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Abstract: A solution to the inverse heat transfer problem (IHP) occurring in steam pipelines is
presented in the paper. The transient steam temperature at the pipeline inlet was determined from
the steam temperature measured at the pipeline outlet. Temporary changes of steam temperature at
the turbine inlet are set by the turbine manufacturer and result from the conditions of safe starting of
the turbine and maintaining high durability of its components. The boiler start-up should be carried
out so that the time-temperature changes at the boiler outlet equal the time-temperature changes
determined using the inverse problem. In this paper, the inverse problem of heat transfer in the
pipeline was solved by the finite volume method using data smoothing, future times steps, and
Tikhonov regularization that stabilized the solution of the inverse problem. The determined transient
steam temperature at the pipeline inlet was compared with the measured temperatures. The steam
temperature at the inlet to the pipeline, which is the solution to the inverse problem, agrees very well
with the measured temperature, as the absolute value of the relative difference εT between measured
and calculated temperature is between 0.045% and 0.3%, and the root mean square error RMSE is
within the range of 0.038 K to 0.322 K.

Keywords: inverse heat conduction problem; numerical modelling; steam pipeline

1. Introduction

In inverse problems, the boundary conditions are identified, or the fluid physical
properties are determined based on the measured responses of the system.

Typically, inverse heat conduction problems (IHCP) are solved, and much less attention
is paid to inverse convective heat transfer issues in the literature.

A method for solving non-linear inverse heat conduction using the space marching
method is presented in [1]. The internal surface temperature of the cylindrical element and
the heat flux was determined from the measured wall temperature using a temperature
sensor near the inner surface of the element. The resulting temperature distribution across
the component wall was used to calculate the thermal stresses at the inner surface. The
excellent accuracy of the method presented in [1] was achieved by eliminating random
disturbances of measured wall temperature and its first-order derivative using moving
digital filters.

Inverse problems are often solved for unsteady heat conduction [2,3]. The paper [2]
presents the solution to the IHCP using the Trefftz method. The authors presented two
methods for solving IHCPs. The conjugate gradient method with the Tikhonov regular-
ization method was used to stabilize the inverse solution when measured temperatures
were perturbed with random errors. They showed that the regularization results in a
shorter computation time, while methods using iterations do not always lead to conver-
gent solutions. The paper [2] shows that Trefftz numerical functions can be used to solve
non-linear IHCP.
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An algorithm is presented in [3] for the solution of an IHCP: for determining the
steady-state distribution of the heat transfer coefficient (HTC) on one surface of a slab wall
from the known temperature distribution in a plane inside the slab. It was assumed that
the thermal boundary conditions on the other wall surfaces were known.

The algorithm is based on the finite volume discretization of the slab and on the
formulation and the subsequent inversion of square matrices linking the wall surface
temperature and heat flux to that of measured temperature at the inner plane [3].

The paper [4] presents a sequential gradient-based method for non-linear one-dimensional
heat conduction. A quasi-Newton update strategy was used to determine the transient HTC
on the solid surface. Compared to the traditional sequential conjugate gradient method, the
proposed method gave more accurate, reliable, and stable results.

There are considerable stability problems with the solutions of the IHCPs, which are
very sensitive to random temperature measurement errors. The paper [5] developed a
hybrid algorithm for selecting regularization parameters which give low error variances for
estimated parameters. Consequently, the algorithm can reduce the total error and provide
better stability for the IHCP solution.

Determining the unsteady temperature of flowing fluid at high pressure from ther-
mometer indications is also an inverse problem [6,7]. Accurate fluid temperature measure-
ment is critical since correct identification of thermal stresses depends heavily on it.

A new method for determining the fluid temperature based on measuring the tem-
perature of the pipeline wall near its inner surface and the readings of a thermometer
is presented in [6]. The thermometer for measuring the temperature of a flowing fluid
has the form of a solid cylinder in the axis of which the temperature is measured using a
thin thermocouple. The fluid temperature determined from the pipeline wall temperature
measurement and the temperature determined from the thermometer readings should
be equal. From this temperature equality condition, the correlation to Nusselt’s number
was determined on the outer surface of a thermometer transversely swept by steam or
another fluid.

Jaremkiewicz et al. [7] present a method for measuring the unsteady steam tempera-
ture based on a new fast response thermometer. The proposed thermometer can be adapted
to a wide range of temperatures and steam pressures by optimum design and suitable ma-
terials for the thermometer housing. This paper [7] demonstrates the effect of temperature
measurement accuracy on the values of stresses calculated in pressure components.

