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Abstract: The absorption process of CO2 by ethanolamine solution is essentially a dynamic system,
which is greatly affected by the power plant startup and flue gas load changes. Hence, studying the
optimal control of the CO2 chemical capture process has always been an important part in academic
fields. Model predictive control (MPC) is a very effective control strategy used for such process, but
the most intractable problem is the lack of accurate and effective model. In this work, Aspen Plus
and Aspen Plus Dynamics are used to establish the process of monoethanolamine (MEA) absorption
of CO2 related models based on subspace identification. The nonlinear distribution of the system
under steady-state operation is analyzed. Dynamic tests were carried out to understand the dynamic
characteristics of the system under variable operating conditions. Systematic subspace identification
on open-loop experimental data was performed. We designed a model predictive controller based on
the identified model combined with the state-space equation using Matlab/Simulink to analyze the
changes of the system under two different disturbances. The simulation results show that the control
performance of the MPC algorithm is significantly better than that of the traditional proportion
integral differential (PID) system, with excellent setpoint tracking ability and robustness, which
improve the stability and flexibility of the system.

Keywords: post-combustion capture CO2 system; Aspen Plus dynamics; subspace identification;
model predictive control

1. Introduction

Since the industrial revolution, the increase of CO2 content in the atmosphere has led
to the increase of the greenhouse effect year by year, which leads to a series of extreme
weather problems [1–3]. CO2 emissions come mainly from the combustion of fossil fuels,
especially coal-fired power plants, which are recognized as point sources of CO2 emissions
that exacerbate greenhouse effects. The capture and recovery of CO2 are the key measures
for effective emission reduction [4]. Compared with other carbon dioxide capture theories,
the post-combustion amine capture technology is the closest technology to commercial op-
eration and is suitable for the transformation of existing power plants. It is the mainstream
technology of carbon capture at present [5–7].

Hence, since the implementation of the Post-combustion CO2 Capture Process (PCCP),
scholars in the process control field and engineers have invested a lot of time and money to
solve and improve the capture performance of CO2 capture systems [8]. U.S. technology
company CANSOLV achieved cost reduction by combining CO2 capture and capture of
pollutants, such as CO2, nitrogen oxides, and mercury [9]. The Center for International
Cooperation on CO2 Capture, Storage and Utilization (iCCSU), established by Professor
Tong Baidong, Hunan University in September 2009, has carried out fruitful applied basic
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research and key technology development on the frontier of CO2 capture, separation and
purification, and solidification of carbon dioxide materials [10].

Regarding the industrial process, under the background of the chemical process
industry, the improvement space of the process operation will always exist. In view of
the technology that PCCP can improve the efficiency of power generation by improving
the operation process, scholars have carried out a lot of research in recent years [11,12].
Figure 1 shows traditional power plants and carbon dioxide capture processes.
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Figure 1. Schematic illustration of generation and CO2 capture processes in power plants.

Shan et al. [13] proposed a model of absorption tower and desorption tower based on
the kinetic relationship between the column enhancement factor and the chemical reaction
and verified it in MATLAB/Simulink. In [14], under the open loop condition, the flue
gas flow is fixed, and the other inputs remain constant. The dynamic response of the
absorption tower model established in Modelica is compared with the dynamic response
in the actual plant, and the correctness of the absorption tower model is verified. In terms
of model establishment, the above studies only verified a certain link of the system, and
did not conduct a systematic dynamic analysis of the overall model. On this basis, Lin
et al. [15] established a complete CO2 capture system model in Aspen Plus Dynamics and
determined the factors that affect CO2 removal performance, energy efficiency, and the long-
term stability of the absorption/stripping CO2 capture process using monoethanolamine
solution. Three important factors, namely lean solvent flow rate, lean solvent load, and
water replenishment of the balance system, provide guidance for the dynamic modeling
of the CO2 capture system. Kvamsdal et al. [16] designed a CO2 dynamic capture model
based on the rate level in Matlab and compared the data obtained in the steady-state and
dynamic tests with the data collected in VOCC (validation of carbon capture) to verify
the accuracy of the model when the absorption tower is in a specific working condition.
Subraveti et al. [17] established an equilibrium model based on the post-combustion CO2
capture model in Modelica and used steady-state experimental data to adjust the model
coefficients related to mass/heat transfer and chemical reactions to make the model more
suitable for actual plants under nominal operating conditions.

