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Abstract: When Saccharomyces cerevisiae undergoes heat stress it stimulates several changes that
are necessary for its survival, notably in carbon metabolism. Notable changes include increase in
trehalose production and glycolytic flux. The increase in glycolytic flux has been postulated to be due
to the regulatory effects in upper glycolysis, but this has not been confirmed. Additionally, trehalose
is a useful industrial compound for its protective properties. A model of trehalose metabolism
in S. cerevisiae was constructed using Convenient Modeller, a software that uses a combination of
convenience kinetics and a genetic algorithm. The model was parameterized with quantitative omics
under standard conditions and validated using data collected under heat stress conditions. The
completed model was used to show that feedforward activation of pyruvate kinase by fructose
1,6-bisphosphate during heat stress contributes to the increase in metabolic flux. We were also able
to demonstrate in silico that overexpression of enzymes involved in production and degradation of
trehalose can lead to higher trehalose yield in the cell. By integrating quantitative proteomics with
metabolic modelling, we were able to confirm that the flux increase in trehalose metabolic pathways
during heat stress is due to regulatory effects and not purely changes in enzyme expression. The
overexpression of enzymes involved in trehalose metabolism is a potential approach to be exploited
for trehalose production without need for increasing temperature.

Keywords: metabolic modelling; metabolic engineering; kinetic model; trehalose metabolism; heat
stress; genetic algorithm

1. Introduction

Trehalose has often been associated with the eukaryotic model organism baker’s
yeast during heat stress, as the microbe is observed to accumulate high concentrations of
this protective molecule for survival [1–3]. The protective nature of trehalose is due to it
being a stable and generally unreactive sugar, acting as a robust energy storage vehicle [4].
Owing to the aforementioned protective properties, trehalose has high commercial value
as it is used in various industries from pharmaceuticals to food and cosmetics [4–6]. In
the pharmaceutical industry trehalose has been used for the storage of vaccine at room
temperature as it has been found to stabilise vaccines. While in cosmetics, trehalose serves
as liposome stabilizer and as stable sweetener for food. It has also recently been found to
offer protection against bone loss in mice [7]. Its production in the industry relies on the
use of enzymes from extremophiles expressed in other microbes [6].
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In addition to the increase in flux towards trehalose production, another phenomenon
observed during heat stress adaptation in S. cerevisiae is the increase in glycolytic flux [2,8].
Postmus et al. [8] set out to investigate the possible factors that could contribute to the
increase in flux, including gene expression, enzyme activity, protein expression, and the
profile of metabolites. Interestingly, their data indicated minimal changes in gene and
protein expression, but extensive changes in metabolic profile. Therefore, they attributed
the changes in flux to the augmentations in the metabolic environment of the enzymes,
such as the close to 10-fold increase in fructose 1,6-bisphosphate and 20-fold increase
in pyruvate. Additionally, they postulated that the maintenance of the high flux is a
result of the feedback activation of phosphofructokinase by fructose 2,6-bisphosphate and
feedforward activation on pyruvate kinase by fructose 1,6-bisphosphate.

The development of mathematical models to aid metabolic engineering is not un-
common for biologists nowadays, with various frameworks and approaches available for
building the models [9,10]. However kinetic models are often limited to small or medium
sized models due to the amount of information needed to construct them, ranging from rate
laws for the reactions to the kinetic parameters. In order to circumvent this, we developed
Convenient Modeller [11], which uses a generalized Michaelis-Menten equation in the
form of convenience kinetics [12] and parameter estimation to fill in the missing kinetic
parameters. Kinetic parameters, which form a vital part of kinetic models, are constant
values in the equations. They can be measured experimentally in the laboratory, and some
of them are stored in databases such as BRENDA [13] and SABIO-RK [14]. Convenient
Modeller provides users the option to circumvent the process of determining individual
kinetic parameters by wet lab experiments.

In this study, a kinetic model consisting of trehalose metabolism in Saccharomyces cerevisiae
as well as the upper portion of glycolysis was developed, using only convenience kinetics
to form the rate equations. This model was fitted to steady state data of metabolites and
fluxes. On top of that, the model uses quantitative proteomics data collected under two
different conditions, for training and validation. Protein data from standard conditions
were used to parameterize the model, while separate data collected under 37 ◦C were used
to help simulate the biological condition of heat stress and validate the model. Not to
be confused with the more extreme heat shock, this heat stress is at a more physiological
temperature of approximately 37 ◦C [15].

