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Abstract: In this article, we focus on the development of a multiscale modeling and recurrent neural
network (RNN) based optimization framework of a plasma etch process on a three-dimensional
substrate with uniform thickness using the inductive coupled plasma (ICP). Specifically, the gas
flow and chemical reactions of plasma are simulated by a macroscopic fluid model. In addition, the
etch process on the substrate is simulated by a kinetic Monte Carlo (kMC) model. While long time
horizon optimization cannot be completed due to the computational complexity of the simulation
models, RNN models are applied to approximate the fluid model and kMC model. The training
data of RNN models are generated by open-loop simulations of the fluid model and the kMC model.
Additionally, the stochastic characteristic of the kMC model is presented by a probability function.
The well-trained RNN models and the probability function are then implemented in computing an
open-loop optimization problem, in which a moving optimization method is applied to overcome
the error accumulation problem when using RNN models. The optimization goal is to achieve the
desired average etching depth and average bottom roughness within the least amount of time. The
simulation results show that our prediction model is accurate enough and the optimization objectives
can be completed well.

Keywords: recurrent neural network; plasma etch; multiscale model; optimization

1. Introduction

Plasma etch has been applied in the manufacturing of integrated circuits (IC) for
over 50 years, and becomes even more essential due to the continuous decreasing of the
fabricating scale [1,2]. The traditional “failures and corrections” experimental procedure
is not enough to maintain and develop the plasma etch technique. In addition, therefore,
simulation of plasma etch is an effective way to improve our understanding about the
etching process and to help improve the process technique [3,4]. A lot of work has been
done to simulate the gas flow and chemical reactions in the plasma chamber, and there are
three main types of models: kinetic model, fluid model, and hybrid model. Fluid model
is the most commonly used model because of its computational efficiency and flexibility
in coupling the electromagnetic fields. Additionally, the complex transport phenomena
and reactions which motivate the etching process are simulated by some quite precise
approaches, like level set method and kMC method. Level set method is based on solving
a Hamilton–Jacobi type equation for a level set function, which has stable, accurate, and
efficient performance in dealing with interface evolution problems with sharp corners,
change topology, and order of magnitude changes in speed [5,6], while, in order to realize
a high resolution simulation of plasma etch process, kMC is the most potential method
for which it has both an atom resolution and the ability to deal with relatively long-time
scales [7–9]. An appropriate modeling methodology is established by the fact that kMC
transforms every physical phenomena into stochastically selected events. The key step for
kMC method is to attain the probability table of the simulated process through simulations
or experiments.
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The natural disparate scale between the macroscopic plasma chamber and the micro-
scopic etching process prevent us from simulating the plasma behavior and the etching
process concurrently. Continuous models used to simulate plasma are insufficient on
the microscopic scale. Meanwhile, the approaches employed on the simulating etching
process, like kMC, are too computationally expensive to apply on macroscopic domains.
Fortunately, advances in high-performance computing have made it possible to address
this issue with the multiscale method. Such methods were developed in particle trans-
formation [10,11], thin film growth [12], braided composites [13], cracked concrete [14],
and the plasma-enhanced chemical vapor deposition (PECVD) process [15]. Through the
coupling bridges of heat, particle, or energy, the microscopic model and the macroscopic
model are computed concurrently in these works. Nevertheless, few works have developed
the three-dimensional multiscale model for the plasma etch process. In the earlier work of
our group, we have presented a multiscale model for the silicon etch process using Cl2/Ar
inductive coupled plasma (ICP) [16].

However, this multiscale system is too computationally expensive for long time hori-
zon optimization due to the computational complexity of the fluid model and kMC model.
Using data driven models like machine learning models to approximate these computation-
ally expensive models through system identification could be a potential solution. System
identification is widely applied in many fields of engineering [17,18]. Machine learning
methods were first used in system identification in 1990, and showed great performance
in this area [19,20]. Moreover, the machine learning and deep learning methods have
grown rapidly in the last 20 years thanks to the development of advanced machine learning
algorithms, innovative neural network structures, powerful computers, and open-source
software libraries. Among all of these machine learning methods, RNN has been widely
applied for approximating nonlinear dynamical systems. RNN was first proposed in the
1980s, when Hopfield networks were first created for pattern recognition [21]. In addition,
later, long Short-Term Memory (LSTM) and gated recurrent unit (GRU) were invented
to overcome the gradient vanishing problem of RNN [22,23]. What distinguishes RNN
from the commonly known feedforward neural networks is the existence of close cycles in
the connections topology. These cycles make it possible for RNN to capture the dynamic
behavior of the nonlinear system [24]. From literature, a theorem is given that RNN can
approximate any dynamic system to arbitrary accuracy [25]. Several works about using
RNN to approximate dynamic systems have already been done: taking a discrete-time
approach [26] or a continuous time approach [27]. Thus, RNN is a suitable approach to
approximate the fluid model and the kMC model in our multiscale system.

