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Abstract: Maize by-product from the bioethanol industry (distiller’s dried grains with solubles,
DDGS) is a source of ferulated arabinoxylan (AX), which is a health-promoting polysaccharide.
In the present study, AX from DDGS was fermented by a representative colonic bacterial mixture
(Bifidobacterium longum, Bifidobacterium adolescentis, and Bacteroides ovatus), and the effect of the
fermented AX (AX-f) on the proliferation of the cell line Caco-2 was investigated. AX was efficiently
metabolized by these bacteria, as evidenced by a decrease in the polysaccharide molecular weight
from 209 kDa to < 50 kDa in AX-f, the release of ferulic acid (FA) from polysaccharide chains
(1.14 µg/mg AX-f), and the short-chain fatty acids (SCFA) production (277 µmol/50 mg AX). AX-f
inhibited the proliferation of Caco-2 cells by 80–40% using concentrations from 125–1000 µg/mL.
This dose-dependent inverse effect was attributed to the increased viscosity of the media due to the
polysaccharide concentration. The results suggest that the AX-f dose range and the SCFA and free
FA production are key determinants of antiproliferative activity. Using the same polysaccharide
concentrations, non-fermented AX only inhibited the Caco-2 cells proliferation by 8%. These findings
highlight the potential of AX recovered from the maize bioethanol industry as an antiproliferative
agent once fermented by colonic bacteria.

Keywords: ferulated arabinoxylan; fermentation; ferulic acid; colon cancer; antiproliferative agent

1. Introduction

The bioethanol industry has been augmenting worldwide, especially in the United
States, with maize being the primary raw material used for this purpose in that coun-
try. Distiller’s dried grains with solubles (DDGS), constituted from the non-starch maize
components such as maize bran, is generated in huge magnitude as a by-product during
bioethanol production. DDGS is sold for a very low price and is mainly used in animal
production as a nutrient supplement. Therefore, the development of value-added prod-
ucts from DDGS has been of interest in recent years. One of the principal components
of DDGS is a dietary fiber and more precisely a ferulated arabinoxylan (AX). AX is the
main non-starch polysaccharide from cereal grains with a basic structure consisting of
a linear β-(1-4)-linked D-xylopyranosyl backbone chain with some α-L-arabinofuranose
units attached to the O-2 and O-3 positions of xylose units [1]. In addition, some ferulic
acid (FA) residues can be esterified to the arabinose side chains through O-5 [2] (Figure 1).
AX reaches the colonic region where it is fermented by the gut microbiota, resulting in the
production of short-chain fatty acids (SCFA) as end products [3]. SCFA are well-known to
exert positive physiological effects on host health. In particular, butyric acid plays a role in
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the prevention of colon cancer, as it is the primary substrate for colonocytes and promotes
the health of the gut barrier [4]. Prior studies have documented the antiproliferative effect
of SCFA, butyrate, and acetate on colorectal cancer cells through different mechanisms,
such as gene expression inhibition and apoptosis [5,6]. Moreover, Glei et al. [7] reported the
antiproliferative effect of wheat AX fermentation supernatants on the human colon cancer
cell line HT-29. The protective effect of phenolic acids, to which FA belongs, on colon car-
cinogenesis has also been reported by several authors [8–11]. FA has been demonstrated to
inhibit the proliferation of the human colon cancer cell line Caco-2 by affecting the cell cycle,
explicitly inducing a delay in the S phase and dysregulating genes implied in the cell cycle
control [9,10]. AX is mainly degraded by Bacteroides and Bifidobacterium, as they produce the
enzymes required for AX degradation [12,13]. A symbiotic effect between Bifidobacterium
longum and Bifidobacterium adolescentis in arabinoxylo-oligosaccharides (AXOS) degradation
has been suggested [14]. Previous studies have documented that cross-linked AX fermen-
tation promotes the growth of probiotics such as Lactobacillus and Bifidobacterium [13,14],
while the development of particular strains such as Bacteroides is not favored [12]. Thus, AX
fermentation could exert positive effects on host health by producing beneficial metabolites
and modulating the microbiota composition.
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AX fermentation may be affected by the polysaccharide’s structural characteristics,
which give rise to physiological functions and exert diverse impacts on the microbiota [3].
Several features, such as the molecular weight, the degree of polymerization, the arabinose
substitution, and the ferulation degree, influence the fermentability of AX and impact on
SCFA production [3]. The presence of FA esterified to AXOS hinders enzyme activity and
inhibits their degradation and subsequent fermentation [15]. Moreover, to our knowledge,
no report exists about the effect of the fermentation products of AX recovered from DDGS
on the proliferation of human colon cancer cells Caco-2. Therefore, this study aimed first to
investigate the in vitro fermentation of AX from DDGS by a representative colonic bacterial
mixture (B. longum, B. adolescentis, and Bacteroides ovatus), and second, to evaluate for the
first time the effect of this fermented AX on the proliferation of the human colon cancer
cell line Caco-2.