To investigate if the regulatory effects in the glycolytic system play a role in increasing
the flux during heat stress, a kinetic model of trehalose metabolism in S. cerevisiae was
constructed. This model should also help to determine the best way to produce trehalose
without the need for temperature increase. The model was built using metabolomics,
fluxomics and proteomics data collected under standard conditions and subsequently
validated using metabolomics and proteomics data collected under heat stress condition.
The completed model was subjected to in silico regulation analysis and overexpression
study. It was found that activation of pyruvate kinase does contribute slightly to the
control of flux in the trehalose cycle and glycolysis, and that regulatory effects on enzymes
involved in glucose entry play a significant role in affecting flux within the system. The
model additionally predicted that the overexpression of enzymes directly involved in the
production and degradation of trehalose would lead to an increase in its concentration in
the system.
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2. Materials and Methods
2.1. Model Construction

The model was built using Convenient Modeller (https://github.com/chuanfuyap/
Convenient-Modeller, accessed on 15 May 2020) [11], which uses convenience kinetics
(detailed below) [12] to build the rate equations. Convenient Modeller is a tool for building
kinetic models for cell metabolism, requiring input from the users on the substrates and
products involved in the metabolic reactions and the enzymes that catalyse the reactions,
which are then translated into rate equations automatically. The convenience kinetics
assumes that all the reactions are reversible and have a random binding order. A genetic
algorithm (detailed below) is used to estimate the kinetic parameters given metabolomics,
fluxomics and/or proteomics data. In brief, given information on substrates, products and
enzymes, the tool can generate the rate equations that constitute the model; and by pro-
viding quantitative information such as metabolite concentrations, protein concentration
and flux values, the kinetic parameters of the model can be estimated. Models built in
Convenient Modeller use the Systems Biology Markup Language format [16].

2.2. Enzyme Kinetics

For the construction of models, Convenient Modeller makes use of convenience
kinetics, a generalised reversible Michaelis-Menten equation. Specific rate laws for all
reactions in the system are not essential, because their specific properties tend to be
dissipated in a large system.

v(sub, prod) = Etotal . freg
kcat
+ ∏i s̃ubi

ni − kcat
− ∏j p̃rodj

nj

∏i(1 + s̃ubi + . . . + s̃ubi
ni
) + ∏j

(
1 + p̃rodj + . . . + p̃rodj

nj
)
− 1

, (1)

where sub is the substrate concentration; prod is the product concentration; Etotal is the
enzyme concentration; freg is a pre-factor to account for activation, using 1 + d/kA, d is the
activator concentration; kA is the activation constant; or inhibition, using kI/kI + d, d is
the inhibitor concentration, kI is the inhibition constant, where activator and inhibitor are
metabolites that increase or decrease the reaction rate; kcat

+/− are the forward and reverse

turnover rates; s̃ub = sub/kM
sub; p̃rod = prod/kM

prod; kM
sub/prod are the Michaelis-Menten

constants for either substrate or product; n is the stoichiometric coefficient for the reaction.

2.3. Parameter Estimation

After establishing the system’s network of reactions, the kinetic parameters are needed
to complete the model. All the kinetic parameters of the model were estimated using a
genetic algorithm [17].

Genetic algorithm (GA, Figure 1) is a machine learning algorithm used in optimisation
problems inspired by the Darwinian evolutionary principle. In brief, GA ‘replicates’ the
evolutionary process with a population of potential solutions (the kinetic parameters) that
go through multiple generations of mutations, selection and reproduction. The potential
solutions are evaluated at every generation with a fitness function (this is GA terminology
for objective function), and the population evolves over generations to produce the best
solution. The fitness function of choice here is Mean Absolute Percentage Error.

Σ
∣∣∣∣Observed − Simulated

Observed

∣∣∣∣·100%
n

, (2)

where observed is the training data’s value for metabolite and/or flux, simulated is there
model simulated value for metabolite and/or flux and n is the total number of metabolites
and fluxes in the model.

https://github.com/chuanfuyap/Convenient-Modeller
https://github.com/chuanfuyap/Convenient-Modeller
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Figure 1. Genetic algorithm decision flowchart utilised by Convenient Modeller.