The permissible time variations of fluid temperature and pressure in pipelines and
other pressure components can be determined using the procedure outlined in [8], which is
based on the European Standard [9] for calculating allowable heating and cooling rates for
thick-walled components. The fluid temperature was determined from the solution of the
first-order ordinary differential equation for time, considering that the allowable rate of
fluid temperature change is a linear function of fluid pressure.

An essential issue of the flexibility of thermal power blocks is to optimize pipeline
heating and cooling so that the sum of circumferential thermal and pressure stress at the
edge of the pipeline opening is less than the allowable stress. The optimum time variations
of the fluid temperature are determined using the solution to the IHP [10]. The heating
time of the cylindrical element from the initial temperature to the given final temperature
is about 40% shorter than the heating time determined using the European Standard [9].

The interesting IHP was solved in [11]. The rotational speed of the fan forcing air
through the heat exchanger was sequentially determined so that the calculated water
temperature at the heat exchanger outlet was equal to the set temperature. The golden
section method was used to solve the non-linear IHP. Three methods were used to stabilize
the determined fan speed: the Tikhonov regularization method, Beck’s future time steps,
and smoothing of the measured outlet water temperature using a moving averaging filter.

IHPs also occur in identifying leakages in various types of aboveground and under-
ground pipelines. Leakages are usually identified by measuring the flow and thermal
parameters of the flowing fluid or medium around the pipeline.
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A review and comparative study of computer-based methods for pipeline leak detec-
tion were carried out in [12].

A method for leak detection in buried pipelines based on measurements of the tem-
perature and moisture of the soil was developed in [13]. A CFD (Computational Fluid
Dynamics) modelling was used to validate the proposed method.

During start-up, shut-down, and load changes, thick-walled steam boiler elements op-
erating under high pressure and high-temperature conditions cause high thermal stresses.
In thick walls, significant temperature differences occur during transient operation, ac-
companied by the formation of high thermal stresses. The largest, in value, stresses and
deformations usually occur at the edges of openings. Circumferential stresses at the hole’s
edge of varying signs, compressive during heating and tensile during cooling, causing
fatigue cracking. The stresses lead to low-cycle cracking, failure, and accelerated degrada-
tion of the block components [14]. For this reason, thick-walled boiler elements limit the
maximum heating and cooling rates during the start-up or shut-down of the boiler.

The heating of the steam pipeline connecting the boiler to the turbine is essential
for the start-up of the boiler and turbine [15]. The pipeline design, internal and external
diameters, length, and material for a steam boiler type are different and depend on the
operating parameters of the steam. The working fluid, i.e., superheated steam fed to the
turbine, must have appropriate parameters (temperature and pressure). Moreover, the
large wall pipeline thickness and the length pipeline influence the fluid temperature drop.
Significant changes in the working fluid parameters substantially affect the lifetime of
turbine components. It is not only the turbine rotor at risk but also the turbine casing as
thick-walled components.

The literature on modelling thermal-flow phenomena in pipelines is scarce despite its
very high practical relevance.

It is difficult to find information in the literature on modelling steam pipelines’ tran-
sient operation. The steam and pipeline wall temperatures at the given boundary and
initial conditions were determined numerically in [16]. The direct heat transfer problem
was solved using the finite volume method.

Flow and thermal phenomena in superheater tubes are much more frequently an-
alyzed [17–21]. Due to the small wall thickness of superheater tubes, little attention is
paid to the temperature distribution over the wall thickness. The wall thickness of the
pipeline is much greater. There are often holes in the walls of the pipelines with a high
concentration of stresses at their edges. A high concentration of thermal stresses also occurs
in Y- or T-shaped tees in the pipelines. For this reason, pipelines’ flow-thermal and strength
analysis is highly important for their safe long-term operation.

Two types of models analyze heat transfer in pipelines and tube heat exchangers. The
first is a model with distributed parameters, in which the system of partial differential
equations is solved to determine the fluid and wall parameters [21,22]. The second model
is a model with concentrated parameters, described by the system of ordinary differential
equations [23]. The solution to the IHCP can be used to determine the temperature distribu-
tion in the wall of pressure thick-walled elements [24–26]. Solving inverse problems is very
sensitive to random measurement errors [24,25]. Therefore, the measured time changes in
the temperature are approximated by an appropriate function, or digital filters are used to
eliminate random errors from the input data [18,27].

This paper developed a new numerical model of the steam pipeline. The pipeline
connects the boiler to the turbine. The steam turbine works at specific input parameters
of superheated steam. To ensure its safe and trouble-free start-up operation, the changes
in time of the input steam parameters cannot be rapid, and the steam temperature cannot
differ more from the rotor and turbine casing temperature compared to allowed values. Too
rapid a steam temperature change may cause high stresses in the pipeline and the turbine’s
structural components. The steam temperature at the outlet of the pipeline connecting the
boiler and the turbine, i.e., before the turbine, depends on the steam temperature at the
steam pipeline inlet.
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In this work, the new IHP was solved to determine the time variation of temperature
at the pipeline inlet with a known temperature at the turbine inlet. The time variation of the
temperature at the turbine inlet is due to the conditions of safe turbine start-up or the steam
temperature before the turbine is known from measurements. To the author’s knowledge,
the IHP solved in this paper has not yet been analyzed in the available literature.

