARIMA, SVR, ELM, RVFL, and Bi-LSTM), coupled with different decomposition-ensemble
models (e.g., IMSTL-SARIMA, IMSTL-ES, IMSTL-Bi-LSTM, and IMSTL-S) were selected to
compare with the proposed hybrid model. Wherein, ‘S’ represents the multi-trait-driven
individual prediction without SD. Furthermore, multi-step-ahead forecasting (i.e., one step,
two steps and three steps) [55] and the Diebold–Mariano (DM) test [33] were utilized to
demonstrate the effectiveness of the proposed model.

3.2. Experimental Results Analysis

As mentioned before, the experimental results are provided in this section. In de-
tail, the multi-trait analysis of the short-term load data are presented in Section 3.2.1.
Section 3.2.2 analyzes the data traits of each decomposed mode and performs the SD. The
determination of the prediction model is reported in Section 3.2.3. The comparative analysis
between the proposed hybrid model and the benchmark models is provided in Section 3.2.4.

3.2.1. Analysis of the Multi-Trait of the Short-Term Load Data

In this section, different nature traits and pattern traits metrics are calculated to analyze
the multiple traits and main variation patterns of the training dataset. Accordingly, based on
the data trait testing techniques, the corresponding results are listed in Table 1. Meanwhile,
the symbol of the check mark indicates that the corresponding nature trait is possessed,
otherwise it indicates that the corresponding nature trait is not possessed.
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Table 1. Cyclicity test results of original time series data.

Nature Trait The Importance of Each Pattern Trait

Nonstationarity Nonlinearity Complexity Periodicity Mutability Randomicity

The original data ×
√ √

0.575 0.163 0.262

According to Table 1, it can be found that the short-term load time series are typical
complex data. In detail, for the testing results of nature trait, the short-term load data
present nonstationarity trait, nonlinearity trait, and complexity trait, which indicates that
the regularity of the data generation process is poor. Meanwhile, according to the impor-
tance of each pattern trait, periodicity is the main variation pattern of short-term load data,
followed by randomicity and mutability patterns. Considering that the short-term load
data mainly present the periodicity pattern, the multi-period recognition method was used
to further identify the multiple periodicities and determine the length of each periodicity,
as provided in Table 2.

Table 2. The results of multi-period recognition.

Threshold-Based Filtering Periodicity Test Clustering

Possible periods [19.200, 32.000, 43.636, 48.000, 53.333, 68.571,
80.000, 96.000, 120.000, 160.000, 240.000, 480.000] [43.636, 48.000, 53.333, 96.000] [48.323, 96.000]

Based on Table 2, four possible periods passed the periodicity test. However, there are
some similar periodicity patterns (e.g., 43.636, 48.000 and 53.333), which may be caused by
spectral leakage [48]. Furthermore, after clustering by the KNN method, the multi-period
length of short-term load data was finally confirmed as 48.323 and 96.000, which are about
half-day and one-day periods, respectively. Overall, affected by economic activities and
weather conditions, although the short-term load series mainly presents the periodicity
pattern, the irregular data generation process and variation pattern result in the high data
complexity. Therefore, an appropriate decomposition model needs to be selected to extract
the regular modes, thus improving the prediction accuracy of the short-term load series.

3.2.2. Data Decomposition Analysis

Considering that the short-term load data mainly presents the periodicity variation
pattern and has multiple periodicities, the IMSTL model was utilized to extract modes with
different periodicity patterns or data traits, as depicted in Figure 5.

According to Figure 5, it can be intuitively concluded that, compared with the original
data, the regularity of the periodicity modes and the trend mode is better, while the change
in the remainder mode is drastic. In order to determine which mode needs to be further
decomposed, the data traits of each decomposed mode were analyzed, as can be seen in T.

From Table 3, it can be concluded that the periodicity mode, trend mode, and re-
mainder mode have different nature traits and pattern traits. For example, although each
periodicity mode is tested to have the nonstationary trait and nonlinearity trait, the domi-
nant variation pattern of these modes is the periodicity pattern, with a pattern importance
ratio of 0.857 and 0.932, respectively. Meanwhile, neither the periodicity mode nor the
trend mode is detected to have the complexity trait, so these modes have strong regularity.
Specific to the remainder mode, it not only has the nonstationarity trait, nonlinearity trait
and complexity trait, but also its variation pattern is dominated by the randomicity pattern.
Based on the data trait analysis results of each mode, the periodicity mode and the trend
mode can be directly modeled to predict, while the remainder mode has high-level com-
plexity and need to be further decomposed for simplifying. Therefore, the remainder mode
was decomposed by the ICEEMDAN model to reduce the complexity.
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Table 3. Data trait testing of each mode.