2. Materials and Methods
2.1. Materials

AX was recovered from DDGS and characterized according to previous report [16].
The AX presented an arabinose-to-xylose ratio (A/X) of 1.1, a protein content of 8.2%, and
an average molecular weight of 209 kDa. The polysaccharide contained 64% pure AX
(sum A + X) on a dry basis (d.b.). Laccase (E.C.1.10.3.2) from Trametes versicolor and all the
chemical products used were acquired from Sigma-Aldrich Co. (St. Louis, MO, USA).
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2.2. Organisms and Culture Conditions

The bacterial strains used were B. longum (ATCC® 15708TM), B. adolescentis (ATCC®

15703TM), and B. ovatus (ATCC® 8483TM), purchased from the American Type Culture Col-
lection (Mannasas, VA, USA). The bacteria were preserved in 10% glycerol stock solutions
at −80 ◦C. The propagation of bacteria was performed according to van Laere et al. [17] and
Crittenden et al. [18] with some modifications. For bacterial propagation, bifidobacteria
were cultivated once in fresh MRS (deMan, Rogose and Sharpe) medium and twice in
BSM (Bifidus Selective Medium) medium, and B. ovatus was cultivated three times in TSB
(Tryptic Soy Broth) medium by inoculating 1 mL of the bacterial solution into the next
solution. Afterward, the bacteria were grown in basal medium (culture medium with no
added carbon source), as described by Hughes et al. [13]. The bacteria were first inoculated
(0.5 mL) into glass tubes with 5 mL of basal medium containing 1% (w/v) arabinose/xylose
(A/X, 1:1) as the sole carbon source and incubated under anaerobic conditions at 37 ◦C for
24 h and then inoculated (0.5 mL) in 5 mL of 1% (w/v) AX in basal medium. The overnight
full-grown cultures were used as inocula for the AX fermentation experiment.

2.3. In Vitro Fermentation of AX

The in vitro fermentation experiments were performed following the method reported
by Martínez-López et al. [19], with some modifications. AX was autoclaved at 121 ◦C
for 15 min and then mixed with sterile basal medium to obtain a final concentration of
5 g/L (w/v) AX as the sole carbon source. The dissolved oxygen in the culture media
was removed by adding Oxyrase (Oxyrase Inc., Mansfield, OH, USA) to the samples. The
media were inoculated with 4.5% (v/v) of a bacterial mixture (B. longum, B. adolescentis,
and B. ovatus, ratio 1:1:1) and incubated under anaerobic conditions for 48 h at 37 ◦C.
The fermentations were performed in triplicate, and basal medium with no added carbon
source was used as Control. The bacterial growth was measured by monitoring the optical
density (OD) of samples immediately after inoculation and after 18, 24, 42, and 48 h of
fermentation. Aliquots of 200 µL of culture were placed in 96-well microplates, and the OD
was registered at 600 nm via a microplate reader (Thermo Scientific MultiSkan Go, Madrid,
Spain). Additionally, the pH of the culture medium was monitored during the experiment,
and the strains were checked microscopically to control morphology conformation before
and after fermentation. At the end of fermentation, the culture medium was centrifuged at
2000× g for 15 min at 4 ◦C. The fermented AX (AX-f) was recovered and stored at −80 ◦C
for further analyses.