2. Numerical Model

A scheme of the steam pipeline connecting the boiler with the turbine in a 120 MW unit
is shown in Figure 1. Superheated steam from the last superheater stage flows into the outlet
chambers, connected from both sides of the boiler with steam pipelines (2 rin = 245 mm,
sw = 30 mm). Next, the pipelines are connected through a T-pipe to the main steam pipeline
(2 rin = 324 mm, sw = 40 mm).
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Figure 1. The pipeline connecting the boiler and turbine.

First, the analyzed domain consisting of steam pipeline and steam was divided into
control volumes (Figure 2). In the radial direction, the pipeline is divided into n finite
volumes, and in the longitudinal direction into m finite volumes. Only half of the pipeline
was analyzed due to symmetry.
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The equation of the transient heat transfer for the pipeline wall has the form

ρw cp,w
∂Tw

∂t
= ∇·[kw(Tw) ∇Tw] (1)

The heat balance Equation (1) in a cylindrical coordinate system is as follows

ρw cpw
∂Tw

∂t
=

1
r

∂

∂r

[
r kw(Tw)

∂Tw

∂r

]
+

∂

∂z

[
kw(Tw)

∂Tw

∂z

]
(2)

Heat balance equations were formed for each node, including nodes in control volumes
near the boundary with the steam. For example, the equation for a node i for a control
volume located in the wall area is

dTw,i
dt =

a(Tw,i )
kw(Tw,i )
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)
+

rj+1
∆r

kw

(
Tw,(i+1)

)
+kw(Tw,i )

r2
j+1−r2

j

(
Tw,(i+1) − Tw,i

)
+

kw(Tw,(i+n+1))+kw(Tw,i )
2(∆z)2

(
Tw,(i+n+1) − Tw,i

)
+

kw(Tw,(i−n−1))+kw(Tw,i )
2(∆z)2

(
Tw,(i−n−1) − Tw,i

)
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where:
∆r =

rout − rin
n

, ∆z =
L
m

(4)

The symbol n denotes the number of the control volumes in radial directions in the
pipeline wall. Over the length of the pipeline, we have m finite volumes of length ∆z.
Similarly, the heat balance equations for the steam region were formed. For example, after
transformation, the heat balance equation for a node i takes the form

dTf ,i+1

dt
= −

.
m

ρ f

(
Tf ,i

)
A

Tf ,i+1
− Tf ,i

∆z
− hin(Tcz,i ) Uin

A ρ f

(
Tf ,i

)
cp, f

(
Tf ,i

)[Tf ,i+1
+ Tf ,i
2

−
Tw,i(n+1)+1 + Tw ,(i−1)·(n+1)+1

2

]
(5)

After formulating the energy conservation equation for all control volumes, a system
of ordinary differential equations was obtained. The Runge-Kutta method of the fourth
order was used to solve the formed system of ordinary differential equations.

The following boundary and initial conditions were assumed

Tf

∣∣∣
t=0

= T0 (6)

Tw|t=0 = Tw,0 (7)

Tf

∣∣∣
z=0

= f (t) (8)

kw
∂Tw

∂r

∣∣∣∣
r=rin

= hin

(
Tw|r=rin

− Tf

)
(9)

kw
∂Tw

∂r

∣∣∣∣
r=rout

= 0 (10)

kw
∂Tw

∂z

∣∣∣∣
z=0

= 0 (11)

kw
∂Tw

∂z

∣∣∣∣
z=L

= 0 (12)
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The heat transfer coefficient hin (Figure 2) on the inside surface of the pipeline was
determined from the following formula

hin =
Nu k f

din
(13)

The correlation proposed by Taler [28] was used to determine Nusselt numbers Nu in
Equation (13)

Nu = Num,q(Re = 2300) +

(
ξ
8

)
(Re−2300)Pr1.008

1.08+12.4
(

ξ
8

)( 1
2 )
(

Pr(
2
3 )−1

)
[

1 +
(

din
L

)( 2
3 )
]

2300 < Re < 106, 0.1 < Pr < 1000

(14)

The friction factor ξ in Equation (14) is given by the correlation of Taler [29]

ξ = [1.2776 log(Re)− 0.406]−2.246 (15)

The symbol Num,q(Re = 2300) designates the Nusselt number at Re = 2300 for laminar
flow at the tube with constant wall heat flux [30]. At the beginning of the transitional flow,
i.e., the end of the laminar flow for Reynolds number Re = 2300, the second term on the
right-hand side of Equation (14) is equal to zero.

