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Abstract: The biodegradation of phenol, p-cresol, and phenol plus p-cresol mixtures was eval-
uated using Pseudomonas putida ATCC 17484 in aerobic batch reactors. Shake-flask experiments
were performed separately using growth medium with initial nominal concentrations of phenol
(50–600 mg L−1) and p-cresol (50–600 mg L−1) as well as phenol (50–600 mg L−1) plus p-cresol
(50–600 mg L−1). The complete degradation of phenol and p-cresol was achieved within 48 h and
48–56 h, respectively, for all initial concentrations of phenol and p-cresol. The maximum cell growth
rate using phenol (µmax,P = 0.45 h−1) was much faster than that using p-cresol (µmax,C = 0.185−1 h).
The larger Ki value for phenol (310.5 mg L−1) revealed that the P. putida cells had a higher resistance
to phenol inhibition compared with p-cresol (243.56 mg L−1). A mixture of phenol and p-cresol
in batch experiments resulted in the complete removal of phenol within 52–56 h for initial phenol
concentrations of 50–500 mg L−1. The time needed to remove p-cresol completely was 48–56 h for
initial p-cresol concentrations of 50–500 mg L−1. In the continuous-flow immobilized cells reactor, the
degradation efficiency for phenol and p-cresol was 97.6 and 89.1%, respectively, at a stable condition.

Keywords: biodegradation; phenol; p-cresol; batch reactor; immobilized cells; continuous stirred-
tank bioreactor

1. Introduction

Phenol and its derivatives are toxic organic components often found in various
petroleum and chemical industries [1]. Phenol has been regarded as a toxic pollutant to
aquatic living organisms imparted as low as concentrations of 0.005 mg L−1 [2]. There has
been serious environmental concern due to the persistent toxicity of phenol and its deriva-
tives [3]. Much industrial wastewater contains the major phenol and its derivatives such as
phenol and cresols [4,5]. Thus, the removal of these phenolic contaminants to a satisfactorily
low level in wastewater becomes an urgent task.

Conventional treatments to phenol and its derivatives including physical and chemical
methods have major disadvantages such as the cost of operation, production of harm-
ful metabolites, incomplete mineralization of the substances, and high cost involved in
disposal of chemical waste sludge. In such cases, biological treatment processes seem
promising for the complete mineralization of phenol and its derivatives to carbon dioxide
and water with innocuous residues [6]. However, the growth of microorganisms suffers
from the inhibition of phenol and its derivatives at higher concentration levels. In order to
overcome the inhibition of phenol and its derivatives, the cell acclimation [7], the appli-
cation of genetically engineered microorganisms [8], and cell immobilization [9,10] have
been recommended. Increasing phenol concentrations successively to cultivate phenol-
degrading bacteria usually requires long lag times. Masque et al. [7] demonstrated that the
degradation of phenol with 1000 mg L−1 needed to take 20 days. The use of genetically
engineered microorganisms gives the potential for an unanticipated ecological influence
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and causes controversy in the application of bioremediation. Thus, cell immobilization
gains a better alternative to protect cells from the toxicity of phenol and its derivatives.

Biological treatment processes such as activated sludge system, biofilm process, bio-
logical contact oxidation, biofilter process, etc. are always environmentally friendly, highly
effective, and economic [11]. In those biological systems, Pseudomonas putida as a rod-
shaped Gram-negative bacterium has been proved to be effective in removing phenol and
its derivatives [12]. A pure culture of P. putida ATCC 17484 with high removal efficiency
for phenol and p-cresol biodegradation in a batch system has been demonstrated [13,14].
González et al. [13] used stirred tank and fluidized-bed bioreactors to degrade phenol
through immobilized cells of P. putida ATCC 17484. Their experimental results revealed
that both bioreactors achieved phenol biodegradation efficiencies higher than 90% even a
phenol loading rate in the influent as high as 4 g L−1 d−1. Loh and Ranganath [15] carried
out an external-loop fluidized bed airlift bioreactor (EFBAB) by using P. putida ATCC 49451
for the cometabolic biotransformation of 4-chlorophenol (4-CP) in the presence of phenol.
Their study found that phenol and 4-CP with feed concentrations of 1600 and 200 mg L−1

had been successfully degraded in EFBAB process. The bacterial strain isolated from the
contaminated sites by coke-oven effluent was identified as P. putida that showed a high
capacity in degrading phenol concentration up to 1800 mg L−1 and tolerating cyanide up
to 340 mg L−1 [16].