The study of PCCP operation control by Mechleri et al. [18] was carried out using
conventional single-loop disturbance suppression methods, such as stabilizing the CO2
content of the intake channel, keeping the steam temperature and heat capacity of the
reboiler constant, maintaining the MEA content of the stripping unit constant, etc. Lin
et al. proposed two different proportional-integral (PI) control strategies to maintain the
desired absorption efficiency by using the lean solvent flow rate and reboiler input heat
as manipulation variables [19]. Beedelbayev et al. gave the single machine type only
for the absorber MPC control scheme [20]. Panahi and Skogtogad implemented a MPC
control strategy using the degree of CO2 recovery and reboiler temperature as controlled
variables [21,22]. From the current research situation, existing PCCP dynamic research
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focuses on the study of the dynamic characteristics of a single tower or a single unit and
simple PI control algorithms.

However, the complete dynamic performance of the capture rate of the actual power
plant PCCP device under the condition of flue gas disturbance is still lacking. In variable
operating conditions, the control effect is not particularly ideal. For the purpose of solving
the problem of the slow response and system constraint of PCCP regulating systems
in variable working conditions, Section 1 introduces the background, motivation, and
contribution. Section 2 introduces the dynamic behavior of the system, establishes the
complete CO2 capture system in the Aspen Plus and Aspen Plus Dynamics, and determines
the state space model with high fitting degree according to the experimental data in
Section 3. Section 4 shows the design of the MPC controller in the Matlab/Simulink and
establishes the capture rate adjustment model of the CO2 capture system; the system
simulation is qualitatively analyzed according to the performance index. It is found that
the MPC algorithm can achieve the given capture rate results more accurately and stably
than the conventional PID algorithm regulation system, and the regulation system has
good control performance, which provides a reference for the flexible design of the PCCP
capture rate.

2. Description of the Post-Combustion Capture CO2 System

Studies have shown that the core of CO2 capture technology is to improve the oper-
ation process by implementing advanced control technology on the CO2 capture device.
MEA is the best choice for the CO2 absorbent with its absorptivity of up to 90% [23,24].
Therefore, capture CO2 equipment and its process based on MEA combustion are the most
commercially attractive options in the world. Figure 2 shows a schematic diagram of the
CO2 capture device after combustion in an amine-based power plant.
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Figure 2. Schematic of the capture device after combustion CO2 amine-based power plant.

As shown in Figure 2, after desulfurization [25], the flue gas reacts with the MEA
solvent flowing into the top of the tower by fan pressurization to remove carbon dioxide
from the furnace gas. The rich liquid absorbs carbon dioxide from the bottom of the
absorption unit and then heats up into the stripping unit. The lean solvent produced by
the reaction is recycled from the bottom of the stripping unit to the absorption unit, and
the analytical carbon dioxide is purified. Finally, the high-pressure carbon dioxide gas is
used. To maintain the water balance of the system, water is replenished in the system [26].

2.1. Mathematical Model of a Post-Combustion Capture CO2 System

In the mathematical model, the description of the absorption unit and the stripping
unit is consistent. The difference is that the reboiler unit is added to the stripping unit and
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the gas is stripped at the high temperature produced by it. The mathematical model of
each unit reflects the dynamic behavior of each part of the system.

2.1.1. Modeling Assumptions

The assumptions used in the modeling of the PCCP plant are:

• All reactions reach equilibrium.
• The velocity of any section of the axial surface is constant, and the pressure drop is

linear along the axial direction of the tower.
• Mass and heat transfer are described by the two-film theory [27].
• The interface between the liquid film and the gas film is in phase equilibrium.
• Solution degradation is negligible.
• No heat losses to the surrounding area.