3. Inverse Problems in Heating up the Pipeline Connecting the Boiler with the Turbine
during the Start-Up of the Unit

The paper presents a numerical method to determine the steam temperature as a
function of time at the pipeline inlet Tf(t)|z=0m, at which the steam temperature at the
pipeline outlet Tf(t)|z=45m (turbine inlet) is known f (t) from the measurement. The problem
formulated in this way is an inverse transient heat transfer problem. The inverse problem
is much more difficult to solve than the direct one, as random errors influence the stability
and accuracy of the determination of the inlet steam temperature in the measured transient
steam temperature at the outlet of the pipeline.

Random measurement errors influence the solution of IHP significantly. Therefore, the
measured temperature variation was approximated by a local polynomial of third-degree
with respect to time. Similarly, the accuracy of approximation of the time derivatives
from measured steam temperature f (t) is essential. In numerical methods, for example,
moving digital filters or so-called future steps are used to reduce the impact of random
measurement errors.

The following assumptions were adopted in the solution of the IHP:

• the steam temperature g(t) at the outlet of the pipeline is known from the measurements,
• the external surface of the pipeline as well as the cross-section of the pipeline wall at

the inlet and outlet of the pipeline, are perfectly thermally insulated,
• the transient temperature field in the pipeline wall is two-dimensional, while in the

steam region, it is one-dimensional, i.e., the temperature of the steam flowing through
the pipeline varies only along the steam flow path,

• the pipeline inlet steam temperature is determined from the measured time variations
of the pipeline outlet temperature, i.e., from the solution of IHP.

Random measurement errors from the measured temperature and its first-order deriva-
tive after time are partly eliminated using moving digital filters. The Beck future time
steps [24] in solving IHCP are also applied. Future steps are an effective tool for increasing
the stability of solutions to inverse problems and making it possible to determine the
time variation of the inlet temperature with a smaller time step. Beck’s concept of future
time steps is extended in this paper. The time step of the solution of the inverse problem
is several to a dozen times larger than the integration step of the system of differential
equations present in the solution of the direct problem. The single time step in solving the
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inverse problem is divided into smaller time steps, the size of which is derived from the
stability condition for the solution of the direct problem.

The temperature Tf(t)|z=0 = Tf1 of the steam at the pipeline inlet was determined
sequentially (Figure 2).

The steam inlet temperature in the time interval tM−1 < t < tM+F (Figure 3) was deter-
mined using the least squares method with F future time steps. The following squared
differences between the calculated steam temperature Tcalc

f ,m+1(t), and measured fluid tem-
peratures Tmeas

f ,m+1(t) over the time interval [tM−1, tM+F] must be minimum (Figure 3).

S
[

Tcalc
f ,1 (tM)

]
=

tM+F∫
tM−1

[
Tcalc

f ,m+1(t)− Tmeas
f ,m+1(t)

]2
dt + w,

r

 dTcalc
f ,1 (t)

dt

∣∣∣∣∣
t=tM

2

→ min (16)
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The second term on the right-hand side of Equation (16) represents the regularization
term of order one in the Tikhonov regularization [31] that is used in this paper. The inlet steam
temperature Tf,1(tM) was determined with a basic time step equal to ∆tb = tM − tM−1 = kb ∆t.
The time step ∆tb is a multiple of the step ∆t used to solve a direct heat transfer problem using
the finite volume method. At the time t = tM−1, the steam inlet temperature Tf,1(tM−1) is known,
while the steam temperature Tf,1(tM) at the time t = tM was sought. The time step ∆tb should be
chosen so that the change of steam temperature at the pipeline inlet Tf,1 at time t = tM−1 caused
the change of steam temperature at the pipeline outlet at time t = tM.

Step ∆tb is kb times larger than step ∆t used in determining the temperatures of the
pipeline wall and steam from Equations (3) and (5), respectively. The step ∆t must not be
too large for the solution of the system of Equations (3)–(5) to be stable.

To ensure the stability of determining the wall and steam temperature should be the
Fourier stability condition for the wall, and the Courant-Friedrichs-Lewy condition for the
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steam should be satisfied. The allowable time step ∆t results from the Courant-Friedrichs-
Lewy condition [32].

wz,i∆t
∆z

≤ 1, i = 1, . . . , m + 1 (17)

The steam velocity wi at the i-th finite volume inlet is calculated from the follow-
ing equation

wz,i =
4

.
m

π ρi d2
in

(18)

where the symbol ρi denotes the steam density at the i-th finite volume inlet.
The steam temperature at the pipeline inlet was determined with the time step ∆tb

based on the preset steam temperature at the pipeline outlet. The steam temperature at
the pipeline outlet was calculated with a time step ∆t using the mathematical model of the
pipeline developed. The steam temperature Tcalc

f ,1 (tM) was determined by minimizing the
sum given by Equation (16).