Motivated by all of the above, we focus on the development of a multiscale modeling
and RNN based optimization framework of the plasma etch process on a silicon substrate
with uniform thickness using Cl2/Ar ICP. The plasma domain is simulated by a continuous
fluid model, which is constructed and computed by COMSOL MultiphysicsTM (for the
convenience of writing, the following is called COMSOL). In addition, the etch process
is simulated by a kMC model. Then, RNN models are applied to approximate the fluid
model and the kMC model in order to reduce the computational complexity. The training
data of RNN models are generated by open-loop simulations of the fluid model and the
kMC model. Additionally, the stochastic characteristic of the kMC model is described
by a probability function. The RNN models and the probability function are then imple-
mented in computing an open-loop optimization problem, in which a moving optimization
method is applied to overcome the error accumulation problem when using RNN models.
The optimization goal is to achieve the desired average etching depth and average bottom
roughness within the least amount of time. The simulation results show that our prediction
model is accurate enough and the optimization objectives can be completed well.

The rest of the article is organized as follows: first, the muitiscale modeling process is
presented. Then, the prediction model that includes the RNN models and the probability
function is presented. In addition, then the optimization problem is elaborated. In the end,
the simulation results are shown and discussed.
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2. Multiscale Model

The plasma reactor considered in this work is shown in Figure 1. A two-dimensional
model can be used due to the cylindrical symmetry of ICP. The reactive gases enter the
chamber through two inlets: the edge inlet (inlet1) and the center inlet (inlet2), and then the
top coils generate and maintain the plasma (an electrically neutral mixture of molecules,
atoms, ions, electrons, and photons). Ions are accelerated by the bottom electrode and
bombard on the substrate, which is placed on top of the electrode. With chemical reactions,
ion impact reactions, and particle transportation, the nanoscale etching process occurs on
the substrate, and desorbed atoms are pumped out of the plasma domain.

Figure 1. The half cross section of the ICP equipment and the spatial discrete method are shown.
A computational result of electron density after 1 s is also shown.

As is shown in Figure 1, the plasma is generated in a macroscopic chamber, while the
etching process that occurs on the substrate is at the nano scale. It is quite a necessity to
capture both the macroscopic plasma behavior and the microscopic etching behavior. Thus,
a multiscale model that consists of two simulation models is presented: the continuous fluid
model that describes the gas flow and chemical reactions in plasma chamber is established
in COMSOL; and the kMC model that simulates the kinetic behavior of the etching surface
is completed through C language. A spatial-temporal discrete method is applied to address
the issue of computing the fluid model and the kMC model concurrently. The spatial
discrete method is shown in Figure 1. The whole substrate is divided into several parts,
and the fluxes data of each parts are considered uniform. In our pre-test, we find that the
flux data are quite different in different parts of the substrate. Three is the lowest number
that the substrate should be divided for that the discrete parts should reflect the flux data
on the middle and two sides of the substrate. Considering the computational efficiency and
our model complexity, we choose to divide the whole substrate into five parts. The etch
process of each parts is calculated by one kMC model. Furthermore, the data exchanges
between the macroscopic model and the microscopic model are operated in every time step
ts. The following sections present both the macroscopic fluid model and the microscopic
kMC model.

2.1. Macrosopic Model

Basically, there are three main modules in computing the macroscopic fluid model:
the Maxwell equations, the drift–diffusion equations and the heavy species transportation
equations (simplified Stefan–Maxwell equations). The electromagnetic field that spread all
over the plasma etch equipment is solved through the computing of Maxwell equations.
Furthermore, the electron density and the electron energy density are solved through the
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computing of drift–diffusion equations. In addition, all the heavy species (neutral particles
and ions) densities are solved through the computing of heavy species transportation
equations. All of these equations are partial differential equations and thus can be solved
by the finite-element methods.