Unlike most GA, binary encoding is not used for chromosomes, instead every single
kinetic parameter in the chromosome is encoded as an exponent for a base value of
10 (decadic logarithm value). The reason for this encoding is that exact values for a kinetic
parameter is not a priority, rather the orders of magnitude. Parameter values are generated
randomly for the first generation. To spawn the next generation, random chromosomes
are chosen as parents using tournament selection, in which the population is randomly
sampled several times (depending on the population size) to select for fit parents. After
parents are selected, crossover is done using uniform crossover to produce offspring for
the next generation. In this version of uniform crossover, a fixed ratio of parameters is
exchanged instead of exchange at fixed points. On top of crossover, random chromosomes
are chosen to be mutated at every generation as well. Mutation is carried out by randomly
increasing or decreasing one or several parameters in the chromosome. A plague function
is also written into this GA, whereby after a set amount of generations determined by
the user, the population would get reduced to the initial size, purging chromosomes with
low fitness score. Users can also set a plateau limit, which is the maximum number of
generations for when the highest fitness score stays the same. After reaching the plateau
limit, there is an adaptive function in the GA where every chromosome is mutated to try
and escape this plateau, if it fails, the search comes to an end, spawning a model from the
fittest chromosome. The ending criteria in a perfect scenario would be when a chromosome
is able to perfectly replicate the fitting data as its output, resulting in zero error score.

For the model presented in this paper, 106 parameters were estimated with the GA,
which took about 130 h to run on a computer cluster with 24 cores.

2.4. Fitting Data

The fitting data for the metabolites were obtained from two separate studies, one on
S. cerevisiae in normal conditions measured using mass spectrometry [18] and another mea-
sured using nuclear magnetic resonance [19]. In this work, normal or standard condition
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refers to culture of yeast under 30 ◦C with the use of complete culture medium, such as
yeast extract peptone dextrose (YPD) or yeast nitrogen base which can be supplemented
with amino acids. Although the work done by Puig-Castellví et al. [19] used arbitrary units
for the metabolites, the values of shared metabolites were not too dissimilar from those
measured by Smallbone et al., [18] so they were treated as mM. The fluxes were obtained
from data from the reference strain measured by Blank and colleagues [20]. All of the data
used for parameter estimation were values measured during steady state.

The protein concentrations used in the model (for both parameter estimation and
validation) were obtained from a quantitative and temporal study on S. cerevisiae’s proteins
undergoing heat stress [21].

The fitting data are from different sources, as a result of being generated with different
strains and media conditions and culture methods. The S. cerevisiae strains used are Y23925,
BY4741, CEN.PK 113-7D and BY4742 for Smallbone et al., Puig-Castellví et al., Blank et al.
and Jarnuczak et al. respectively. The media condition used are YPD medium, yeast
minimal medium and Yeast Nitrogen Base medium for Puig-Castellví et al., Blank et al.
and Jarnuczak et al., respectively. The medium used by Smallbone et al. was not specified
other than that it was without nutrient limitation. Smallbone et al. used continuous culture,
while the other three studies used batch cultures. The differences mentioned above are
phenotypically neutral and should have no significant effect on the trehalose metabolism
modelled here.

2.5. Manipulation and Simulation of Model

In order to validate the model, the enzyme values of the model fitted under standard
conditions were changed to those of the new condition, which are the enzyme values
under heat stress condition. The overexpression was simulated by doubling the enzyme of
interest’s value from its standard condition value.

The fitted model was modified using the JSBML library [22] with Java code to make the
changes needed for validation, regulation analysis and overexpression model interrogation;
the changes include altering concentration values of the enzymes, changes to the equations
and kinetic parameters involved, and in the case of regulation analysis removal of activator
and inhibitor constants. The simulation of the models up to steady state was done using
the SBML ODE Solver Library [23].

3. Results

Heat stress on yeast is a phenomenon where yeast cells are introduced to an increase
in temperature up to 37 to 38 ◦C, beyond their optimal conditions, leading to multitude
of changes in their physiology including metabolically. Notably, this includes an increase
in the cytoprotective metabolite trehalose. Of these changes, the increase in glycolytic
flux is of interest in this study as the precise cause is yet to be determined. Additionally,
trehalose is a molecule of commercial interest, so theoretical exploration is also performed
to determine ways to increase its production in yeast.