2.4. Fourier Transform Infrared (FTIR) Spectroscopy

The FTIR spectra of AX and lyophilized AX-f were obtained in absorbance mode
(400 and 4000 cm−1) at 4 cm−1 resolution using a Nicolet iS50 FTIR spectrometer (Thermo
Fisher Scientific Inc., Waltham, MA, USA).

2.5. Molecular Weight Distribution

The molecular weight distribution of AX and lyophilized AX-f were determined
by size exclusion-high-performance liquid chromatography (SE-HPLC) at 38 ◦C using
a TSK gel (Polymer Laboratories, Shropshire, United Kingdom) G5000 PWXL column
(7.8 mm × 300 mm). Isocratic elution was performed at 0.6 mL/min with 0.1 M LiNO3
(filtered at 0.22 µm). Twenty µL of each sample (0.1% w/v in 0.1 M LiNO3 filtered through
a 0.22 µm pore size filter) was injected and detection was performed using a Waters 2414
refractive index detector [19]. The molecular weights were estimated using a pullulan
standard (P50 to P800) calibration curve. The elution profile of the basal media was also
analyzed to identify and compare the observed peaks.

2.6. Short-Chain Fatty Acids (SCFA)

SCFA analysis was determined following a previous protocol [20] with modifications.
The pH of the samples (Control and AX-f) was adjusted to 2 with 5 M HCl and maintained
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at 25 ◦C for 10 min with occasional shaking. 4-Methyl valeric acid (12% v/v in formic acid)
was added to the samples (1 mM) as an internal standard and injected for analysis. The
SCFA determination was performed in a GC (Clarus 580, PerkinElmer, Waltham, MA, USA)
with a flame ionization detector and a capillarity column (Elite-FFAP 30 m × 0.50 mm I.D.;
film thickness, 1 µm). The SCFA concentration was determined using calibration curves of
acetic, propionic, and butyric acids. The results were expressed in mM.

2.7. Phenolic Acids

FA, di-FA, and tri-FA were determined after a de-esterification step by Reversed-phase
HPLC, as reported elsewhere [21,22] using an Alltima C18 column (250 mm × 4.6 mm;
Alltech Associates, Inc., Deerfield, IL, USA). A photodiode array detector (Waters 996,
Waters Co., Milford, MA, USA) was used. Detection was followed by UV absorbance
(320 nm). For free FA, di-FA, and tri-FA determination, the same procedure was followed
without a de-esterification step.

2.8. Antiproliferative Activity Assay
2.8.1. Cell Lines

The cancerous cell line Caco-2 [Caco2] (ATCC® HTB-37) (human colon cancer) was
purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA). The
cells were cultured in DMEM (Dulbecco’s modified Eagle’s medium), containing 10% of
fetal bovine serum, 100 U/mL of penicillin, 100 mg/mL streptomycin, and 1% of non-
essential amino acids. Cells were preserved at 37 ◦C and 5% CO2 in a humidified incubator
(Thermo Fischer Scientific, San Jose, CA, USA) [23].