Specifically, the gas mixture in plasma chamber would be Cl2 and Ar. Twelve species
and their corresponding reactions are taken into account. Four excitation forms of Cl2 are
included: Cl2V, Cl2(B3PI), Cl2(C1PI), and Cl2(B3PI+C1PI). Cl2V is generated by vibration
excitations and the latter three are generated by electronic excitations. The excited energy
of these four species are 0.068 eV, 2.5 eV, 3.12 eV, and 9.25 eV, respectively. Cl− is generated
by attachment, and this negative ion owns a very small percentage of all ions. Two
ionization reactions are computed and the reaction products are Cl+ and Cl+2 , respectively.
In addition, both of their ionization energies are 11.48 eV—while only one excited form of
Ar is considered, which is Ars (excitation energy is 11.5 eV). In addition, one ionic species
Ar+ (ionization energies are 15.8 eV and 4.24 eV) is taken into account. The reactions
of these species are divided into three types: electron impact reactions, heavy species
reactions, and wall reactions. The excited species and ions are all generated by ion impact
reactions, which makes it the most important part in the plasma chemistry. The heavy
species reactions happen when two heavy particles impact and react to form a new particle.
Wall reactions occur when particles impact on the plasma chamber wall. We note that the
latter two types of reactions would transform the excited species and ions to the ground
state species. All of the reaction coefficients and reaction rates can be found in [28–31].

2.2. Microscopic Model

The kMC method applied in this work follows closely our former work [16] and
share many similarities with other commonly used Monte Carlo methods. The details will
not described again in this article. In addition, in order to show the completeness of the
modeling process, we will present the main structure of the kMC model.

The KMC method uses stochastically selected events to represent all the phenomena
of etching process, and realize a kinetic simulation. In Figure 2, we show the simplified
schematic diagram of the virtual simulation box. The lattice, representing the substrate,
consists of atomic cubic cells, and each of them would only include one atom. The side
length of each cube is set as L = ρ−1/3, where ρ is the atomic density of the substrate
material. The black sphere above the lattice represents the particles from the plasma region.
When it bombards onto the lattice surface, the etching parameters are calculated based on
the material type, injection angle, and local coverage type. The atomic kinetic simulation is
realized by adding or removing atoms on the lattice. In this work, the substrate material
would be silicon. In addition, the resist material can be set as incorruptible since the
sputtering rate of etchable resist is relatively low. Specifically, the initial structure of the
lattice would be: the size of the microscopic silicon lattice is 100 × 100 × 100 monolayers3

(ML3); the resistive mask is placed above the substrate and the height of the resistive mask
would be 50 ML; a 40 × 40 ML2 surface is uncovered by the resistive mask and is placed in
the middle of the whole surface.

2.2.1. Simulation Methods

The particle transportation process in vacuum is computed by the three-dimensional
injection trajectories. First, when one particle from plasma injects into the simulation box,
the particle type is selected based on the compared results between the flux data from
plasma and a random number. In addition, the initial inject location is chosen as a randomly
allocated point of the interface between the plasma domain and the simulation box. We
note that only one particle would be simulated in one time step, and the transportation
process is assumed without any collision, which is commonly assumed in the high vacuum
process where the mean free path is large. Then, the angular functions of different fluxes are
given, and the incident angles are randomly sampled from these functions. The expressions
of these functions are based on in situ plasma measurements and are given in [32,33].
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Figure 2. The simulation box is shown. The black sphere is the particle coming from plasma, which
is above the vacuum region and not shown in simulation. Each cubic cell contains only one atom,
and the lattice is formed by these cells.