S
[

Tcalc
f ,1 (tM)

]
=

kb(F+1)

∑
i=1

[
Tcalc

f ,m+1(ti)− Tmeas
f ,m+1(ti)

]2
+ wr

(
Tcalc

f ,1 (tM+F)− Tcalc
f ,1 (tM−1)

tM+F − tM−1

)2

(19)

where wr = w,
r/∆t, ti = tM−1 + i∆t, i = 1, . . . , k2(F + 1).

Equation (19) is the discrete form of Equation (16), calculating the integral in
Equation (16) using the rectangular method.

For too small values of basic step ∆tb, it is not possible to determine the steam temper-
ature variation Tf,1 at the pipeline inlet in the time interval tM−1 ≤ t ≤ tM based on the set
or measured outlet steam temperature variation Tmeas

f ,m+1(t). For a too small time step ∆tb,
there are instabilities in the determined pipeline inlet temperature.

For the solution stabilization, the future time interval tM ≤ t ≤ tM+F is used (Figure 3).
By increasing the analyzed time interval from tM−1 ≤ t ≤ tM to tM−1 ≤ t ≤ tM+F, there

is a measurable change in steam temperature at the pipeline outlet Tcalc
f ,m+1(t) as a result

of the temperature change of the fluid at the pipeline inlet Tcalc
f ,1 (t) during the time tM−1.

After determination of the fluid temperature Tf,1(tM+F) at time point tM+F, it is assumed
that this temperature value occurs only in the basic range tM−1 ≤ t ≤ tM. The analysis at
the next time step [tM, tM+1] is repeated with the time tM as the starting point and not the
time point tM+F.

The temperature of the fluid Tf,1 (tM) was determined by the golden-section search

method [32], for which the sum S
[

Tcalc
f ,1 (tM)

]
given by Equation (19) attained minimum.

Figure 4 shows the block diagram of the program for the sequential steam temperature
at the pipeline inlet Tf,1 using the golden section method.

First, the limits of the interval [Tf,MIN, Tf,MAX] are set in which the desired inlet tem-
perature Tcalc

f ,1 (t) lies, for which the S sum is defined by Equation (19) reaches a minimum.
The steam temperature calculated values at points XL and XR takes values in the range
Tf,MIN < XL < XR < Tf,MAX. The value of the factor k is k ≈ 0.61803398. The golden divi-
sion factor k is a constant factor that reduces the interval value at each iteration until the
condition (Tf,MAX − Tf,MIN) ≤ ε is satisfied.
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4. Thermal Stresses

The temperature distribution throughout the pipeline wall, obtained by solving the
IHCP, is used to determine the thermal stresses in the whole surface and considered on
boundary surfaces.

The radial, longitudinal and circumferential thermal stresses are determined, assuming
that the pipeline ends can move freely. The thermal stress equations are given by [33].

σr =
EβT

2(1− ν)

(
1−

r2
in

r2

)[
Tw(t)− Tw(r, t)

]
(20)

σϕ =
EβT

2(1− ν)

[(
1−

r2
in

r2

)
Tw(t) +

(
1−

r2
in

r2

)
Tw(r, t)− 2Tw(r, t)

]
(21)

σz =
EβT
1− ν

[
Tw(t)− Tw(r, t)

]
(22)
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Equations (20)–(22) giving the thermal stress components consider the radial tem-
perature distribution in the pipeline, as the temperature drop in the pipeline wall in the
direction of steam flow is minor.

In Equations (20)–(22), the symbols Tw(t) and Tw(r, t) denote the mean wall tempera-
ture that is given by the following formulas.

Tw(t) =
2

r2
out − r2

in

rout∫
rin

rTwdr ≈ 2∆r
r2

out − r2
in

[
r2

Tw1 + Tw2

2
+ rn+1

Twn + Twn+1

2
+

n−1

∑
i=2

ri + ri+1

2
Twi

]
(23)

Tw(r, t) = Tw(ri, t) =
2

r2 − r2
in

r∫
rin

rTwdr ≈ 2∆r
r2

i − r2
in

[
r2

Tw1 + Tw2

2
+

i

∑
j=2

rj + rj+1

2
Twj

]
(24)

where the symbols r2, ri, i = 3 . . . n+ 1, and rj, j = 1 . . . n+ 2 denote the radiuses (Figure 2).
The radial stresses σr is equal to zero on the inner and outer surface of the tube

(σ|r=rin
= σ|r=rout

= 0). The circumferential σϕ and the axial σz thermal stresses on these
surfaces are equal σϕ

∣∣
r=rin

= σz|r=rin
, σϕ

∣∣
r=rout

= σz|r=rout
).