The biodegradation of toxic substances using entrapped cells has been utilized since
1975 [9]. The immobilized cells have their potential advantages over free cells for the
enhancement of biodegradation efficiency in terms of cell reuse and recovery [17]. The bio-
polymeric gel beads used to entrap microbial cells are well-established approaches for
cell immobilization [18]. Banerjee et al. [1] successfully presented phenol biodegradation
kinetics by immobilized cells in a batch system. However, the kinetic model system
based on the simultaneous biodegradation kinetics of phenol and p-cresol in a continuous
stirred-tank bioreactor with immobilized cells has never been reported.

The knowledge of dual-substrates biodegradation kinetics by immobilized cells is
helpful for the design of process facilities for the simultaneous removal of multiple sub-
strates in wastewater. In this study, P. putida ATCC 17484 was entrapped in Ca-alginate gel
beads using immobilization methods to evaluate the phenol and p-cresol biodegradation
kinetics simultaneously. Moreover, the immobilized kinetic model system to describe the
simultaneous biodegradation kinetics of phenol and p-cresol was developed. The goal
of this work was to develop the kinetic model system to describe the biodegradation
kinetics of phenol and p-cresol simultaneously. The main purposes of this study were to (1)
evaluate phenol and p-cresol degradation by free P. putida cells, respectively; (2) estimate
the growth yield and maximum specific growth rate of P. putida cells in batch experiments;
(3) determine interaction parameters by a sum kinetic equation fitted by experimental
data; (4) develop the kinetic model in the immobilized cells system in the continuous
stirred bioreactor; (5) conduct continuous-flow experiments to investigate the synchronous
biodegradation of phenol and p-cresol by alginate-immobilized P. putida cells; and (6)
compare the experimental data and model prediction for the synchronous biodegradation
of phenol and p-cresol by alginate-immobilized cells in a continuous stirred-tank bioreactor.

2. Kinetic Model Development
2.1. Growth Kinetics of Free Cells Batch System

The specific growth rate of cells µ (h−1) obtained from the exponential phase in the
batch experiment is expressed as [19,20]

µ =
ln(Xt/X0)

t − t0
(1)

where Xt and X0 are the cell concentration at time t and t0. The value of µ was determined
from the slope of a linear plot of ln(Xt/X0) versus time (t) in the log-growth phase of
the curve.
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P. putida cells used phenol or p-cresol as a sole carbon source, respectively, in a batch
culture system. Phenol or p-cresol as a substrate displayed an inhibition to cell growth at
much higher initial concentrations of phenol or p-cresol. Haldane kinetics used to model
the cell growth using phenol or p-cresol as a substrate, respectively, was represented by the
following equation:

µ =
µmax·S

Ks + S + S2/Ki
(2)

where µ is the specific growth rate (h−1), µmax is the maximum specific growth rate (h−1),
Ks is the half-saturated constant of substrate (mg L−1), and Ki is the inhibition constant
(mg L−1).

The experimental data on the substrate degradation at various combinations of initial
concentrations of phenol and p-cresol were utilized for determining the growth yield of
P. putida cells according to the following equations [21]:

Y =
X − X0

S0 − S
(3)

where Y is the growth yield of cells, X and X0 are the cell concentration and initial cell
concentration (mg L−1), respectively, and S and S0 are the substrate concentration and
initial substrate concentration (mg L−1), respectively.

Yoon et al. [22] proposed the sum kinetic model to evaluate the interaction parameters
(IC,P and IP,C) based on the individual specific growth rate.

µ =
µmax,PSP

Ks,P + SP + S2
P/Ki,P + IC,PSC

+
µmax,CSC

Ks,C + SC + S2
C/Ki,C + IP,CSP

(4)

where P and C indicate phenol and p-cresol, respectively. IC,P indicates the degree to which
p-cresol affects the biodegradation of phenol and vice versa. The higher parameter value
makes a stronger inhibition on the cells growth [22]. The other bio-kinetic parameters
µmax, Ks, and Ki are the same as those obtained from Equation (2) in a single substrate
batch system.

2.2. Conceptual Basis of Immobilized Cells in the Continuous Stirred-Tank Bioreactor

Figure 1 presents the phenol and p-cresol concentration profiles in the bulk liquid,
liquid film, and gel bead in the completely-mixed and continuous-flow bioreactors. In the
bulk liquid, the phenol and p-cresol concentration profiles are flat lines due to a completely-
mixed condition occurred in this phase. Then, the phenol and p-cresol pass through the
liquid film and diffuse into the gel bead to constitute the curved profiles of concentration
in the gel bead.
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Figure 1. Conceptual basis of concentration profiles in an immobilized cells system.