When particles reach the substrate surface, two types of reactions occur. Neutral
particles from the plasma domain that have the energy order kT can participate in the
chemical reactions with surface atoms. The chemical reaction probabilities can be found
in [31,34], and will stored in a reaction matrix. When a neutral particle reaches one
surface cell, the corresponding reaction probability will be found in the reaction matrix and
compared to a random number P = rand(0,1). If reactions occur, surface atoms will desorb or
be replaced. The ions accelerated by the bottom electrode have the energy order eV, and will
etch the substrate physically, like sputtering and ion-enhanced etching. We note that the
physical etching rate is much larger than the chemical etching rate. In our case, the chemical
etching rate is nearly zero due to the nonvolatile character of the chemical reaction product,
while they can be sufficiently removed by ion enhanced etching. Meanwhile, the surface
atoms can also be removed through physical sputtering. The etching yield expressions of
ion-enhanced etching and sputtering can be found in [3,35,36]. When an ion impacts on
one surface cell, the number of surface atoms that are etched is determined by the average
etching field of its neighbor cells and itself.

The injected particle will be reflected to vacuum again if no surface reactions happen
until it reacts or moves out of the simulation box. The desorbed etch products, which are
generated by surface reactions, will re-emit to the vacuum until they reach the substrate
surface or move out of the simulation box. Etch products can deposit on the substrate
surface and the deposition probabilities can be found in [31]. The etch products will be
reflected to vacuum again if no depositions happen until they deposit or move out of the
simulation box.

2.2.2. Numerical Algorithm of the Model

At the beginning of every step, the particle type is selected based on the flux data
that come from the plasma model. Then, the injection trajectory is computed based on the
selection of the particle initial position and the injection angle. When all the simulative
particles and etch products have reacted with surface atoms or moved out of the simulation
box, one simulation step ends. A periodic boundary condition is used in the sidewalls
of the simulation box. In addition, a perfectly absorbing boundary is applied on the
interface between the simulation box and the plasma, which means all particles and etch
products would not be computed again when they reach the boundary. The flowchart of
the numerical algorithm of the microscopic model is shown in Figure 3.
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Figure 3. The flowchart of the simulation numerical algorithm is shown. All sub-events in the
flowchart are already discussed.

3. Prediction Model Establishment

With the fluid model and the kMC model, we have established the multiscale model
of the plasma etch process. However, long time horizon prediction and optimization are
too computationally expensive by using the fluid model and the kMC model. The fluid
model and the kMC model are all nonlinear models with dynamic behaviors, while RNN
can also describe nonlinear dynamic behaviors since it has the memory of past states. As is
shown in Figure 4, the states derived from past inputs are imported into the next RNN cell,
which shows the dynamic behavior. Through the open source software like pytorch and
tensorflow, RNN can be easily established. In addition, thanks to the recent development
of parallel computing acceleration technique of GPU, the training process of RNN can be
quite efficient. Thus, RNN is an appropriate approach to address our issue.

Figure 4. The RNN and its unfold structure are shown, where W is the RNN parameters, h is the
hidden state, x is the model inputs, and o is the model outputs.

In the following parts, we will present the data generation process and the training
process of the applied RNN models. From previous work, the theorem is given in which
RNN can approximate any dynamic system to arbitrary accuracy [25]. However, it should
be noted that RNN models are nonlinear models without stochastic characteristic, which
means that the computation results under the same initial condition and inputs would
be constant. Thus, using simple RNN models as the prediction model cannot capture the
natural stochastic characteristic of the kMC model. In this article, a probability function
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is analyzed to describe this important part in the microscopic kMC model. The data for
training and analyzing are from the open-loop simulations of the fluid model and the kMC
model. In order to capture all the system dynamic behaviors, the open-loop simulations
should be operated with a combination of different initial states and input values. In
addition, the data are sampled at discrete time steps. Two RNN models will be presented
to approximate the fluid model and the kMC model, respectively. To distinguish these two
RNN models, the RNN model that approximated the macroscopic fluid model is named
RNN f , and the other one is named RNNk. We will separately illustrate the data generation
process and training process of the RNN f model and the RNNk model.