5. Result

The calculations were carried out for the steam pipeline with the following data:
rout = 0.162 m, rin = 0.122 m, sw = 0.04 m, and L = 45 m. The steam tube is made of steel
14MoV63. The pipeline wall was divided into 100 control volumes. The number of control
volumes in the radial direction is n + 1 = 5 and m + 1 = 21 in the axial direction (Figure 2).
The pipeline wall and steam temperatures were calculated for each node lying in the center
of the control volumes.

Data from the direct heat conduction problem solution were treated as “exact measure-
ment data”. Both exact and measurement data were used to carry out many simulations.
Figure 5 shows the temperature variation Tmeas

f ,m+1(t), pressure p, and steam mass flow rate
.

m as functions of time t used in the first calculation test.
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The temperature Tcalc
f ,1 (t) at the pipeline inlet obtained from the IHP solution for “exact

measurement data” is shown in Figure 6. Figure 6b compares the steam temperature
determined by Tcalc

f ,1 (t) with the expected steam temperature Tmeas
f ,1 (t).
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Figure 6. The steam temperature variation as a function of time (a) at the inlet of the pipeline Tcalc
f ,1 (t)

and at the turbine inlet Tcalc
f ,m+1(t), (b) comparison of the temperature Tcalc

f ,1 (t) obtained by solving
IHP with measured temperature Tmeas

f ,1 (t).

To assess the accuracy of solving IHCP, a relative difference between the inlet steam
temperature Tcalc

f ,1 (t) obtained from the IHP solution and measured temperature Tmeas
f ,1 (t)

was calculated as follows.

εT =

∣∣∣∣∣T
meas
f ,1 (t)− Tcalc

f ,1 (t)

Tmeas
f ,1 (t)

∣∣∣∣∣× 100% (25)

Root-Mean Square Error (RMSE) was calculated as follows.

RMSE =

√√√√√Nmeas

∑
j=1

[
Tmeas

f ,1

(
tj
)
− Tcalc

f ,1

(
tj
)]2

Nmeas
(26)

where the symbol Nmeas stands for the number of measurement points.
The relative difference εT as a function of time is depicted in Figure 7. The relative

error does not exceed 0.016 %, while the Root-Mean Square Error (RMSE) is 0.087 K.
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The analysis of the results shown in Figures 5 and 6 shows excellent conformity of the
calculated temperature Tcalc

f ,1 (t) and measured temperature Tmeas
f ,1 (t). The IHP was solved

using data from a power plant to verify the model’s effectiveness and accuracy. Based on
the measured steam temperature at the end of the pipeline Tmeas

f ,m+1(t), the steam temperature

Tcalc
f ,1 (t) was estimated using the developed method.

Figure 8 illustrates the steam temperature variation Tmeas
f ,m+1(t), pressure p, and mass

flow rate
.

m as a function of time t obtained from the measurement.
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Figure 8. The steam temperature variation Tmeas

f ,m+1(t), pressure p and steam mass flow rate
.

m as a
function of time t on the pipeline outlet.

Then the inverse problem was solved based on actual measurement data. Figure 8
depicts the measured steam temperature Tmeas

f ,m+1(t), pressure p, and mass flow rate
.

m of

steam measured at the end of the pipeline. The IHP was solved to determine Tcalc
f ,1 (t). The

basic time step ∆tb was equal to ∆tb = kb·∆t = 30 × 0.04 = 1.2 s with the time step ∆t = 0.04 s
used for the solution of the direct problem. The number of future time intervals and the
regularization factor were F = 2, wr = 0.01, respectively.

Figure 9a shows the calculated fluid temperature at the inlet Tcalc
f ,1 (t) and outlet

Tcalc
f ,m+1(t) of the pipeline. A comparison of the calculated steam temperature Tcalc

f ,1 (t) and
the measured steam temperature Tmeas

f ,1 (t) is shown in Figure 9b.

Energies 2022, 15, x FOR PEER REVIEW 13 of 18 
 

 

Then the inverse problem was solved based on actual measurement data. Figure 8 
depicts the measured steam temperature 𝑇 , (𝑡), pressure p, and mass flow rate 𝑚 of 
steam measured at the end of the pipeline. The IHP was solved to determine 𝑇 , (𝑡). The 
basic time step Δtb was equal to Δtb = kb·Δt = 30 × 0.04 = 1.2 s with the time step Δt = 0.04 s 
used for the solution of the direct problem. The number of future time intervals and the 
regularization factor were F = 2, wr = 0.01, respectively. 