Nature Trait The Importance of Each Pattern Trait

Nonstationarity Nonlinearity Complexity Periodicity Mutability Randomicity

Periodicity mode 1
√ √

× 0.857 - 0.143
Periodicity mode 2

√ √
× 0.932 - 0.068

Trend mode
√ √

× - 0.337 0.663
Remainder mode

√ √ √
- 0.096 0.904

3.2.3. Multi-Trait-Driven Prediction Model Selection

In this section, different candidate models and the FV method are used to determine
the prediction model for each decomposed mode with different data traits. By calculating
the evaluation metric values (e.g., RMSE, MAE, and MAPE) of the candidate models on
each subset, the model with the highest prediction accuracy is selected to predict the
corresponding mode. Specifically, the prediction performance of each candidate model
is listed in Tables 4 and 5. Wherein, the prediction performance and average prediction
performance of the candidate models on each subset i (I = 1, 2, . . . , 5) are denoted by Fi
and F.
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Table 4. Prediction performance of the candidate models on each subset.

Mode Model
F1 F2 F3 F4 F5

MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE

Periodicity
mode 1

Bi-LSTM 0.927 245.797 172.800 0.762 183.172 148.012 0.426 198.837 152.262 0.288 286.859 169.492 1.031 208.266 147.918
ELM 0.381 131.336 96.408 0.837 199.056 143.797 0.494 164.562 130.427 0.275 165.683 125.588 1.355 158.329 121.387
KRR 1.100 248.675 178.268 0.570 267.152 198.993 0.231 219.067 159.969 0.267 223.608 158.665 1.400 194.533 142.468
SVR 1.206 273.146 212.811 0.643 288.488 226.164 0.336 240.510 192.332 0.295 233.485 174.498 1.497 199.946 155.590

RVFL 0.435 119.259 90.766 0.765 200.696 144.254 0.416 152.906 122.954 0.285 161.419 128.649 1.437 156.563 124.844
ES 0.157 206.243 149.063 0.898 331.332 250.421 1.198 304.998 241.116 0.490 280.956 221.201 2.099 278.239 225.278

SARIMA 0.217 206.993 155.856 0.226 171.155 105.006 0.048 46.834 35.228 0.049 50.458 39.188 0.034 29.947 21.969

Periodicity
mode 2

Bi-LSTM 0.407 328.710 213.988 0.348 303.087 222.715 0.104 284.487 188.135 0.328 307.913 245.182 0.358 278.914 227.661
ELM 0.346 246.446 170.164 0.195 198.572 141.157 0.101 171.217 119.787 0.176 185.633 135.494 0.154 163.948 125.255
KRR 0.477 269.428 184.659 0.285 282.065 210.790 0.136 220.858 151.651 0.237 238.050 175.000 0.210 224.272 163.845
SVR 0.530 294.199 209.836 0.340 307.680 238.863 0.148 240.274 171.053 0.278 276.830 210.814 0.246 256.293 196.705

RVFL 0.384 283.444 188.571 0.189 197.291 141.284 0.103 168.056 118.631 0.171 182.971 132.530 0.156 162.383 122.787
ES 0.138 210.038 153.743 0.272 281.519 211.148 0.132 245.754 170.368 0.260 258.198 191.042 0.238 261.992 197.770

SARIMA 0.173 216.284 153.938 0.070 157.681 73.852 0.004 7.010 5.479 0.006 5.966 4.875 0.006 6.499 4.946

Trend
mode

Bi-LSTM 0.003 95.910 79.191 0.001 24.979 21.014 0.006 307.894 211.088 0.005 179.874 153.440 0.001 29.363 16.417
ELM 0.003 2827.887 235.650 0.000 18.281 2.133 0.000 0.232 0.113 0.000 0.141 0.088 0.000 0.074 0.058
KRR 0.001 66.677 66.139 0.001 74.555 73.408 0.001 51.457 50.941 0.001 69.497 69.406 0.001 66.456 66.385
SVR 0.002 113.963 112.845 0.002 153.271 153.198 0.002 178.561 178.312 0.002 181.832 181.798 0.002 183.460 183.378