3.1. Macroscopic Model
3.1.1. Data Generation

As we mentioned in Section 2, the inputs of the fluid model would be: Ar/Cl2 ratio of
the input gas at edge inlet (R1), Ar/Cl2 ratio of the input gas at center inlet (R2), the power
of the top coils (Pr f ), and the bottom electrode bias (VB). In addition, the outputs would
be the particle flux data on the interface of the fluid model and the kMC model, which is
noted as Fi,k (i is the particle type number and k is the location number). The sampling
period of the fluid model open-loop simulation would be ts = 0.2 s. We note that this time
step is enough for the plasma states to coverage from any different initial states to the final
states. Thus, we only need to consider the selection of the inputs. Specifically, the inputs
are selected randomly at the beginning of every time step, and the selection range of each
inputs would be: 5/100 ≤ R1 ≤ 50/100, 5/100 ≤ R2 ≤ 50/100, 800 W ≤ Pr f ≤ 1400 W,
50 V ≤ VB ≤ 250 V. The data are finally obtained from an open-loop simulation which
includes the 800 sampling periods.

3.1.2. Training Process

The inputs of RNN f would be the values of R1, R2, Pr f , and VB at every time step
tk (tk = kts). The outputs of RNN f are the values of Fi,k after a ts simulation. The RNN f
model is constructed by the RNN module of pytorch. The python version is 3.0, the torch
version is 1.2.0, and the cuda version is 10.0. The GPU that is used for training is GTX 1080ti.
We use the k fold cross validation method to establish four sub RNN models. In addition,
an ensemble method is used: the RNN f model would be the ensemble of these four sub
RNN models. The training process of these four sub RNN models and the RNN f model is
shown in Figure 5: four sub RNN models are trained, and the RNN f model is the average
of these four sub models. The validation data are not used for training the sub models. We
note that using the ensemble of multiple RNN models can improve the model prediction
accuracy and capture more system dynamic behaviors. The parameters of these four sub
models like neuron numbers and layer numbers are determined by the grid search method.
Specifically, there will be four layers in the recurrent layer and two linear layers as well as
one Rectified Linear Unit (ReLU) layer in the output layer. The parameter optimization
algorithm is the Adam optimization method. The loss function is mean square error (MSE).
In order to avoid the over-fitting problem, the training process would be finished if the loss
falls below the desired threshold (which is set to be 10−6). The inputs and outputs data are
normalized by the maximum and minimum values of each variable:

x̄j =
xj − xmin,j

xmax,j − xmin,j
(1)

where xj is the jth variable of the data, and xmax,j and xmin,j are the maximum and minimum
values of the jth variable.
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Figure 5. The training process of the sub models and the RNN f model. The validation data are not
used for training the sub models.

3.2. Microscopic Model

We note that the kMC model is a nonlinear model with a stochastic feature. While
RNN is not suitable to capture the stochastic feature, we use RNNk to approximate the
expectation of the kMC model. The stochastic feature is described by a probability function
that is analysed based on the open-loop simulation data. The following parts will present
the establishment process of the RNNk model and the probability function.

3.2.1. Data Generation

As we mentioned in Section 2, the inputs of the kMC model are the particle flux data
from the plasma model (Fi,k) and the bottom electrode bias (VB). The outputs of the kMC
model should be the surface topology structure of the lattice. Thus, the height data of the
40 × 40 ML2 uncovered surface sites are sampled as the output data. The sampling period
would also be set as ts = 0.2 s. Then, the training data are generated through a 150 run
open-loop simulation of the kMC model. The initial condition of each simulation is set
as the same as the initial condition mentioned in Section 2.2. The operation time is set as
15 s, thus 75 sampling periods are included in each simulation, and the size of the training
data would be 150 × 75 = 11,250. At the beginning of each sampling period, the inputs are
randomly selected from the pre-tested ranges (these ranges should be consistent with the
simulation results of the fluid model).

In order to analyze the stochastic characteristic of the kMC model, multiple run
simulation under the same initial condition and inputs should be operated. Thus, we use
the same method as above to generate the open-loop data; only the kMC model is operated
100 times instead of one time in each sampling period. A 20 run open-loop simulation is
carried out, and the data size would be 40 × 75 × 100 = 300,000.