A kinetic model focusing on trehalose metabolism parameterized with quantitative
metabolite concentrations, flux, and protein abundance data collected before heat stress
was applied to the cells, is presented here. The model was validated using a separate set
of quantitative proteomics from the same study [21], but collected from cells undergoing
heat stress, allowing the model to simulate heat stress. The validated model was used to
study the possible causes of flux increase during heat stress as well as ways of increasing
trehalose production in S. cerevisiae without the need for an increase in temperature.

3.1. Model of Trehalose Cycle & Upper Glycolysis

The completed model in this study included S. cerevisiae’s upper portion of glycolysis,
and trehalose metabolism (File S1) [24] (Figure 2). Trehalose metabolism is a cycle that
branches off from glucose-6-phosphate of glycolysis and re-enters glycolysis as trehalose,
broken down into two glucose molecules. The main aim of this model is to study trehalose
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metabolism, therefore the lower glycolysis reactions from glyceraldehyde 3-phosphate to
pyruvate have been simplified to a single reaction from five original reactions, which is
here represented as modified pyruvate kinase reaction (PYK mod). This change has no
significant effect on the trehalose metabolism as the same flux was maintained, and rather
than combining the metabolites in the reactions into one which includes nicotinamide
adenine dinucleotide (NAD) and additional adenosine triphosphate (ATP), they were
excluded as the pyruvate kinase reaction does not interact directly with them. In total the
model contains 23 metabolites (6 external metabolites, boundary condition true in SBML),
20 enzymes and reactions. Within the reaction network there are three activation regulatory
effects and four inhibitory effects [25]. All these summed up to 106 kinetic parameters in
the model that are fitted using omics data (Table S1).
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Figure 2. Trehalose metabolism model, with lower glycolysis simplified to a single reaction from
glyceraldehyde 3-phosphate to pyruvate, as well as skipping production of acetaldehyde to ethanol.
GlcO: extracellular glucose, GlcI: intracellular glucose, G6P: glucose 6-phosphate, F6P: fructose
6-phosphate, F16BP: fructose 1,6-bisphosphate, DHAP: dihydroxyacetone phosphate, GAP: glycer-
aldehyde 3-phosphate, G1P: glucose 1-phosphate, UDPG: urine diphosphate glucose, T6P: trehalose
6-phosphate, GLT: glucose transport, HXK: hexokinase, PGI: phosphoglucose isomerase, PFK: phos-
phofructokinase, ALD: aldolase, TPI: triose-phosphate isomerase, PYK mod: pyruvate kinase, PYC:
pyruvate carboxylase, ADH: alcohol dehydrogenase, PGM: phosphoglucomutase, UDPGP: UDPG
phosphorylase, GSY: glycogen synthase, GPH: glycogen phosphorylase, T6PP: trehalose phosphatase,
T6PS: trehalose-phosphate synthase, G6PDH: glucose 6-phosphate dehydrogenase.

3.2. Model Fitting and Validation

The model was fitted using machine learning via a genetic algorithm, with hetero-
geneous data for metabolites (Table 1) and fluxes values (Table 2) (sources discussed in
Methods) to obtain the kinetic parameters. As the data source for flux does not have values
for the trehalose flux, we have assumed it to be 1% of the flux towards it through the T6PS
reaction, which was rounded up to be 0.2 mmol/g/h. Following the parameter estimation
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step, the enzyme concentrations in the model were all replaced with those measured under
heat stress condition to simulate the condition. A single source for protein values was
used; values measured under 30 ◦C were used for fitting, while those measured under heat
stress at 37 ◦C were used for validation; the values were taken from the final timepoint
of the dataset, 240 min (Table S2) [21]. Reassuringly, the model was able to successfully
replicate the main metabolic responses observed in heat stress for S. cerevisiae [2,8,19,26,27],
namely increase in overall fluxes in the network and high accumulation of trehalose
(Tables 1 and 2).

Table 1. Metabolites concentration in the trehalose metabolism model. Fitting data values were
those used to generate the model at standard conditions (30 ◦C). Values in the 30 ◦C and 37 ◦C
columns were those generated by the model when using measured enzyme concentrations from the
respective temperatures.