2.1.2. Absorption and Stripping Units

Equations (1)–(4) describe the mass and energy balances along the axial direction in
the two reaction towers.

dCl
i

dt
=

4FL

πD2
c

∂Cl
i

∂l
+
(

NiaI
)

(1)

dCg
i

dt
=

4FG
πD2

c

∂Cg
i

∂l
+
(

NiaI
)

(2)

dTl
dt

=
4FL

πD2
c

∂Tl
∂l

+

(
QLaI)

∑n
i=1 Cl

i Cp,i
(3)

dTg

dt
=

4FG
πD2

c

∂Tg

∂l
+

(
QGaI)

∑n
i=1 Cg

i Cp,i
(4)

Here, Cg
i (mol/m3) and Cl

i (mol/m3) are the gas and liquid concentrations of each
component, F (m3/s) is phase volumetric flow, Dc (m) is the radius of the reaction column,
Ni (mol/m2/s) is the molar flux i the component, T (K) is the temperature of the liquid
and gas phases, aI(m2/ m3) is the gas–liquid contact area, l(m) is the length of the reaction
column, Cp (kJ/kmol) is heat capacity, and Q (kJ/m2s) is the heat transfer rate. The i
components in the column are MEA, N2, CO2, and H2O. In the absorption unit, FL is the
operating variable to control the carbon dioxide capture rate and FG is a disturbance from
the power plant.

2.1.3. Heat Exchanger Model

The lean-rich heat exchanger considered in the process is assumed to be a counter-
current shell and tube heat exchanger.

dTtube
dt

=
V̇tube
Vtube

(Ttube,in − Ttube,out) + Q̇
1

Ĉp
tubeρtubeVtube

(5)

dTshell
dt

=
V̇shell
Vshell

(Tshell,in − Tshell,out) + Q̇
1

Ĉp
shell ρshell Vshell

(6)

where T (K) is the temperature, V̇ (m3/s) is volume flow, V (m3) is volume, Q̇ (kJ/s) is the
heat transfer rate, ρ (kmol/m3) represents the average molar density, and the subscripts
tube, shell, in, and out represent the management side, shell side, inlet, and outlet of the
heat exchanger, respectively.

2.1.4. Reboiler Model

In the reboiler unit, the CO2-absorbed rich solvent is heated to break the chemical bond
between the CO2 and MEA. The remaining components (H2O,CO2 and MEA) evaporate
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and enter the bottom of the stripper. The solvent with low amount of CO2 exists from the
bottom of the reboiler and enters a new cycle. Its mass and energy balance are shown in
Equations (7) and (8):

dMi
dt

= Finxi,in −Vyi,out − Lxi,out (7)

ρCpV
dTreb

dt
= Finxin −VHv,out − LHL,out + Qreb (8)

The components i are MEA, CO2, and H2O. Mi (kmol) is the mass holdup of compo-
nent i, F (kmol/s) is the molar flow rate, F and L are the flow rates of steam and liquid,
and the subscripts in and out represent the input and output. In the description of energy
balance, Treb (K) is temperature, ρ (kmol/m3) is density, Cp (kJ/kmol) is molar heat capacity,
V (m3) is retention volume, H (kJ) is enthalpy, and Qreb (kJ/s) is heat input.

2.2. Steady-State and Dynamic Model

The steady-state model uses ELECNRTL physical method and CO2–MEA–H2O sys-
tems containing the following five equilibrium reactions to describe the absorption equilib-
rium in the system.

MEA+H3O+→←MEAH++H2O
CO2 + 2H2O→← H3O+ + HCO−3
HCO−3 + H2O→← H3O+ + CO2−

3
MEA+HCO−3 →←MEACOO− + H2O
2H2O→← H3O+ + OH−

(9)

The kinetic reversible reactions involve can be expressed as:

CO2 + OH−→← HCO−3
MEA + CO2 + H2O→←MEACOO− + H3O+ (10)

The power plant lean solvent flowrate is 0.458 kg/s [28] and the CO2 capture rate is
fixed at 70%. The reboiler type in the stripper is selected. Flue gas condition in PCC plant
is shown in Table 1. The parameters corresponding to the absorber and the stripper are
shown in Table 2.