Figure 9a shows the calculated fluid temperature at the inlet 𝑇 , (𝑡) and outlet 𝑇 , (𝑡) of the pipeline. A comparison of the calculated steam temperature 𝑇 , (𝑡) and 
the measured steam temperature 𝑇 , (𝑡) is shown in Figure 9b. 

  
(a) (b) 

Figure 9. The steam temperature variation as a function of time (a) on the inlet pipeline 𝑇 , (𝑡) 
and on the turbine inlet 𝑇 , (𝑡), (b) comparison of the temperatures determined 𝑇 , (𝑡) and the 
expected Tf1,m. 

For the determined steam temperature Tf at the pipeline inlet, the relative error was 
determined using Equation (25); the change in time of this error is depicted in Figure 10. 

The analysis of the results shown in Figure 9b reveals that the steam temperature at 
the pipeline inlet 𝑇 , (𝑡) determined from the IHCP solution, differs slightly from the 
steam temperature obtained from the 𝑇 , (𝑡) measurements. The RMSE = 0.038 K. 

 

Figure 9. The steam temperature variation as a function of time (a) on the inlet pipeline Tcalc
f ,1 (t)

and on the turbine inlet Tcalc
f ,m+1(t), (b) comparison of the temperatures determined Tcalc

f ,1 (t) and the
expected Tf1,m.



Energies 2022, 15, 5804 13 of 18

For the determined steam temperature Tf at the pipeline inlet, the relative error was
determined using Equation (25); the change in time of this error is depicted in Figure 10.
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f ,1 (t) obtained from the
IHP solution and the actual measured temperature Tmeas

f ,1 (t).

The analysis of the results shown in Figure 9b reveals that the steam temperature
at the pipeline inlet Tcalc

f ,1 (t) determined from the IHCP solution, differs slightly from the

steam temperature obtained from the Tcalc
f ,1 (t) measurements. The RMSE = 0.038 K.

Figure 11 shows the time variations in temperature, pressure, and steam mass flow
rate obtained from the measurements used in the next calculation test. The calculations
were performed for a basic time step equal to ∆tb = kb·∆t = 1.2 s (∆t = 0.04 s), where the
number of basic time steps was kb = 30. The number of future time intervals F = 2 and the
regularization factor wr = 0.01 were assumed.
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Figure 12a presents the time variations in the outlet steam temperature Tcalc
f ,m+1(t)

of the pipeline and the variations in the inlet steam temperature Tcalc
f ,1 (t) determined by

solving the IHP. A comparison between the IHP solution Tcalc
f ,1 (t) and the measured steam

temperature Tmeas
f ,1 (t) is shown in Figure 12b.

Energies 2022, 15, x FOR PEER REVIEW 14 of 18 
 

 

Figure 10. The relative difference between the inlet steam temperature 𝑇 , (𝑡) obtained from the 
IHP solution and the actual measured temperature 𝑇 , (𝑡). 

Figure 11 shows the time variations in temperature, pressure, and steam mass flow 
rate obtained from the measurements used in the next calculation test. The calculations 
were performed for a basic time step equal to Δtb = kb·Δt = 1.2 s (Δt = 0.04 s), where the 
number of basic time steps was kb = 30. The number of future time intervals F = 2 and the 
regularization factor wr = 0.01 were assumed. 

Figure 12a presents the time variations in the outlet steam temperature 𝑇 , (𝑡) of 
the pipeline and the variations in the inlet steam temperature 𝑇 , (𝑡) determined by 
solving the IHP. A comparison between the IHP solution 𝑇 , (𝑡) and the measured 
steam temperature 𝑇 , (𝑡) is shown in Figure 12b. 

 
Figure 11. The temperature variation Tf, pressure p and steam mass flow rate 𝑚 as a function of 
time t on the pipeline outlet. 

  
(a) (b) 

Figure 12. The steam temperature variation as a function of time (a) at the pipeline inlet 𝑇 , (𝑡) 
and at the turbine inlet 𝑇 , (𝑡), (b) comparison of the temperatures 𝑇 , (𝑡) by solving the IHP 
and the measured temperature 𝑇 , (𝑡). 

Figure 12. The steam temperature variation as a function of time (a) at the pipeline inlet Tcalc
f ,1 (t) and

at the turbine inlet Tcalc
f ,m+1(t), (b) comparison of the temperatures Tcalc

f ,1 (t) by solving the IHP and the
measured temperature Tmeas

f ,1 (t).