Metabolites (mmol/L) Fitting Data 30 ◦C 37 ◦C

GlcI * 6.277 6.39 1.76
G6P * 0.774 0.74 0.14
F6P * 0.235 0.23 1.19

F16P * 4.583 4.52 7.81
DHAP * 1.162 1.15 0.99
GAP * 0.316 0.31 0.36

Pyruvate * 2.107 2.01 4.23
G1P 10.34 5.24

UDPG 0.01 0.01
T6P 0.05 0.07

Trehalose ** 0.33 0.33 1.91
ATP ** 3.2 5.58 5.57
ADP 0.004 0.01
UDP 0.81 0.97
UTP 0.58 0.42
NAD 1.57 1.62

NADH 0.22 0.17
Blanks means the values were not fitted as they were not available. * metabolites use data from Smallbone et al.
[18]. ** metabolites (along with ethanol, glycerol and TCA cycle represented by their by-product succinate and
citrate, for the external metabolites) uses data from [19].

Table 2. Flux values in the trehalose metabolism model. Fitting data values were those used to
generate the model at standard conditions (30 ◦C). Values in the 30 ◦C and 37 ◦C columns were
those generated by the model when using measured enzyme concentrations from the respective
temperatures. Flux data are from [20].

Fluxes (mmol/g/h) Fitting Data 30 ◦C 37 ◦C

GLT 16.7 15.52 21.71
HXK 16.7 15.93 22.29
PGI 14.2 13.23 21.44
PFK 14.2 13.23 21.44
ALD 15.2 13.23 21.44
TPI 13.5 11.68 10.87

G6PDH 1.8 1.75 0.12
GlycerolDH 1.7 1.55 10.57

PYK mod 28.6 24.91 32.30
ADH 23.6 18.30 21.58
PYC 5.0 6.62 10.72
PGM 0.8 0.75 0.44

UDPGP 0.85 1.41
GSY 0.65 1.12
GPH 0.10 0.10 0.96
T6PS 0.20 0.20 0.29
T6PP 0.20 0.20 0.29

Trehalase 0.20 0.20 0.29
ATPSyn 5.10 12.83

UDPtoUTP 0.85 1.41
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The root-mean-square error of the model’s simulated values and fitting data at 30 ◦C
is 1.56, with the majority of the deviations contributed by fluxes (Table 2). The differences
between simulated and experimentally measured values for fluxes at 30 ◦C are all below
13% except for alcohol dehydrogenase with a deviation of 22%. For the metabolites,
only ATP deviated significantly (Table 1). Qualitatively, changes in the direction for the
metabolites are in the right direction for the majority of metabolites considered, with
the exception of trehalose-6-phosphate (T6P), glucose 6-phosphate (G6P) and fructose
6-phosphate (F6P) (Figure 3).
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Figure 3. Log2 fold changes of metabolites from 30 ◦C to 37 ◦C generated by the trehalose metabolism model. With
comparison from data measured experimentally by Puig-Castellví et al. [19] for intracellular glucose (GlcI), trehalose,
adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide (NAD) at 37 ◦C and Postmus et al. [8] for glucose-6-
phosphate (G6P), fructose-6-phosphate (F6P), fructose-1,6-bisphosphate (F16P), trehalose-6-phosphate (T6P), and adenosine
diphosphate (ADP) at 38 ◦. Remaining metabolites had no reference experimental data for comparison.

3.3. Regulation Analysis

In order to determine if modifiers play a role in increasing the overall fluxes during
heat stress, regulation analysis was performed on the validated model. This was done
by removing individual or groups of enzyme modifiers in the network of reactions while
maintaining everything else and simulating the model until it reached a steady state. Data
for removal of glucose transport inhibition is not shown because its removal leads to an
unstable model that is unable to achieve steady state.
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Of all the reactions investigated, the removal of modifiers involved in the upper part
of glycolysis (GLT inhibition, HXK inhibition, T6PS activation, GSY activation and GPH
inhibition) caused significant changes in fluxes relative to the original model’s flux values
when protein concentrations collected under 37 ◦C were used (Figure 4, Table S3). When
there is no inhibition in upper glycolysis, the trehalose cycle’s fluxes see a drop, along
with a massive decrease in the reaction where glycogen is broken down into glucose-1-
phosphate, catalysed by glycogen phosphorylase and with a huge increase in flux towards
the pentose phosphate pathway. When the activation of pyruvate kinase is removed, there
is a slight increase in flux within the trehalose cycle, but with drops observed in the entry
to the trehalose cycle and lower glycolysis.
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3.4. Overexpression Simulations and Its Yields