The size of absorber/stripper is added to the steady-state model under the above
optimal working conditions, and the parameters needed for the dynamic models such as
the liquid level and pressure are set. The steady-state model is derived as the initial value
file of dynamic model driven by pressure. Compared with the equilibrium-based model,
the rate-based model can predict and simulate the results more accurately. Therefore, the
rate model is recognized as the most reliable process model of absorption and desorption.
However, the dynamic simulation in the Aspen Plus Dynamics does not support the rate
level model, so the equilibrium level model is selected in this paper [17]. The steady-state
model of the post-combustion CO2 capture system in Aspen Plus is shown in Figure 3.

Table 1. Flue gas condition.

Property Value

Mole fraction
CO2 fraction
H2O fraction
N2 fraction

0.175
0.025

0.8

Inlet gas flow rate/kg/s 0.13
Temperature/K 333

CO2 molar flowrate/kmol/s 2.233 ×10−4
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Table 2. Absorber/stripper parameters.

Property Absorber Stripper

Pressure/kPa 120 200
Pressure drop/kPa 10 10
Equilibrium series 20 20

Packing Type IMTP#40
Packing height/m 6.1

Column internal diameter/m 0.43
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S7

Mixer

S10

S8S9

S11

Fluegas

Rich In

H2O 
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Pure CO2
Treated

Flue Gas

Lean Amine 

Cooler

Rich-Lean

Heat Exchanger

Absorber

Stripper

Reboiler

Figure 3. Steady-state model of carbon capture system in Aspen Plus.

The system capture rate is defined as

CO2% =
Qin

L −Qout
L

Qin
L

(11)

where CO2% represents the CO2 capture rate, QL is the CO2 moles flow in flue gas, and
the subscripts in and out represent exports and imports. Under the above definition, we
can obtain the nonlinear distribution of carbon dioxide capture system under specified
working conditions (capture rate 63.05–80.25%, flue gas flowrate 0.125–0.136 kg/s, and lean
solvent flowrate 0.439–0.472 kg/s) by dynamic analysis in aspen plus dynamics (Figure 4).

According to the analysis of the trapping rate distribution in the figure, when the
flue gas flow is at a high flow rate and the lean liquid flow is at a low flow rate, the
capture rate is low. When the flue gas flow is at a low flow rate but the lean solvent flow
is high, the system capture rate is increased quickly, which improves the ability of the
collection system to operate flexibly. However, in steady state operation, only points can
be taken individually to obtain singular information of a certain working condition, and it
is impossible to flexibly study the changes of the system with input. Therefore, dynamic
testing of the system in Aspen plus Dynamics was performed to understand that the system
is dynamically changing.

We have conducted a dynamic test on the system, as shown in Figure 5. We perturb
the flue gas flow and lean solvent flow by±10%, and it can be seen that it is consistent with
the steady-state operation trend. When the flue gas flow rate increases, the MEA solution
cannot completely absorb the CO2 in the flue gas, resulting in an increase in the outlet CO2
concentration and a decrease in the capture rate. When the lean solvent flow rate increases,
the CO2 in the flue gas is completely absorbed by the MEA solution, and the carbon capture
rate increases. From the viewpoint of mass transfer kinetics, according to the two-film
theory analysis, the transfer of gas and liquid phases in the two-film and the absorption
of CO2 by MEA require a certain amount of time for diffusion and material conversion.
The increase in the gas flow rate reduces the reaction time of the gas–liquid phase in the
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film, and MEA is too late to absorb CO2. Therefore, increasing the flue gas flow rate will
gradually reduce the capture rate. Increasing the flow rate of the absorbent enables the
limited carbon dioxide in the flue gas to be fully captured, thus greatly improving the
capture rate of the system.
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Figure 4. Non-linear distribution of CO2 capture system under different working conditions.
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Figure 5. Dynamic test of CO2 capture system in Aspen Plus Dynamics: (a) ±10% step of flue gas
flowrate; and (b) ±10% step of lean solvent flowrate.