2.8.2. Determination of Cell Proliferation

Before cell proliferation experiments, AX-f was obtained by centrifugation of sam-
ples at 4200× g for 15 min at 4 ◦C. Then, AX-f was centrifuged again at 16,000× g for
15 min at 4 ◦C. Afterward, AX-f was sterilized by filtration (0.22 µm) and stored at −80 ◦C
for further analysis. The effect of the AX-f on the proliferation of the human colon can-
cer cell line Caco-2 was determined following the standard 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay [24] with some modifications [25]. Cells
(1 × 104 cells/50 µL) were seeded in 96-well microplates and incubated for 24 h at 37 ◦C
in an atmosphere of 5% CO2 to allow cell adhesion. After incubation, aliquots of AX-f
dilutions in DMEM (50 µL) were added to the cells to obtain final concentrations from 125
to 1000 µg/mL, and were then incubated for 48 h at 37 ◦C. Basal medium with no added
carbon source was used as a negative control, and the cytotoxic drug 5-fluorouracil (5-FU,
26 µg/mL) was used as a positive control in the antiproliferative assays. Non-fermented
AX was also tested at concentrations previously reported in the normal human colon cell
line CCD 841 CoN (125–1000 µg/mL) [26]. Within the last 4 h of incubation, 10 µL of MTT
solution (5 mg/mL) was pipetted into each well. The cell viability was determined by the
capacity of viable cells to reduce the tetrazolium salt to formazan crystals. The resulting
purple precipitates formed were dissolved using acidic (0.4%) isopropyl alcohol. Samples
absorbance was read at a test wavelength of 570 nm with a reference wavelength of 650 nm
using an ELISA plate reader (Thermo Scientific MultiSkan Go, Madrid, Spain).

2.9. Statistical Analysis

The results are presented as the means ± standard deviation (S.D) of three repetitions.
The significance of differences was determined using an analysis of variance (ANOVA)
with a Tukey–Kramer multiple comparison test (p ≤ 0.05) (NCSS, 2007).

3. Results and Discussion
3.1. AX Fermentation

Three strains, Bifidobacterium longum, Bifidobacterium adolescentis, and Bacteroides ovatus,
were selected to perform the in vitro fermentation of AX, as they have been found to be ca-
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pable of degrading this polysaccharide [3,12,19]. Bifidobacteria are well-known probiotics,
and these two species (B. longum and B. adolescentis), in particular, have been reported to
ferment AX [19]. In the present work, the ability of a mixture of Bifidobacterium and Bac-
teroides strains to ferment AX as a sole carbon source in the medium was investigated. The
growth of bacteria on AX was assessed by measuring the optical density (OD) (Figure 2)
and the pH of the culture during 48 h of incubation. The bacterial mixture was able to
use AX as a sole carbon source, which was evidenced by an increase in the OD value,
registering a maximum OD of ~0.5. AX fermentation was accompanied by an acidification
of the culture medium, i.e., a pH decrease from 7 to 6 after 48 h of bacterial exposure, which
was correlated with the increase in the OD value. The Control (no added carbon source)
did not show any change in pH after the incubation period. Crittenden et al. [18] found
that B. longum is more efficient than Bacteroides strains when using AX as a growth sub-
strate. Additionally, evident growth of Bifidobacterium breve 286 on wheat AX was observed
by Paesani et al. [27]. The degradation of AX by Bifidobacteria was demonstrated to be
strain-dependent [28] and susceptible to cross-feeding between two strains, as previously
reported with B. longum and B. adolescentis [14].
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In addition to OD and pH changes as indicators of fermentation, the molecular identity,
the molecular weight distribution pattern, the esterified and non-esterified FA, di-FA, and
tri-FA contents, and the SCFA production in AX and AX-f were determined.

3.2. FTIR Spectroscopy

The FTIR spectra of AX, AX-f, and basal medium are presented in Figure 3. The maize
AX spectrum (Figure 3a) registered a pattern with the typical bands previously reported for
other AX [16,26]. In Figure 3a, the spectral pattern in the region 1200–900 cm−1 revealed the
presence of signals at 1045 and 898 cm−1 attributed to the antisymmetric C-O-C stretching
mode of the β-(1-4) linkage between the xylose units of the AX backbone [29,30]. In the
absorbance region from 3500 to 1800 cm−1, the bands observed at 3400 cm−1 and 2900 cm−1

are associated with OH stretching and CH2 groups, respectively [31,32]. A similar FTIR
band pattern was registered in AX-f (Figure 3b), indicating the presence of AX in AX-f.
Thus, the degradation of AX by bacteria could have resulted in the production of AX chains
with relatively low molecular weights (AX-f). The presence of additional peaks observed in
the AX-f spectrum could be related to some basal medium components (Figure 3c) present
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in the sample, especially the amide II band at 1548 cm−1, which is mainly associated with
polypeptide carbonyl stretching due to the peptone content in this medium.
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3.3. Molecular Weight Distribution