To determine the best target for metabolic engineering in S. cerevisiae in order to
achieve higher trehalose production, overexpression simulations (doubling the enzymes’
concentration) were performed with the model. Overexpression was chosen as the in silico
modification of choice as this is a proven method in increasing metabolite production in
metabolic models [26,27]. In order to narrow down the search of enzymes to overexpress,
metabolic control analysis [28,29] was performed. It suggested that UDP-glucose phos-
phorylase and trehalose-6-phosphate synthase increase would result in higher trehalose
accumulation. That was proved incorrect for UDP-glucose phosphorylase (Figure 5), but
true for trehalose-6-phosphate synthase. However, overexpression for the trio of enzymes
involved in trehalose production and degradation of trehalose delivered the best results in
trehalose accumulation with 10000% increase in yield (Figure 5). Yield here is calculated by
dividing the trehalose value at steady state by the extracellular glucose value.
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4. Discussion

The chemically unreactive and stable disaccharide trehalose is found in variety of
organisms including yeast. Its chemical properties provide protective effects to microor-
ganisms allowing it to survive stressful situations. The same survival feature is exploited
in the biotechnology industry allowing it to serve as protectant for storage of food and
in pharmaceutical industries. This has brought about a lot of interest in the molecule,
which resulted in the development of kinetic models studying trehalose metabolism in
S. cerevisiae [25,30]. Voit’s work was used to determine metabolic regulation involved in
the trehalose metabolism [25], while Fonseca and colleagues developed a model using
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time series of metabolic profiles to predict changes in protein levels [30]. The two models
mentioned above, and the model presented in this work, all contain the complete trehalose
cycle including the regulatory effects. The difference starts from the glucose-6-phosphate,
where our model conserves much of the lower glycolysis maintaining three exit fluxes; the
model in Voit’s work removes the entire lower glycolysis and treats it as exit flux, while
Fonseca’s model has two exit fluxes with ethanol, acetate and glycerol production in one
reaction and a leakage flux for carbon used in TCA cycle and respiration. Aside from the
network, from the technical standpoint the other two models use a different modelling
framework which uses simplified rate action kinetics; Voit employed S-system equations
and Fonseca used generalized mass action equations. While these kinetic representations
can be used to describe the reactions, they are less accurate biochemically as they do not
account for enzyme saturation, a biochemically relevant phenomenon, which is accounted
for with convenience kinetics used in this study.

Our model has used quantitative protein data to inform kinetic parameters as well as to
emulate the effects of heat stress in the model. The estimation of unknown parameters was
done using a genetic algorithm as this is commonly used for metabolic modelling [31–33].
The use of proteomics over transcriptomics is a better approach for heat stress simulation
as it was found that transcription changes are mostly transient for stress adaptations in
S. cerevisiae [34] but proteins remain longer in steady state to adapt to environmental
stress [21]. The model built here was done by estimating all the parameters in the model,
however this approach can become computationally expensive as the model scales up.
Other researchers in the systems biology modelling community have developed methods
that select only subsets of parameters to be estimated [35–37]. These methods involve the
use of sensitivity analysis to identify the parameters that have the biggest influence on
the system, which would form the subset used in the estimation procedure. This idea can
be adapted to the Convenient Modeller framework in order to reduce the computation
time needed, where the parameters not estimated can be given a default value of one. An
alternative approach to model building is to use experimentally measured parameters
directly in the model, or to make use of such values as estimation boundary during the
estimation step. This can also be achieved in Convenient Modeller, however the work here
did not aim to reproduce the parameters measured experimentally, which is usually done
in isolation of other reactions. Instead, our model was generated as a holistic system where
all the parameters interplay with one and other. This also follows the concept of “sloppy
model”, discussed by Brown et al. [38,39] showing that a model remains useful despite
some parameters varying from the “true” values.