3. Model Predictive Control for the Post-Combustion Capture CO2 System

The model predictive control algorithm is the earliest computer optimization control
algorithm in the industrial fields in the United States and France, developed in the late
1970s [29]. The model predictive control is based on the predictive model, rolling opti-
mization, and feedback correction control strategy in the implementation process. These
methods not only have strong robustness and better control effect but also require low
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accuracy of the control system model. Based on the advantages of model predictive con-
trol, it has been widely used in process control, mechanical engineering, and chemical
production [30].

3.1. Model Identification

By using the Aspen Plus Dynamics software, the open loop experimental data of
the change of flue gas flow and lean liquid flow on the carbon dioxide capture rate are
obtained, and the excitation signal shown in Figure 6 is added to the flue gas flow end and
the lean solvent flow end. The actual output of the system is obtained (Figure 7).
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Figure 6. CO2 capture system input excitation signal.
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Figure 7. Actual output of the CO2 capture system.

The input and output data are imported into the identification toolbox by using the
system identification toolbox in Matlab. We adopt the method of subspace identification,
the sampling time is 0.01 h (36 s), for subspace identification of the experimental data. The
fitting curve of the actual output and model output of the system is obtained, reaching
a 96.42% fitting degree and achieving a satisfactory fitting degree, which in shown in
Figure 8.
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Figure 8. Measured and simulated model outputs of the CO2 capture system.

The identification models of the flue gas flow rate, carbon dioxide capture rate, lean
solvent flowrate, and carbon dioxide capture rate are obtained, as shown in Table 3.

Table 3. Identification model of the post-combustion CO2 capture process.

Object A B C D

Lean
Solvent

Flowrate to
Capture rate

A1 =


−2192 −48.91 −0.3356 −0.001478

32 0 0 0
0 0.25 0 0
0 0 0.001953 0

 B1 =


16
0
0
0

 C1 =


10.49
0.49

0.02748
0.0004766


T

D1 = 0.04991

Inlet Flue
Gas to

Capture rate
A2 =

[
−0.002324 −0.0001103
0.0001221 0

]
B2=

[
0.125

0

]
C2=

[
−0.1065
−0.01201

]T
D2 = −1.716

By doing the open-loop disturbance experiment, we no longer need to establish the
complex mechanism model of the controlled object, which is more convenient to study the
control strategy.

3.2. Model Predictive Control Algorithm for the Post-Combustion Capture CO2 System

The traditional control method is usually used to solve a feedback control law offline,
and the feedback control law is always applied to the system. Relative to other controls,
the main feature of MPC is to solve open-loop optimization problems online and obtain
open-loop optimization sequences. Its operating mechanism is mainly divided into three
steps: (1) the future dynamics of the system is predicted; (2) the optimization problem is
solved; and (3) the first element of the solution acts on the system.

A MPC controller is designed based on model predictive control principle. Figure 9
shows the MPC control diagram of the PCCP system.

Consider the equation of state space for linear discrete-time systems

x(k + 1) = Ax(k) + Buu(k) + Bdd(k)
yc(k) = Ccx(k)

(12)

In Equation (12), x(k) ∈ Rnx is a state variable, u(k) ∈ Rnu is the control input variable,
yc(k) ∈ Rnc is the controlled output variable, and d(k) ∈ Rnd is a measurable external
interference variable. Among them, u(k) = [FL]

T , yc(k) = [ηCO2 ]
T , and d(k) = [FG].

FL is the lean solvent flow rate and FG is inlet flue gas flow rate, which is the main
measurable disturbance. ηCO2 is the CO2 capture rate. A, Bu, Bd, and Cc can be obtained by
system identification.
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MD MV CV

MPC Controller

MD MV CV

MPC Controller

Figure 9. Schematic diagram of MPC control of the MEA-based post-combustion CO2 capture process
in Aspen Plus Dynamics.