RVFL 0.004 3524.889 291.528 0.000 44.607 5.317 0.000 0.244 0.116 0.000 0.142 0.079 0.000 0.076 0.058
ES 0.001 19.060 17.462 0.000 2.661 0.590 0.001 32.204 31.108 0.001 38.091 34.116 0.000 9.852 8.427

ARIMA 0.012 415.966 376.480 0.030 939.724 924.913 0.028 1043.801 873.919 0.034 1242.029 1056.441 0.014 464.305 427.642

Remainder
mode

Bi-LSTM 0.616 193.057 154.081 0.280 179.005 144.683 0.354 199.253 136.666 0.636 245.584 188.516 0.174 325.771 252.912
ELM 1.705 278.128 227.273 0.434 410.502 244.966 0.534 292.476 213.244 0.653 390.716 239.349 0.218 454.785 327.003
KRR 1.893 251.111 200.934 0.356 249.167 181.776 0.508 253.489 199.368 0.578 277.362 186.589 0.202 347.059 266.996
SVR 1.828 266.647 212.499 0.376 254.797 188.716 0.542 265.229 208.270 0.654 291.262 200.411 0.237 485.052 345.596

RVFL 1.653 283.733 228.334 0.460 454.795 262.305 0.552 308.482 220.023 0.720 540.852 270.388 0.235 660.998 391.416
ES 1.983 255.003 201.186 0.397 259.791 184.418 0.572 262.134 202.557 0.619 302.783 201.337 0.260 323.907 249.130

ARIMA 2.215 246.489 190.728 0.480 247.095 182.575 0.815 240.575 189.495 0.709 272.573 182.989 0.320 292.273 221.723
SD-Bi-LSTM 0.606 212.252 181.457 0.332 190.633 146.227 0.311 186.841 131.244 0.549 195.618 152.499 0.170 274.823 218.358
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Table 5. Average prediction performance of the candidate models.

Mode Model

¯
F

MAPE RMSE MAE

Periodicity
mode 1

Bi-LSTM 0.687 224.586 158.097
ELM 0.668 163.793 123.521
KRR 0.714 230.607 167.673
SVR 0.795 247.115 192.279

RVFL 0.668 158.169 122.293
ES 0.969 280.354 217.416

SARIMA 0.115 101.078 71.449

Periodicity
mode 2

Bi-LSTM 0.309 300.622 219.536
ELM 0.194 193.163 138.371
KRR 0.269 246.935 177.189
SVR 0.308 275.055 205.454

RVFL 0.201 198.829 140.761
ES 0.208 251.500 184.814

SARIMA 0.050 77.495 47.643

Trend mode

Bi-LSTM 0.003 127.604 96.230
ELM 0.001 569.323 47.608
KRR 0.001 65.728 65.256
SVR 0.002 162.217 161.906

RVFL 0.001 713.992 59.420
ES 0.001 19.845 17.693

ARIMA 0.023 821.165 731.879

Remainder
mode

Bi-LSTM 0.412 228.534 175.372
ELM 0.709 365.321 250.367
KRR 0.707 275.638 207.133
SVR 0.727 312.597 231.098

RVFL 0.724 449.772 274.493
ES 0.766 280.723 207.726

ARIMA 0.908 259.801 193.502
SD-Bi-LSTM 0.394 212.033 165.957

From Tables 4 and 5, it can be demonstrated that the optimal prediction models
are different for each decomposition mode with different data traits. Therefore, it is
necessary to perform the multi-trait-driven prediction model selection. In detail, as for the
periodicity modes, the performance of the SARIMA model is significantly better than other
models. Therefore, considering that the SARIMA model can effectively predict the data
with periodicity [9], the SARIMA model is selected to predict the periodicity modes. As for
the trend mode, the averages of MAPE, RMSE, and MAE of the ES model in the FV method
are 0.001, 19.845, and 17.693, respectively, which outperforms other alternative models.
Given the low complexity of trend mode, the ES model is chosen for trend mode forecasting.
When it comes to remainder mode forecasting, the Bi-LSTM model has the best prediction
accuracy, where its MAPE, RMSE, and MAE are 0.412, 228.534, and 175.372, respectively.
The possible reason is that the Bi-LSTM model can make full use the information of the
complex time series data, thereby achieving higher prediction accuracy [20]. By contrast,
by performing the SD to remainder mode, the SD-Bi-LSTM model can further improve the
performance of the Bi-LSTM model. For example, compared with the Bi-LSTM model, the
MAPE, RMSE, and MAE of the SD-Bi-LSTM model are reduced by 4.368%, 7.221%, and
5.369%, respectively. Therefore, the SD-Bi-LSTM model is utilized for the prediction of the
remainder mode.
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3.2.4. Comparison of Prediction Performance

In this section, the prediction performance of different models on the testing dataset
are compared. Correspondingly, the comparison results are listed in Table 6 and plotted in
Figures 6–8, from which four main conclusions can be drawn.