The combination of convenience kinetics with heterogeneous sources of fitting data
have been proven to be an effective modeling method here, as it produced a model with a
good fit to the training data. Steady state data was used as there was insufficient time-series
data for all the metabolites and fluxes in the trehalose metabolic pathway; should such
dataset be produced, it can be used in conjunction with the temporal proteomics data to fur-
ther improve the model. Despite using only steady state data the model was also capable of
reproducing the metabolic phenomenon commonly observed during heat stress adaptation
(Tables 1 and 2). When S. cerevisiae is challenged with high temperature, it is commonly
observed that fluxes would increase [2,8] and trehalose would accumulate [3,19,27]. When
protein amounts collected during heat stress were input, the model was able to reproduce
the increase in flux generated during heat stress, albeit to a lesser degree than those experi-
mentally measured (Table 2). Additionally, it reproduced increased glucose consumption,
which is indicated by the drop in glucose level and increased flux in glucose transport [2],
as the cell would need to spend more energy to cope with the stress. Minimal changes in tre-
halose 6-phosphate were also predicted by the model, which is expected as this compound
is toxic for the cell in high concentration [40]. It is worth noting though that predictions for
glucose 6-phosphate, fructose 6-phosphate and trehalose-6-phosphate were in the opposite
direction of those measured by Postmus et al. [8]. The increase in flux as a result of heat
stress is at least five-fold [8]; however, our model only predicted a 40% increase in flux for
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most of the reactions. This discrepancy might be the result of difference in the experimental
conditions between the Postmus et al. study [8], which measured the flux values, and
the Jarnuczak et al. study [21], which determined the protein concentrations used in this
study. Postmus et al. used naïve cells grown to stationary phase to measure fluxes, while
Jarnuczak et al. used heat adapted cells to measure protein concentrations, which were
generated by moving them to 37 ◦C during the mid-exponential growth phase. This results
in different genomic changes in the cells to better adapt to the increased temperature [30].

Our model was additionally used to test the hypothesis that regulatory effects in the
metabolic network contribute to flux increase. While we did not include the activation of
phosphofructokinase by fructose 2,6-bisphosphate, we included the feedforward activation
on pyruvate kinase by fructose 1,6-bisphosphate. The removal of this activation on pyru-
vate kinase resulted in drop of flux in lower glycolysis (Figure 4), confirming the hypothesis
in silico. However, this also resulted in a slight increase in flux in the trehalose cycle, chan-
neling flux from glycogen instead of upper glycolysis. The regulatory interactions that
have the highest impact on fluxes of glycolysis and trehalose cycle are in upper glycolysis.
When all three inhibitions on upper glycolysis (glucose transport, hexokinase and phos-
phofructokinase) were removed, this resulted in a decrease flux within the trehalose cycle
with a corresponding higher flux channeled towards the pentose phosphate pathway. Such
a phenomenon if it occurred in a living cell would not be sustainable and the cell would
not survive the heat stress since it would be unable to generate the trehalose needed for
protection. This demonstrates the importance of regulatory control in metabolic pathways.

The prediction made in the enzyme overexpression investigation leads to a high in-
crease in percentage yield of trehalose production (Figure 5), which was also observed
experimentally. In the work done by Fonseca et al. [30] it was shown that heat adapted yeast
cells have trehalose concentrations that increased from 4 mM up to 100 mM. Additionally,
work by Magalhães et al. showed a 5-9-fold increase in trehalose for heat adapted cells [41].
Furthermore, Mahmud et al. [42] have studied S. cerevisiae strains which contained three
gene deletions but overexpressed either TPS1 or TPS2. The overexpressed genes were
the ones that encode for trehalose 6-phosphatase; they have found that the overexpressed
strains had higher trehalose content without stress than their non-overexpressed counter-
part. This highlights the utility of systems modelling to show how metabolite levels can be
potentially altered via changes in the underlying proteome.

5. Conclusions

Our work shows that the use of convenience kinetic for metabolic modelling is an
efficient solution for rapid prototyping of metabolic models for hypothesis generation. This
methodology allows the use of multi-omics data for parameter estimation. Subsequently,
enzyme concentrations can be updated in silico using quantitative proteomics collected
from a different condition such as heat stress, which then allows the model to simulate this
new condition. The output can then be compared with a different set of multi-omics data,
constituting the validation step of the model.
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