First, based on the equation (12), the future dynamics of the system is predicted with
the latest measurement value as the initial condition. Prediction time domain is set as
Np, control time domain as Nm, and Nm ≤ Np. Then, the prediction output of the future
Np steps of the post-combustion CO2 capture system can be expressed by the following
prediction equations:

x(k + 1|k) = Âx(k) + B̂∆uL(k)
yηCO2

(k + 1|k) = Ĉx(k) + D̂∆uL(k)
(13)

The CO2 capture system objective function can be described as follows:

J =
Np

∑
i=1

(yηCO2
− r f )

TΓy(yηCO2
− r f ) + ∆uL

TΓu∆uL (14)

where r f =
[
rT

k , rT
k+1 · · · r

T
k+Np−1

]T
is the set point for the controlled variables and Γy

and Γu are the weighted matrices of the predicted output vector and the input vector,
respectively. The goal of the optimization function is to make the capture rate of the CO2
capture system track the given desired trajectory as soon as possible. The first part of
Equation (14) reflects the tracking ability of the system to the desired trajectory. The second
part reflects the stability requirements of the control quantity. For the purpose of solving
the optimization problem, the derivative of ∆uL(k) in Equation (14) can be expressed as

∂J
∂∆uL

= −2D̂Γy(r f − Ĉx(k)) + 2(D̂TΓyD̂ + Γu)∆uL (15)

If Equation (15) takes zero, the solution of the minimum value is obtained from the
extreme value condition, that is, the optimal control sequence at k time:

∆u∗L(k) = (D̂TΓyD̂ + Γu)
−1D̂TΓy(r f − Cx(k)) (16)

The control movement ∆uL has maximum and minimum bounds of ±0.1%/s of the
nominal values to prevent highly aggressive control actions.

−0.1% ≤ ∆uL ≤ +0.1% (17)

Because, in the actual process, there is a certain constraint problem, the capture rate
output is required to have no overshoot; that is, there is a constraint output

0 ≤ yηCO2
(k + i) ≤ 1 (18)
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4. Simulation and Results Analysis

The dynamic characteristic model of rear combustion CO2 capture in a power plant
with lean solvent flow as the controlled input, carbon dioxide capture rate as the controlled
output, and flue gas flow as the disturbance variable as established in Matlab/Simulik.
This paper takes the principles of small overshoot, fast response speed, and good tracking
of a set value. The control effect of the system after combustion was verified by simula-
tion experiments and compared with traditional PID. The key parameters of the tuning
controller are shown in Table 4.

Table 4. Control parameters.

Controller Type Key Parameters

PID Kp = 1.5 Ki = 0.2 Kd = 0
MPC Γu = 0.56 Γy = 20 Ts = 36 NP = 20 Nm = 5

This paper generally does not adopt the differential term in the PID controller be-
cause of the more interference in the actual control in the PID control strategy. Since the
sampling time Ts is 0.01 h in the actual chemical simulation and system identification, the
sampling time in this paper is 36 s. First, both kinds of simulation add Gaussian distributed
random signal.

Transient response to a step change of lean solvent flow: In Scenario 1 of a given
reference value input to a two-segment step signal, when the system runs stably for 4.1 h,
the system steps up under the condition of a setting value of 70% and changes the setting
value to 80%. When the system is under stable operation, at 18.0 h, the set value is reduced
from 80% to 60%, and the stability of the controller design is investigated.

Transient response to a ramp change of lean solvent flow: Scenario 2 starts with
steady-state operation. The three-stage slope signal was investigated: (a) at 1.4 h, to give
reference to the descent ramp signal and decreased to 15% at a rate of 9%/h; (b) at this stage
of steady operation to 11.1 h, a rising signal at a rate of 10.8%/h, steady state operation to
23.6 h; and(c) at 23.6 h, at a rate of 0.9%/h, and stable operation to 3.0 h, comprehensively
consider the stability of the MPC and PID control when the system is undergoing a large
decline, a large rise, and a small rise.