Table 6. Prediction performance of different models.

Model
Horizon 1 Horizon 2 Horizon 3

MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE

The proposed model 0.025 996.632 803.840 0.027 1075.094 863.915 0.029 1153.009 925.959
IMSTL-S 0.030 1097.379 945.976 0.032 1313.271 1053.374 0.039 1562.250 1273.193

IMSTL-SARIMA 0.032 1254.016 1014.147 0.033 1306.357 1057.062 0.034 1356.456 1098.243
IMSTL-ES 0.056 2026.460 1803.078 0.058 2141.056 1873.246 0.062 2273.182 1962.798

IMSTL-Bi-LSTM 0.043 1656.921 1340.371 0.052 2007.111 1661.422 0.057 2158.918 1775.344
Bi-LSTM 0.053 2591.693 1641.828 0.063 2688.045 2023.559 0.073 3191.726 2372.660

ELM 0.068 2981.484 2287.289 0.070 2901.366 2317.169 0.070 3077.101 2385.460
KRR 0.056 2261.984 1832.726 0.060 2427.685 1961.387 0.064 2589.605 2089.087
SVR 0.073 2868.298 2388.849 0.084 3291.700 2768.444 0.095 3719.329 3140.454

RVFL 0.079 2617.263 2569.141 0.077 2591.416 2484.866 0.078 2648.145 2501.780
ES 0.084 3218.942 2668.784 0.095 3394.825 2864.424 0.091 3251.437 2760.568

SARIMA 0.098 3888.001 3282.341 0.112 4119.156 3487.136 0.102 3897.657 3303.147
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Firstly, based on Figures 6–8 and Table 6, the proposed model outperforms all bench-
mark models in multi-step-ahead forecasting, as it has the lowest MAPE, RMSE, and MAE.
In detail, compared with each single model and decomposition-ensemble model, the MAPE,
RMSE, and MAE of the proposed model in multi-step-ahead forecasting are reduced by
55.866%, 54.636%, and 56.063% on average, respectively. Therefore, by performing multi-
trait-driven modeling and SD, the proposed hybrid model can effectively improve the
prediction accuracy of short-term load.

Secondly, the prediction performance of the decomposition-ensemble model outper-
forms the single model, as illustrated in Figures 6–8 and Table 6. For example, by comparing
the performance of the single models, the MAPE, RMSE, and MAE of the decomposition-
ensemble models are reduced by an average of 43.878%, 45.167%, and 44.543%, respectively.
The main reason is that the divide-and-conquer framework can explore the inner factors of
the data effectively [32], thereby achieving high accuracy of short-term load forecasting.

Thirdly, it can be demonstrated that the prediction model selection based on multi-
trait-driven methodology can effectively improve the performance of the decomposition-
ensemble model. For instance, compared with the accuracy of other decomposition-
ensemble benchmark models, the MAPE, RMSE, and MAE of the IMSTL-S model are
reduced by an average of 29.231%, 26.709%, and 27.981%, respectively. Therefore, the
prediction accuracy of the decomposition-ensemble model can be improved by matching a
suitable forecasting method for each decomposed mode with different data traits.

Fourthly, the SD of the decomposed mode with high-level complexity can further
increase the accuracy of the prediction model, as can be seen in Figures 6–8 and Table 6. In
detail, compared with the prediction accuracy of the IMSTL-S model, the proposed hybrid
model achieves an average reduction in 19.311%, 17.837%, and 20.095% on MAPE, RMSE,
and MAE metrics, respectively. Therefore, the implementation of SD can decrease the inter-
ference of the decomposed mode with high-level complexity [35], thereby outperforming
the hybrid model with a separate decomposition method.