3.2.2. Training Process

We note that RNNk is applied to approximate the expectation of the microscopic
model. Thus, the training data should be the average data of multiple runs open-loop
simulation under the same initial condition and inputs, while, from pre-experiments, we
found that the RNN model trained by using the single run open-loop data and the RNN
model trained by using the average of multiple run open-loop data are quite similar. Thus,
we can directly use the single run open-loop data to train the RNNk model. The inputs of
RNNk are the values of VB and Fi,k at every time step tk. The initial hidden states of RNNk
are the initial surface topology structure (the height data of the 40 × 40 mL2 uncovered
sites) of the kMC model. The outputs are the final surface topology structure of the kMC
model after a ts etch process. The parameters of RNNk like neuron number and layer
number are determined by the grid search method. The neuron numbers of RNNk would
be much larger than those of RNN f because the inner state and output state dimensions of
RNNk are much larger than those of RNN f . Specifically, there is one layer in the recurrent
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layer and four linear layers as well as three Rectified Linear Unit (ReLU) layers in the
output layer. The training and computation time of the RNNk model would be relatively
long and therefore the ensemble method would not be applied here. The other settings of
the training process are the same as the RNN f model.

3.2.3. Stochastic Characteristic Analysis

Due to the stochastic characteristic of the kMC method, the height of the lattice surface
sites will stochastically oscillate around the expected height. In order to capture this
important feature, we analyze the statistical property of the lattice surface height data.
The sample data generation process is shown in the previous section. The variances of the
height data are computed and most of the variance values are in range (0,5). The statistical
properties of the variance are shown in Figure 6. Except a few beginning time steps,
the mean values and the variances of the height variance oscillate around a constant value.
Thus, we can assume that the variance distributes in range (0,5), and this distribution will
not change over time.

Figure 6. The statistical properties of the variance is shown.

Then, the sampling statistical histogram of the variance at a typical moment and
the sampling statistical histogram of the variance of all time steps are shown in Figure 7.
The variance range is divided into 200 parts, and the corresponding sample numbers are
given. This sampling statistical histogram of all time steps is quite similar to the sampling
statistical histogram at a typical moment, which suggests that our previous assumption
is reasonable. Then, a probability distribution curve is computed to fit the statistical
histogram of all time steps. We note that the probability distribution curve in the figure is
quite similar to the probability distribution curve of chi-square distribution, which suggests
that the origin distribution of the lattice surface height data might be normal distribution.
The probability distribution curve is then used as the variance probability function to
simulate the stochastic oscillation of the surface sites. Combined with the RNNk model,
the prediction model of the kMC model is established and is called RNNk,p.
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(a) The sampling statistical histogram of the variance at a typical moment (b) The sampling statistical histogram of the variance of all time steps

Figure 7. The sampling statistical histogram of the variance at a typical moment and the sampling statistical histogram of
the variance of all time steps are shown. A probability distribution curve is computed to fit the statistical histogram of all
time steps.

4. Optimization Computation

The optimization goal is to achieve the desired average etching depth and average
bottom roughness within the least amount of time. The RNN models and the probability
function developed in the sections above are to predict the plasma state and the etch
structure over t ∈ [tk,tk+1]. Long time horizon prediction is established by using the
previous prediction results as the initial data for the current prediction. We note that the
model error between the RNN models and the fluid model as well as the kMC model
will accumulate over time and will lead to a huge prediction error at the final time. Thus,
computing a single optimization problem from the beginning time step to the final time
step will not be enough to compute the real optimization trajectories. Therefore, we apply
a moving optimization method to compute the optimization trajectories, which limits the
model error in one time step instead of the whole time horizon. In every time step tk,
an open-loop optimization problem is computed. The optimizing time range is from tk to
t f inal and the optimized parameters are R1, R2, Pr f , VB. The initial condition is from the
fluid model and the kMC model. The optimization problem is written below:

min
R1,R2,Pr f ,VB

J(tk) = wD

(
D̄ f inal − D̄set

)2
+ wr

(
r̄b, f inal − r̄b,set

)2
+ wtt f inal

2

Fi,k = RNN f (R1, R2, Pr f , VB)

D̄ f inal , r̄b, f inal = RNNk,p(Fi,k, VB, Sinit)