The molecular weight (Mw) distribution pattern of AX, AX-f, and basal medium is
presented in Figure 4. Maize AX presents apparent molecular weight in a broad range
(polydispersion), with a major peak in the high-molecular-weight region (~209 kDa) and
a minor peak in the low-molecular-weight region (<50 kDa). Similar SE-HPLC patterns
have been previously reported for other AX [16]. The elution profile of AX-f registered
only peaks with lower molecular weight fractions (<50 kDa) than those found in AX
before fermentation, suggesting that the bacterial mixture was able to partially degrade the
polysaccharide chain after 48 h of incubation.
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3.4. Phenolic Acids Contents

The esterified and non-esterified FA, di-FA, and tri-FA contents in AX, AX-f, and the
Control (no added carbon source) are shown in Table 1. AX-f contained 38% (2.07 µg/mg
polysaccharide) of the esterified FA content registered in AX before fermentation (5.45µg/mg
polysaccharide), while only 9% of the di-FA quantified in AX was found in AX-f, and no
tri-FA was detected in the latter. In addition, non-esterified FA was only detected in AX-f,
indicating that bacterial feruloyl esterase was able to hydrolyze the ester linkage between
the carboxylic group in FA and the C5-hydroxyl of the α-L-arabinose attached to the xylan
backbone in AX [12].

Table 1. The esterified and non-esterified phenolic acids content in AX and AX-f.

Esterified

Sample FA di-FA tri-FA

µg/mg Sample (Dry Weight)

AX 5.45 ± 0.09 0.35 ± 0.07 0.03 ± 0.00
AX-f 2.07 ± 0.03 0.03 ± 0.01 nd

Control nd nd nd

Non-Esterified

Sample FA di-FA tri-FA

µg/mg Sample (Dry Weight)

AX Nd nd nd
AX-f 1.14 ± 0.06 nd nd

Control nd nd nd
nd: not detected. AX: arabinoxylan; AX-f: fermented AX; Control: (no added carbon source).

The structural features of AX, such as the A/X ratio and the presence of phenolic acids,
play a significant role in the capacity of bacteria to degrade these polysaccharides [15,33].
It has been reported that AX presenting a low A/X ratio can be more efficiently fermented
than those that are highly substituted because xylanases prefer unsubstituted xylose re-
gions, and most arabinofuranosidases act on monosubstituted xylose residues [33]. It has
been also reported that AX with a low di-substituted xylan backbone is fermented relatively
quickly by a porcine fecal microbiota [34]. Moreover, the presence of FA-esterified arabi-
nose can decrease the fermentability of AXOS, as it limits arabinofuranosidase activity [15].
The AX used in the current study presented an A/X ratio of 1.1; an average molecular
weight of 209 kDa; and FA, di-FA, and tri-FA contents of 5.45, 0.35, and 0.03 µg/mg polysac-
charide, respectively [26], which are in the range reported for other maize AX [16,35].
Rascón-Chu et al. [36] reported the complete degradation of maize AX registering an A/X
ratio of 0.85, a FA content of 0.34 µg/mg polysaccharide, and a Mw of 270 kDa by using a
mixture of B. ovatus and B. longum.