2.3. Kinetic Model of the Entrapped Cell in the Continuous Stirred-Tank Bioreactor

The phenol and p-cresol in the bulk liquid diffused into gel beads through the liquid
film and were biodegraded by immobilized cells. Diffusion and biodegradation are two
fundamental mechanisms occurred simultaneously in this phenomena. According to Fick’s
law and Haldane’s kinetics, the utilization rates of phenol and p-cresol in the gel bead with
an unsteady-state condition were given as [1,23]:

∂Ss,P

∂t
= DeP

(
∂2Ss,P

∂z2 +
2
z

∂Ss,P

∂z

)
− µmax,PSPXs

YP
(
Ks,P + SP + S2

P/Ki,P + IC,PSC
) (5)

∂Ss,C

∂t
= DeC

(
∂2Ss,C

∂z2 +
2
z

∂Ss,C

∂z

)
− µmax,CSCXs

YC
(
Ks,C + SC + S2

C/Ki,C + IP,CSP
) (6)

where Ss,P and Ss,C are the phenol and p-cresol concentrations within the gel bead (mg L−1),
DeP and DeC are the effective diffusivity of phenol and p-cresol, respectively, within the
porous matrix (cm2 d−1), µmax,P and µmaxC are the maximum specific growth rate of cells
on phenol and p-cresol (h−1), respectively, YP and YC are the growth yield of cells on
phenol and p-cresol (mg mg−1), respectively, Ks,P and Ks,C are half-saturated constants of
phenol and p-cresol (mg L−1), respectively, Ki,P and Ki,C are inhibition constants of phenol
and p-cresol (mg L−1), respectively, IC,P and IP,C represent the effect of p-cresol on phenol
biodegradation and the effect of phenol on p-cresol biodegradation, respectively, and z
is the radial distance within the bead. The fluxes of phenol and p-cresol diffused into
the film/bead interface are equivalent to the fluxes diffused out the film/bead interface.
The boundary conditions for phenol and p-cresol concentration profiles at the bead center
and film/bead interface were described as the following equations:

BC1 :
∂Ss,P

∂z
= 0, z = 0 (7)
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BC1 :
∂Ss,C

∂z
= 0, z = 0 (8)

BC2 : DeP
∂Ss,P

∂z
= k f P(Sb,P − Si,P), z = R (9)

BC2 : DeC
∂Ss,P

∂z
= k f C(Sb,C − Si,C), z = R. (10)

The initial conditions for phenol and p-cresol utilization rates in Equations (6) and (7)
were expressed by

IC1 : Ss,P = 0, 0 ≤ z ≤ R, t = 0 (11)

IC2 : Ss,C = 0, 0 ≤ z ≤ R, t = 0. (12)

The growth of P. putida cells in the bead was written by the following equation:

∂Xs

∂t
= µXs. (13)

The initial condition for the growth of cells in the bead can be represented by

IC : Xs = X0, t = 0 (14)

where X0 is the initial condition of cells in the bead.
The mass balance of phenol and p-cresol in the bulk liquid phase and initial conditions

for phenol and p-cresol were given by:

dSb,P

dt
=

Q
Vε

(Sb0,P − Sb,P)− k f P(Sb,P − Ss,P)
3Xw

VερbR
, z = R (15)

dSb,C

dt
=

Q
Vε

(Sb0.C − Sb,C)− k f C(Sb,C − Ss,C)
3Xw

VερbR
, z = R (16)

IC1 : Sb,P = Sb0,P (17)

IC2 : Sb,C = Sb0,C. (18)

In the above equations, Sb,P and Sb,C are the concentration of phenol and p-cresol in
the bulk liquid (mg L−1), respectively, Sb0,P and Sb0,C are the concentrations of phenol
and p-cresol in the feed (mg L−1), kfP and kfC are the external mass transfer coefficients of
phenol and p-cresol (mg L−1), Ss,P and Ss,C are the concentrations of phenol and p-cresol at
the liquid/bead interface (mg L−1), Q is the influent flow rate (cm3 d−1), V is the working
volume of the reactor (cm3), ε is the porosity of the reactor, Xw is the weight of beads (g), ρb
is the density of the gel beads (g/cm3), and R is the radius of gel beads (cm).