Rmin ≤ R1 ≤ Rmax

Rmin ≤ R2 ≤ Rmax

Pmin ≤ Pr f ≤ Pmax

Vmin ≤ VB ≤ Vmax

(2)

where wD, wr, and wt are the weight of the penalty on etching depth, bottom roughness
and etching time, respectively; D̄ f inal , D̄set, r̄b, f inal , and r̄b,set are the average etching depth
at final time, the set average etching depth, the average bottom roughness at final time,
and the set average bottom roughness, respectively; Sinit is the initial surface topology data
(generated from the kMC model); Rmin, Rmax, Pmin, Pmax, Vmin, Vmax are the lowest and
the highest bound of the optimized parameters. We note that the optimization problem
can be solved in Matlab with the nonlinear programming (NLP) tool box. Specifically, we
use the multistart function in Matlab and the solving algorithm is sequential quadratic
programming (SQP). The multistart function is able to calculate multiple local solutions
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with several initial points and select the best solution as the global optimization solution.
When the optimization problem is solved, the optimized parameters for the current time
step will be stored and the optimization problem is resolved at the next time step. It
should be noted that the optimization solution calculated at each time step would not be
the real optimal solution due to model error. This error is limited in a single time step
and is corrected in the next time step because the results of the fluid model and the kMC
model are applied as the initial condition in the optimization problem. However, the global
optimization solution is hard to obtain because the solutions at past time steps have already
deviated from the global optimal trajectories.

5. Simulations and Results

The plasma chemistry and microscopic structure of the etched lattice have been
described in Section 2. The work pressure of the plasma chamber is set as 40 mTorr and the
chamber temperature is set to be 60 °C. The ICP is excited by means of a ratio frequency
(RF) power at 13.56 MHz supplied to the upper coils. Figure 8 shows an open-loop cross
section profile evolution that was captured at 0 s, 3 s, 6 s, 9 s, 12 s, and 15 s. The etching
depth is defined as the average etching depth (D) of all uncovered surface sites, and its unit
is mL. Due to the existence of the resistive mask, the bottom surface is getting narrower
over time. The red lines are used to define the range of the bottom surface in order to
describe the bottom surface roughness more accurately. The bottom roughness (rb) is
defined by variance and its unit would be mL2:

rb =
1
N

N

∑
i=1

(
hi − h̄

)2 (3)

where N is the total number of the counted bottom surface sites, hi is the height of the
surface site at position i, and h̄ is the average height of all counted bottom surface sites.
In the following, we will present the results of the RNN models validation process and the
optimization simulation results.

Figure 8. The open-loop cross section profile evolution that was captured at 0 s, 3 s, 6 s, 9 s, 12 s,
and 15 s.

5.1. Validation of RNN Models

The prediction performance of the RNN models is carried out through the validation
process. Figure 9 shows the Cl2 flux evolutions at location 1. The solid line represents
the flux evolution of the fluid model, and the dotted line represents the predicted flux
evolution of the RNN f model. The flux data are sampled in every 0.2 s, and the model
inputs are randomly selected from the selection range. Figure 10 shows the D̄ and r̄b
evolutions and the minimum and maximum values of D̄ and r̄b among the 100 run kMC
model simulations. In Figure 10a,b, the solid line represents D̄ and r̄b evolutions of the
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kMC model, and the dotted line represents the predicted D̄ and r̄b evolutions of the RNNk
model. In Figure 10c,d, the solid line represents the maximum values and the dotted line
represents the minimum values. The D̄ and r̄b data are sampled in every 0.2 s, and the
model inputs are randomly selected from the selection range. It should be noted that the
evolutions of the kMC model are computed based on a 100 run simulations in order to
obtain the expectation evolution. From (a) and (b), it can be seen that both the evolution
trajectories of the RNN f model and the RNNk model are close to the trajectories of the
fluid model and the kMC model, respectively. From (c) and (d), it can be seen that the
average bottom roughness is strongly influenced by the stochastic nature of the etching
process compared to the results of the average etching depth. From pre-experiments,
the computation time of the fluid model and the kMC model in one time step (0.2 s) is
about 20 min, while the computation time of the RNN f model and the RNNk model in one
time step is only about 0.14 s. We note that the RNN models are sufficient to apply in the
optimization process.

Figure 9. The evolutions of the Cl2 flux at location 1. The solid line represents the flux evolution of
the fluid model, and the dotted line represents the predicted flux evolution of the RNN f model.