3.5. SCFA Production

The production of SCFA after the in vitro fermentation of AX by the bacterial mix-
ture is shown in Figure 5. AX fermentation produced a high concentration of total
SCFA (277 µmol/50 mg AX), which is in accordance with the low pH value detected
in the culture broth. This value is in the range reported by Kaur et al. [37] in maize AX
(115–495 µmol/50 mg AX) during in vitro fecal fermentation. This high SCFA production
indicates that the bacteria efficiently utilized AX as a sole carbon source, which was also
evidenced by their growth in the culture medium (Figure 2). It has been reported that
the growth of bifidobacteria in AXOS correlated with an increase in acetate concentration
and a low pH [14]. The SCFA concentrations followed the order of acetate > propionate
> butyrate. Acetic acid has been reported as the dominant SCFA produced during the
in vitro fermentation of AX by bifidobacteria, followed by propionic and butyric acids as
the less abundant metabolites [19]. The high concentration of acetate could be related to
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the stimulation of bifidobacteria species by AX since it is the primary fermentation product
of these microorganisms [13]. Production of propionic acid has been related to an increase
in the Bacteroides population [38]. The beneficial effects of SCFA concerning their protective
effect against colon carcinogenesis development have been widely reported [39–41]. In
particular, butyrate has been demonstrated to show chemopreventive properties due to its
anti-inflammatory and immunomodulatory effects in the colonic region [39,40,42]. Addi-
tionally, acetic acid, which is the most abundant SCFA produced during the fermentation
of AX, has anti-inflammatory properties [43]. Butyric and acetic acids were demonstrated
to exert antiproliferative effects against human colorectal cancer cells (DLD-1 cell line) by
inhibiting the expression of genes encoding proteins involved in DNA replication and
cell cycle/proliferation [5]. In addition, acetic acid induces apoptosis in colorectal cancer
cells via lysosomal membrane permeabilization and the subsequent release of cathepsin D
during apoptosis [6].
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3.6. AX and AX-f Antiproliferative Activity on Caco-2 Colon Cancer Cells

A previous study evaluated the effect of wheat AX fermentation supernatant (using
human feces to ferment AX) on the proliferation of HT-29 colon cancer cells [7]. Nonethe-
less, the current is the first work reporting the effect of fermented AX from DDGS (using the
specific bacteria bifidobacteria and bacteroides) on Caco-2 colon cancer cell proliferation.
Figure 6 presents the proliferation percentage of Caco-2 cells exposed to different concentra-
tions (0–1000 µg/mL) of AX and AX-f. The results indicate that the growth of Caco-2 cells
was efficiently affected by all concentrations of AX-f. Interestingly, AX-f presented a dose-
dependent inverse effect, showing a higher antiproliferative effect at lower concentrations.
AX-f decreased Caco-2 cell proliferation from 80 to 40% when used at concentrations from
125 to 1000 µg/mL. In a previous study, Zhang et al. [44] found that at low concentration
range (5–50 µg/mL), low molecular weight maize AX (0.1–10 kDa) presents more effective
immune function. These authors suggested that direct interaction of fibers with colonic
cells improves cytokine production, leading to antitumor effects. In the present study, the
AX-f dose-dependent inverse effect could also be related to the viscosity in the culture
medium due to the polysaccharide concentration. It has been reported that AX presenting
a low Mw (60 kDa) can register a high intrinsic viscosity ([183 mL/g]) [45]. Higher con-
centrations of AX result in relatively highly viscous solutions [1], which could decrease
the interaction between the metabolites and the cells, and then impact the antiproliferative
effect of this polysaccharide.
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Previous research found that a concentration of 25% (v/v) of wheat AX fermenta-
tion supernatant inhibited the proliferation of the cell line HT-29 by 75%; however, the
structural and physicochemical characteristics of the AX used by those authors were not
reported [7]. It is possible that this dissimilarity in the antiproliferative effect of fermented
AX could be related to the use of human feces to degrade AX and to the polysaccharide
structural characteristics (molecular weight; FA, di-FA, and tri-FA contents; and arabi-
nose substitution degree, among others). In general, maize AX presents a more complex
structure, especially high FA and di-FA contents, than that of wheat AX, which could
limit polysaccharide fermentation [12]. Particularly, the AX used in the previous study [7]
reported no measurable amounts of FA or other hydroxycinnamic acids in its structure, in
contrast to the one used in the present study (Table 1). A deferulated or uncross-linked AX
structure can be degraded more easily by bacteria than a highly ferulated and cross-linked
structure [12]. In addition, the AX fermented with the human gut microbiota was exposed
to a wide variety of bacterial species [7], while only three pure cultures were used in the
present study. Therefore, complete degradation of the AX could result in the production of
oligosaccharides or carbohydrate residues that could be fermented easily, thus reducing
the viscosity of the culture medium and favoring the interaction between metabolites and
cells. The authors of the previous work also suggested that SCFA were mainly responsible
for the antiproliferative activity of the fermented AX [7]. They reported a total SCFA con-
centration of 86 mM generated from AX fermentation, with acetic acid showing the highest
concentration (54 mM) [7]. In the current study, the total SCFA concentration was 28 mM,
with acetic acid being the most abundant at a concentration of 26 mM. However, the AX
used in that study was fermented using human feces, which increased the concentration
of SCFA produced due to the complex microbiota composition. In the present study, the
total SCFA content in the cell proliferation test decreased from 345 to 43 µg/mL when
the AX-f concentration used decreased from 1 to 0.125 mg/mL. In the literature, similar
SCFA contents have been reported to present antiproliferative effects [46]. Some other
metabolites produced during AX fermentation could contribute to the antiproliferative
activity of the AX-f. The properties of phenolic acids against colon cancer have been widely
documented [11], particularly the antiproliferative activity of FA against the colon cancer
cell line Caco-2 through its intervention in different phases of the cell cycle [9,10]. It is
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important to note that in the current investigation, free FA (non-esterified to AX) and
esterified FA were detected in the AX-f (Table 1). Therefore, the free and esterified FA
content in the proliferation tests diminished from 1.14 to 0.14 and from 2.07 to 0.26 µg/mL,
respectively, when the AX-f concentration used decreased from 1 to 0.125 mg/mL. In the
literature, similar FA contents have been reported to present antiproliferative effects [47]. In
the present study, the FA (free and esterified) could be responsible of the antiproliferative
effect of the AX-f beside the SCFA concentration.