Furthermore, the DM test is used to statistically test the difference between the pro-
posed model and the benchmark models, as displayed in Table 7. Accordingly, the above
four main conclusions can be proved statistically. First, the proposed model outperforms
all benchmark models with a 95% confidence interval, which statistically validates the effec-
tiveness of the proposed model. Second, the prediction performance of each decomposition-
ensemble model in the benchmark models is better than its corresponding single model
under the 95% confidence interval. Thirdly, the decomposition-ensemble model combined
with multi-trait-driven model selection achieves better prediction performance than its
counterparts without model selection under the 99% confidence interval. Furthermore,
focusing on the SD, the proposed model significantly outperforms the decomposition-
ensemble benchmark models without SD under the 95% confidence interval.
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Table 7. Results of the DM test.

Target Model

Benchmark Model

IMSTL-S IMSTL-
SARIMA

IMSTL-
ES

IMSTL-
Bi-LSTM Bi-LSTM ELM KRR SVR RVFL ES SARIMA

The proposed
model

−2.335
(0.011)

−7.354
(0.000)

−12.242
(0.000)

−7.053
(0.000)

−2.772
(0.003)

−7.574
(0.000)

−8.744
(0.000)

−10.875
(0.000)

−28.268
(0.000)

−11.407
(0.000)

−10.598
(0.000)

IMSTL-S −4.563
(0.000)

−10.739
(0.000)

−5.871
(0.000)

−2.654
(0.004)

−7.229
(0.000)

−7.724
(0.000)

−10.008
(0.000)

−26.213
(0.000)

−11.079
(0.000)

−9.911
(0.000)

IMSTL-
SARIMA

−8.909
(0.000)

−4.426
(0.000)

−2.475
(0.007)

−6.831
(0.000)

−6.871
(0.000)

−9.421
(0.000)

−21.491
(0.000)

−10.804
(0.000)

−9.527
(0.000)

IMSTL-ES 3.723
(0.000)

−1.251
(0.106)

−4.344
(0.000)

−1.293
(0.098)

−5.065
(0.000)

−8.575
(0.000)

−8.631
(0.000)

−7.706
(0.000)

IMSTL-Bi-
LSTM

−1.957
(0.026)

−6.746
(0.000)

−8.067
(0.000)

−10.901
(0.000)

−13.675
(0.000)

−12.173
(0.000)

−7.963
(0.000)

Bi-LSTM −0.955
(0.171)

0.964
(0.167)

−0.292
(0.385)

−0.063
(0.474)

−3.785
(0.000)

−1.715
(0.044)

ELM 5.571
(0.000)

2.391
(0.008)

2.022
(0.022)

−6.739
(0.000)

−1.072
(0.142)

KRR −11.882
(0.000)

−4.983
(0.000)

−12.223
(0.000)

−5.981
(0.001)

SVR 0.815
(0.207)

−10.131
(0.000)

−3.084
(0.001)

RVFL −6.728
(0.000)

−3.957
(0.000)

ES 3.028
(0.001)

4. Discussion

In this section, different multi-period decomposition models (e.g., Seasonal-Trend
decomposition using Regression (STR) [56] and TBATS [57]), coupled with the STL model,
are performed as the benchmark models (e.g., STR-P, TBATS and STL-P) for comparison
purposes. Wherein, ‘P’ represents the model selection and SD based on multi-trait-driven
modeling. Meanwhile, the related models in the existing literature [25,27,28,58] are also uti-
lized to demonstrate the effectiveness of the proposed model, as provided in Tables 8 and 9
and Figures 9–11. Sequentially, the following three conclusions can be drawn.

Table 8. Prediction performance of different models in discussion.

Model
Horizon 1 Horizon 2 Horizon 3

MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE

The proposed
model 0.025 996.632 803.840 0.027 1075.094 863.915 0.029 1153.009 925.959

STR-P 0.030 1097.379 945.976 0.032 1313.271 1053.374 0.039 1562.250 1273.193
TBATS 0.032 1254.016 1014.147 0.033 1306.357 1057.062 0.034 1356.456 1098.243
STL-P 0.056 2026.460 1803.078 0.058 2141.056 1873.246 0.062 2273.182 1962.798

Pan et al. [25] 0.043 1656.921 1340.371 0.052 2007.111 1661.422 0.057 2158.918 1775.344
Jin et al. [58] 0.053 2591.693 1641.828 0.063 2688.045 2023.559 0.073 3191.726 2372.660

Tang et al. [27] 0.068 2981.484 2287.289 0.070 2901.366 2317.169 0.070 3077.101 2385.460
Lin et al. [28] 0.056 2261.984 1832.726 0.060 2427.685 1961.387 0.064 2589.605 2089.087
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Table 9. Results of the DM test in discussion.

