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This special issue is devoted to new developments in measurement technologies for
upstream and downstream bioprocessing. The recent advances in biotechnology and
bioprocessing have generated a number of new biological products that require more qual-
ified analytical technologies for diverse process analytical needs. This includes especially
fast and sensitive measurement technology that early in the process train can inform on
critical process parameters related to process economy and product quality and that can
facilitate ambitions of designing efficient integrated end-to-end bioprocesses [1–3]. The
flow of information about critical parameters should allow enhancement of productivity
and better utilization of materials between process stages and unit operations. In integrated
processes such information flows need to be faster than in conventional processes in order
to allow the intended continuity (Figure 1). This is possible only with analytical monitoring
methods based either on real-time or in-line sensor technology, on simple and compact
bioanalytical devices, or use of advanced data prediction methods [4–7].

Although the Process Analytical Technology initiative, originally outlined by the
pharmaceutical regulatory agencies, aims for pharmaceutical products, its relevance to
bioprocess engineering is wider [8]. It may comprise all kinds of bioprocesses, from
productions of small molecules, proteins, or cells for food and drugs, as well as commodity
products. The aspects of quality-by-design, defining the design and control space for critical
quality and process parameters are relevant beyond pharmaceutical processes. Industry,
however, must achieve this quality within such economical frames that the production
cost can cover. If quality cannot be achieved at a cost which is within the actual market
value including coverage of upfront costs, sustainability of the product is lost. This calls for
measurement technology which ensures both quality criteria and manufacturing efficiency.

The eight research articles in this special issue present novel approaches for advancing
monitoring and control technology in these directions.

One angle of approach is about advancing the measurement principle itself to enhance
sensitivity and selectivity when analysing critical parameters and attributes of cells and
biomolecules, including viruses, proteins, and metabolites during bioprocessing.

This is successfully done with online digital holographic microscopy when monitor-
ing a bioreactor culture with baculovirus-infected insect cells (Sf9 cells) that produce a
recombinant adeno-associated virus. The digital holographic microscopy has the capacity
to resolve in real time from samples withdrawn culture such important features as the
viability of the insect cells and the titre of the produced virus [9]. With this information
generated prior to subsequent downstream processing, efficient process integration can
be expected.

Another novel measurement principle presented is nano-plasmonic sensing. This
novel fibre-optical sensor technology allows rapid measurements of antibody (IgG) titres
in bioprocesses [10]. The sensor is based on a combination of the optical effect of localized
surface plasmon resonance with robust single-use Protein A-modified sensor chips to detect
IgG molecules. The chip is housed in a flexible flow cell close to the process. This in-line
technology has the capacity to be tailored to detect a variety of product molecules and their
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variants, either at early upstream stage or in later downstream stages for adaptation of the
stages of benefit for integrated bioprocesses.
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Figure 1. Bioprocess integration requires measurement technology that allows continuity and just-in-time information flow.
(a) A conventional bioprocess with separate unit operations, (b) an end-to-end bioprocess with integrated and recycled
flows between units. Depicted unit operations are examples.

Spectroscopic measurement technology can be developed further for at-line applica-
tions with the help of better spectral analysis methods to predict requirements in forthcom-
ing stages. An example of this is high-throughput Raman spectroscopy microscopy using
a spectral data analysis workflow to replace off-line analytics [11]. Promising results are
shown for upstream applications with two mammalian cell lines that express different ther-
apeutic proteins and demonstrate at-line monitoring of a high-throughput micro-bioreactor
setup. This paves the way for improving process development and operation.

Another example of using established sensor technology for solving urgent bioanalyti-
cal needs is presented with in-line dielectric spectroscopy. Again, an insect cell-baculovirus
expression vector system for large scale recombinant adeno-associated virus production
is used, where the dielectric spectroscopy continuously monitors the production of the
recombinant virus in the bioreactor [12]. As critically important when producing virus in
insect cells, the cell concentration is monitored, and the infection time and cell viability
at harvest are estimated with the purpose to enhance virus productivity and product
quality. The use of in-line dielectric spectroscopy opens up for improving the robustness
and control of the virus production.

A third example of exploiting an established methodology with smart computations is
shown with size exclusion chromatography. Critical information on the release of impurity
in Penicillium chrysogenum culture is captured from advanced data analysis [13]. The
information is found in the ultraviolet chromatograms through fingerprinting principal
component analysis to descriptively analyse the process trends. Prediction models using
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partial least squares, orthogonal PLS, and principal component regression made it possible
to predict the culture viability with model accuracies of 90% or higher.

Critical information can also be generated from pH measurements performed offline.
A good example is presented where pH probe signals from bioreactors are corrected after
the sterilization operation, but also to compensate for signal drift [14]. This novel non-
invasive method to determine pH and pCO2 in bioreactors can be carried out without
offline measurements by computation of the chemical correlation between carbon dioxide
in the gas phase, dissolved carbon dioxide, bicarbonate, and dependent proton concen-
trations. The method enables accurate determination of the true pH in the bioreactor
without sampling.

Convenient offline sampling of critical process data can also be achieved by employing
new sensor fabrication technology. An example of this is shown with screen-printed
enzyme-based electrochemical sensors for lactate monitoring in bioreactors [15]. These
sensors have huge potential to enable low-cost off-line monitoring of, for example, overflow
metabolites in bioprocesses. Here, the design of such a single-use electrochemical biosensor
is evaluated. Several aspects of its fabrication and use are addressed, such as the importance
of enzyme immobilization, stability, shelf-life, and reproducibility of the sensor.

Bioprocess computation of measurement signals requires successful integration and
automation of the analytical procedures. Although well established in industry, pivotal
improvements are required to address process analytical goals [16]. The shortcomings of
automation are much due to the difficulty with the performance of the sampling procedure,
sample preparation, and sample transfer to analysers; and very importantly, to correlate
all data with the process and the sampling times. This is challenged in a study with an
automated sampling system where the performance of data management software was
performed with HPLC for measurement of vitamins and amino acids in combination with
a biochemical analyser.

In essence, new process analytical technologies are permanently seeing the daylight.
The methods highlighted in this special issue add new resources to bioprocess technology
in line with the current industrial needs and where analytical principles are refined with
new computational capacities and technological advancements.
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