The simulation results in Figures 10 and 11 show that the output of the CO2 capture
system increases with the increase of the measured input value, which is in line with the
actual process. When the system changes slightly, the overshoot of the PID is not high,
but the MPC has almost no overshoot. When the system decreases greatly, the overshoot
of the PID increases obviously, while the overshoot of the MPC maintains almost no
overshoot stability.

The results in Table 5 show that, in terms of rapid performance, the CO2 capture
system under MPC control is higher than that under traditional PID control, although the
rise time are higher than those under PID control. Under the MPC control strategy and
the PID control strategy, the overshoot difference is two orders of magnitude, which is
obviously better than the control. When the steady-state time of the system is analyzed, it
can be seen that, under the condition of sudden change of set value, the system under MPC
control can pull the system back to the stable state more quickly, while the traditional PID
still has to go through a large fluctuation before it can gradually stabilize. The robustness
of MPC is greatly improved compared with that of PID, by multiplying the absolute
value error integral by time. According to the overall analysis, the MPC achieved a better
control effect.
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Figure 10. Scenario1: (a) Comparison of MPC and PID simulation of controlled variables in the CO2

capture system; (b) zoom in current step-up at 4.2 h; (c) zoom in current step-up at 18.0 h; and (d)
Gaussian distributed random signal in the system.
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Figure 11. Scenario 1: Comparison of MPC and PID simulation of the CO2 capture system.
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Table 5. Step 1 performance indicators.

Control Type RT(s) OS (%) ST(s) ITAE

MPC 6709.50 0 2.7793 × 104 6.0134 × 105

PID 4600.763 16.47 3.7053 × 104 1.2052 × 106

Through the comparative analysis of Figures 12 and 13, it can be seen that MPC and
PID control strategies can control the system in a stable state after a period of time, but, in
terms of stability, MPC is obviously better than PID, for control effect. During the large
change of the system, the fluctuation of the PID adjusted system changes greatly, and only
after two periods of fluctuation near the set value can the set value be returned. During
the small change of the system, although the PID has a small shock, it quickly returns to
the set value. It can be seen that the regulation performance is still better in PID when
faced with small changes in the system, but, in MPC, where the regulation time is longer
and the control system is more stable and slower when the system changes substantially,
the MPC-regulated system has almost no fluctuation under noise disturbance and stable
fluctuation near the set value.
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Figure 12. Scenario 2: (a) Comparison of MPC and PID simulation of controlled variables in CO2

capture; (b) zoom in current ramp-down at 1.4 h; (c) zoom in current ramp-up at 11.1 h; (d) zoom in
current ramp-up at 23.6 h; and (e) Gaussian distributed random signal in the system.
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Figure 13. Scenario 2: Comparison of MPC and PID simulation of the CO2 capture system.

5. Conclusions

The process of MEA Absorption of CO2 to implement high-quality and high-performance
predictive control algorithms is limited by low-quality and imprecise mathematical models.
This challenge could be dealt with using a high-performance model identification algorithm,
which as far as possible considers all actual operations of the process. In this work, we built
the rate-based steady-state Aspen Plus model and established a dynamic model of the PCCP
system based on the equilibrium level, which was driven by pressure in the Aspen Plus
Dynamics. The non-linear distribution of the CO2 capture system under different operating
conditions was analyzed. In Aspen Plus Dynamic, the dynamic characteristics of the system
were analyzed and explained from the perspective of mass transfer, and the lean solvent
flow rate was determined as the main control variable of the system. The system model was
identified under open-loop experimental data. Then, the identified model-based predictive
controller was designed for the process of MEA absorption of CO2. Finally, its performance
was compared with the traditional PID control performance.

The simulation results and performance analysis index show that the subspace identi-
fication model-based MPC control strategy can improve the dynamic adjustment ability
of the system, the time that the system reaches the steady state can be shortened, and it
has stronger anti-interference ability and more robust performance. If a controlled sys-
tem can reach the steady state earlier in the actual industry, it means more considerable
economic benefits.
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MPC Model Predictive Control
PCCP Post-combustion CO2 Capture Process
PI Proportion Integral
PID Proportion Integral Differential
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