Non-fermented AX was also tested against the Caco-2 cell line as previously re-
ported [26]. The results showed that non-fermented AX slightly inhibits the proliferation of
the human colon cancer cell line Caco-2 up to 8% (Figure 6). Samuelsen et al. [23] reported
a similar behavior, in which different concentrations (0.5 to 3 mg/mL) of AX from barley
did not have a significant effect on the proliferation of the cell lines HT-29 and Caco-2.
Additionally, AX from DDGS has shown good biocompatibility with normal human colon
cells (CCD 841 CoN), as reported elsewhere [26]. In the present study, the drug 5-FU, which
was used as a positive control in the experiments, showed an evident antiproliferative
effect on the cancerous human colon cell at the concentration used (26 µg/mL) (Figure 6).
5-FU is an antimetabolite drug that is widely used in the treatment of a range of cancers,
particularly colorectal cancer. This agent exerts its anticancer effects through the inhibition
of DNA synthesis due to the incorporation of its metabolites into RNA and DNA [48].

4. Conclusions

Ferulated AX recovered from the maize bioethanol industry can be efficiently fer-
mented by the colonic bacterial mixture of Bifidobacterium longum, Bifidobacterium adoles-
centis, and Bacteroides ovatus, and the generated product (AX-f) inhibits the proliferation
of Caco-2 cells up to 80%. Non-fermented AX only inhibits the proliferation of this colon
cancer cell line by 8%. The results suggest that the AX-f dose range, the SCFA production,
and the ferulic acid content are key determinants of antiproliferative activity in AX-f. These
findings highlight the potential of fermented AX recovered from distiller’s dried grains
with solubles (DDGS) as an antiproliferative agent. However, in vivo studies are necessary
to investigate the fermentation of this polysaccharide by the gut microbiota as well as the
production of metabolites and their antiproliferative activity in the colonic region.
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