Analyzing the results depicted in Figure 12, it can be seen that there is very good agree-
ment between the calculated steam temperature Tcalc

f ,1 (t) and the measured temperature
Tmeas

f ,1 (t). The average value of the RMSE is 0.322 K for this case.
The relative difference εT between the fluid temperature obtained from the inverse

solution and the measured temperature at the pipeline inlet is shown in Figure 13. The
maximum value of the relative difference is εT = 0.296%.
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The analysis of the results (Figures 11 and 12) shows that the differences between the
steam temperature obtained from the inverse solution and the fluid temperature assumed
in the direct solution are small. The small value of RMSE indicates a very good agreement
between the inverse solution and measured steam temperature.

6. Conclusions

A steam turbine operates with prescribed parameters of the superheated steam at the
turbine inlet. To ensure a safe and trouble-free operation of the turbine, the time changes of
the inlet steam parameters must not be abrupt and do not differ from permissible values.
Too rapid steam temperature changes can cause high stress in the pipeline and the turbine
construction elements. To ensure trouble-free operation, the variation of steam temperature
at the turbine inlet is necessary.

The paper developed the procedure for solving IHP to determine the time change of
pipeline inlet temperature directly behind the boiler based on the prescribed measured
steam temperatures before the steam turbine inlet.

The procedure proposed in this paper can be used to control the operation of the boiler
so that, at its outlet, the steam temperature is equal to the steam temperature determined
from the inverse solution. In this way, changes in the steam temperature upstream of the
turbine will correspond to the requirements of the turbine user or changes due to conditions
for safe turbine operation.

In summary, it can be stated that the developed mathematical model can be used
to simulate transient temperature changes in pressure pipelines used in power plants. It
allows us to determine the temperature distribution and stresses occurring in the pipeline
wall and to calculate the allowable medium temperature change rate in time so that the
allowable stress values are not exceeded.

The permissible temperature time changes at the pipeline outlet can also be determined
from the condition of not exceeding thermal stresses, e.g., in components of the quick-
closing valve before the turbine or the turbine rotor. The procedure for determining the
allowable steam temperature variations downstream of the boiler will be identical to that
presented in the paper.

The developed computational algorithm is efficient, allowing quick results of transient
processes that occur in the pipeline during its operation.

Future studies will determine the allowable time variation of steam temperature at
the turbine inlet due to not exceeding the allowable thermal stresses in the turbine quick-
closing valve and the rotor and turbine body. These will be the basis for determining
the corresponding changes in boiler outlet steam temperature and, subsequently, for the
complete automation of the steam power plant start-up.
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Nomenclature

a thermal diffusivity a = k/
(
cp ρ

)
, m2/s

A cross-section area, m2

CFD Computational Fluid Dynamics,
cp, f specific heat capacity at constant pressure, J/(kg·K)
cp,w specific heat capacity of the heat tube material, J/(kg·K)
din inner diameter, m
E modulus of elasticity (Young’s modulus), Pa
f fluid temperature at the inlet of the pipeline, ◦C
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F future time steps, s
g fluid temperature at the outlet of the pipeline, ◦C
h heat transfer coefficient, W/(m2·K)
HTC Heat Transfer Coefficient,
IHCP Inverse Heat Conduction Problems,
IHP Inverse Heat Problem,
k golden division factor k ≈ 0.61803398,
kb number of basic time steps,
kw thermal conductivity, W/(m·K)
L length of the pipeline, m
m number of nodes in the longitudinal direction,
.

m steam mass flow rate, kg/s
n number of nodes in a radial direction,
Nu Nusselt numbers,
Num,q mean Nusselt number for laminar tube flow,
p absolute pressure, Pa
Pr Prandtl number,
r radius, m
Re Reynolds number,
RMSE Root-Mean Square Error, K
rin inner radius, m
rout outer radius, m
sw wall thickness, m
t time, s
T0 initial temperature, ◦C
Tf fluid temperature, ◦C
Tw wall temperature, ◦C
T(t) mean temperature on the wall thickness, ◦C or K
T(r, t) mean temperature of the wall between rin and r, ◦C or K
Uin overall heat transfer coefficient, W/(m2·K)
wr regularization factor,
wz,i steam velocity at the inlet of the i-th finite volume, m/s
Greek symbols
βT linear thermal expansion coefficient, 1/K
∆r radial step ∆r = (rout − rin)/n, m
∆t time step, s
∆tb basic time step, s
∆z axial step ∆z = L/m, m
εT relative difference, %
ν Poisson’s ration,
ξ friction factor,
ρ density, kg/m3

σr radial stresses component, Pa
σϕ longitudinal stresses component, Pa
σz circumferential stresses component, Pa
∇ gradient operation (nabla),
Subscripts
0 initial value,
f fluid (steam),
i node number,
in inner,
MIN minimum,
MAX maximum,
out outer,
w wall,
Superscripts
calc calculated,
meas measured,
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