5.2. Optimization Simulations

The optimization goal is to achieve the desired average etching depth and average
bottom roughness within the least amount of time, and the optimized parameters would
be R1, R2, Pr f , and VB. From the 100 run simulation, the final average etching depth and
average bottom roughness after a 10 s etching process with R1 = 12/100, R2 = 12/100,
Pr f = 1000 W, VB = 150 V are 40.4293 ML and 11.0977 ML2, which are chosen as D̄set and
r̄b,set. Subsequently, we compute the moving optimization problem to calculate the optimal
trajectories and the optimal total etching time. To emphasize the necessity of using the
moving optimization method, we will also show the optimization results by solving a
single optimization problem from the beginning time step to the final time step.

Figure 11 shows the optimal trajectories of R1, R2, Pr f , VB and the evolutions of D̄ and
r̄b. Both results by using the moving optimization method and the single optimization
method are shown. The average etching depth and average bottom roughness reach the
desired level concurrently at 7.4 s by utilizing the moving optimization method, while
the desired objects are not completed at the final time by utilizing the single optimization
method. As we mentioned above, the model error will accumulate over time and the
error would be so large that we cannot complete the desired objects by solving a single
optimization problem. It should be noted that the optimized inputs would be largely
modified in one time step when using the single optimization method, and this modification
is feasible. Such techniques can be found in [37]. We also note that the optimization results
by using the moving optimization problem will not be the global optimal solution due to
the existence of the model error. Although the solutions might not be the best, using the
moving optimization method can address the model error accumulation problem, and the
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desired average etching depth and bottom roughness are achieved in a shorter amount
of time.

(a) The evolutions of D̄ (b) The evolutions of r̄b

(c) The minimum and maximum values of D̄ (d) The minimum and maximum values of r̄b

Figure 10. The evolutions of D̄ and r̄b are shown in (a,b). The minimum and maximum values of D̄ and r̄b among the
100 runs kMC model simulations are shown in (c,d).

Figure 12 shows the three-dimensional profiles of the lattice at location 1 after a 10 s
open-loop simulation and a 7.4 s optimization simulation (moving optimization method).
The etching profiles are quite similar considering the natural stochastic characteristic of the
etching process. The results show that our prediction model is accurate enough and the
desired etching profile can be efficiently achieved in a shorter amount of time by utilizing
the moving optimization method.

It should be noted that, although the microscopic processes of the real etch process are
the same given a specific etch chemistry, the macroscopic dynamics and reaction kinetics
of the plasma are highly equipment dependent with respect to the accuracy needed for
real applications. While such high fidelity models are not openly available, equipment
vendors typically have their own proprietary plasma models for their plasma processing
equipments, and these models can be easily integrated into our multiscale modeling
framework when needed.
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(a) Optimal trajectories of VB (b) Optimal trajectories of Pr f

(c) Optimal trajectories of R1 (d) Optimal trajectories of R2

(e) Average etching depth evolutions (f) Average bottom roughness evolutions

Figure 11. The optimal trajectories of R1, R2, Pr f , VB and the evolutions of D̄ and r̄b. Both the results of the moving
optimization method and single optimization method are shown.
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(a) Open-loop simulation (b) Optimization simulation

Figure 12. The three-dimensional profiles of the lattice at location 1 after a 10 s open-loop simulation and a 7.4 s optimiza-
tion simulation.

6. Conclusions

In this work, a multiscale modeling and RNN based optimization framework of
the plasma etch process on a three-dimensional substrate with uniform thickness using
the inductive coupled plasma (ICP) was proposed. The macroscopic plasma model is
simulated by a continuous fluid model and the microscopic etching process is simulated
by a kMC model. A spatial-temporal discrete method is applied to compute these two
models concurrently. Then, the RNN f model and the RNNk model are trained based
on the open-loop simulation data of the fluid model and the kMC model, in order to
reduce the computational complexity of these two models. The stochastic characteristic
of kMC model is described by a probability function. Then, long time horizon prediction
and optimization are calculated based on the RNN models and the probability function.
A moving optimization method is applied to overcome the model error accumulation
problem. The optimization goal is to achieve the desired average etching depth and bottom
roughness within the least amount of time. In simulations and results, the validation exper-
iments of RNN models are first implemented, and then the simulation results applying the
optimized parameters are presented. The results demonstrate that our prediction model
is accurate enough and the desired average etching depth and bottom roughness can be
achieved in a shorter amount of time.
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