Target Model
Benchmark Model

STL-P STR-P TBATS Pan et al. [25] Jin et al. [58] Tang et al. [27] Lin et al. [28]

The proposed model −4.419
(0.000)

−8.241
(0.000)

−6.293
(0.000)

−2.420
(0.008)

−6.761
(0.000)

−9.467
(0.000)

−1.668
(0.048)

STR-P 0.116
(0.453)

3.394
(0.000)

1.313
(0.095)

1.371
(0.086)

0.101
(0.459)

−0.487
(0.313)

TBATS 6.018
(0.000)

1.660
(0.049)

4.266
(0.000)

−0.062
(0.475)

−0.541
(0.294)

STL-P −1.339
(0.091)

−4.009
(0.000)

−6.805
(0.000)

−1.374
(0.085)

Pan et al. [25] −0.373
(0.354)

−1.725
(0.043)

−0.987
(0.162)

Jin et al. [58] −5.657
(0.000)

−0.917
(0.179)

Tang et al. [27] −0.542
(0.294)

First, as illustrated in Tables 8 and 9 and Figures 9–11, compared with the decomposition-
ensemble model based on the single-period decomposition method, the proposed model
obtains higher prediction accuracy. Specifically, compared with the STL-P model, the
proposed model has an average reduction in 53.670%, 50.341%, and 53.839% on MAPE,
RMSE, and MAE metrics, respectively. At the same time, as shown in Table 6, the proposed
model outperforms the STL-P model under the 99% confidence interval. Therefore, the
performance of short-term data can be improved by recognizing and extracting multi-
period modes.

Secondly, according to the results demonstrated in Tables 8 and 9 and Figures 9–11, it
can be found that the proposed model outperforms the decomposition-ensemble model
based on other multi-period decomposition methods. In multi-step forward forecasting,
the MAPE, RMSE, and MAE of the proposed model are reduced by an average of 43.546%,
51.458%, and 44.807% compared with its counterparts based on other multi-period decom-
position methods. Meanwhile, the same conclusion can be confirmed by the results of
the DM test at the 5% significance level. The possible reason is that the IMSTL model can
extract the multi-period modes more effectively than other multi-period decomposition
methods, thereby improving the prediction accuracy.

Thirdly, as can be seen in Tables 8 and 9 and Figures 9–11, compared with the existing
prediction models [25,27,28,58], the proposed model has better prediction performance in
multi-step forward forecasting. In detail, the MAPE, RMSE, and MAE of the proposed
model in multi-step-ahead forecasting are reduced by an average of 36.450%, 49.937%, and
37.789%, respectively, compared with the existing methods. Furthermore, compared with
existing methods, all p-values of the DM test for the proposed model are less than 0.05,
which statistically validates the effectiveness of the proposed model.

5. Conclusions

To improve the prediction accuracy of short-term load series, this paper proposes a
hybrid model based on a multi-trait-driven methodology and secondary decomposition. In
detail, four steps are performed sequentially, i.e., data decomposition, secondary decompo-
sition, individual prediction, and ensemble output, all of which are designed based on a
multi-trait-driven methodology. In particular, the multi-period identification method and
the judgment basis of secondary decomposition are designed to assist the construction of
the hybrid model.

In the numerical experiment, the short-term load data with 15 min intervals are col-
lected as the research object. Meanwhile, different single methods, decomposition-ensemble
models, and the existing prediction models in the literature are utilized for comparison pur-
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poses. By analyzing the results of multi-step-ahead forecasting and the Diebold–Mariano
(DM) test, the proposed hybrid model is proven to outperform all benchmark models,
which can be regarded as an effective solution for short-term load forecasting. Mean-
while, four insightful findings can be summarized. First, the proposed hybrid model
based on multi-trait-driven methodology and secondary decomposition outperforms all
benchmark models. Secondly, by combining with the multi-trait-driven model selection,
the decomposition-ensemble models can obtain better prediction performance than their
counterparts without this step. Thirdly, the IMSTL model can effectively recognize and
extract the multi-period modes, thereby increasing the performance of short-term load
forecasting. Finally, the proposed hybrid model is able to further increase the accuracy of
short-term load forecasting by performing the SD for the mode with high-level complexity.
However, there are some directions that are needed for further research. Considering the
unavoidable prediction errors in forecasting, it is necessary to construct an appropriate
method for uncertainty analysis to help the power system to formulate a dispatch plan. In
addition, the feature selection of short-term load influencing factors would be an orientation
to further improve the forecasting accuracy.
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