3. Materials and Methods
3.1. Chemicals

Phenol and p-cresol (>99% purity) purchased from Merck, KGaA, Darmstadt, Ger-
many were of analytical grade in this study. One g of phenol and p-cresol, respectively, were
dissolved in 1.0 L distilled/deionized water (DIDW) to form the stock solutions. The de-
sired concentration containing phenol or p-cresol or phenol plus p-cresol was prepared by
using stock solutions. All stock solutions are stored at 4 ◦C prior to use.

3.2. Cell Cultivation for Immobilization

Pure culture of P. putida ATCC 17484 with high removal efficiency for phenol and
p-cresol biodegradation has been demonstrated [14,24,25]. P. putida ATCC 17484 grown
in mineral salt medium (MSM) [2,26] with 20 mg L−1 of phenol as the carbon source
was incubated and collected at the stationary phase. Then, the cells were centrifuged at
3000 rpm for 10 min. The phosphate buffer saline with pH 7.4 was used for washing cells.
Then, the washed cells were used as inoculum for biodegradation. The flasks contained
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100 mL MSM with varying initial concentrations of phenol, p-cresol, and phenol plus p-
cresol, respectively, from 50 to 600 mg L−1 were prepared to conduct the batch experiments.
The MSM was auto-claved at 121 ◦C for 15 min, and phenol as well as p-cresol were
sterilized by a membrane filter.

3.3. Entrapment of Cells in Ca-Alginate

Ten mL of centrifuged P. putida cells were mixed with 50 mL of sodium alginate of 2%
(w/v) to form the cell–alginate mixture [1]. Then, the cell–alginate mixture was dropped
into CaCl2 of 1% (w/v) to form gel beads with a diameter of 3 mm. The phosphate buffer
saline (PBS) was used to wash gel beads three times. Then, the gel beads were immersed in
3 g/L CaCl2 and stored at 4 ◦C for overnight to strengthen the gel formation [11].

3.4. Batch Experiments

The varying initial concentration (50–600 mg L−1) of phenol, p-cresol, and phenol plus
p-cresol with 200 mL MSM was conducted in batch mode, respectively. The bio-kinetic
parameters were estimated from those batch tests. The flasks were placed in the rotary
incubator at 30 ◦C and 150 rpm to observe the biodegradation of phenol, p-cresol, and
phenol plus p-cresol. Samples were taken from the flasks with a different time interval to
measure the concentrations of cells, phenol, and p-cresol.

3.5. Analysis of P. putida Cells, Phenol and p-Cresol

The optical density (OD) at 600 nm wavelength was used to represent the cell concen-
tration using a UV/vis spectrophotometer. Based on the calibration curve, the linear rela-
tionship between cells concentration (X) and OD600 was X (mg cell L−1) = 343.75 × OD600.
High-Performance Liquid Chromatograph (HPLC) (Alliance 2695, Waters Corp., Milford,
MA, USA) equipped with a UV/vis detector (Waters 2487, Waters Corp., Milford, MA,
USA) with an auto-sampler (Waters 2707, Waters Corp., Milford, MA, USA) was setup to an-
alyze the samples. A C18 column with a 150 × 3.9 mm size and packed with 5 µm particle
size was applied to analyze the residual phenol and p-cresol concentrations. The wave-
length was set at 254 nm in the UV/vis detector. The mobile phase containing potassium
phosphate and acetonitrile with a volume ratio of 70/30 was used to elute the samples.

3.6. Continuous-Flow Bioreactor

A schematic laboratory-scale completely mixed and continuous-flow bioreactor is
illustrated in Figure 2. The cylinder shape was composed of glass with an acrylic stand.
The shape of the system is cylinder made of glass with an acrylic stand. The bioreactor
body was 46.6 cm height and 10 cm diameter. The working volume was 1.568 L as the
liquid level was 30 cm. A hydraulic residence time (HRT) was 6 h when the influent flow
rate was controlled at 6.272 L d−1 in this study. The volume of gel beads was about 0.96 L,
which is approximately 40% of the effective volume. The dissolved oxygen was transported
by an air compressor with 1 L/min air flow rate. The circulating water bath was employed
to control the bioreactor temperature at 30 ± 0.1 ◦C using the water jacket. The inlet port
at the bottom of bioreactor was connected with a digital peristaltic pump using a silicone
tubing to provide a flow rate of 11.32 mL min−1. The influent feed contained phenol plus
p-cresol as binary substrates with MSM. The pH value was controlled at 7.0 ± 0.1 by adding
PBS in the influent feed.
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4. Results and Discussion
4.1. Biodegradation of Phenol or p-Cresol in Batch Experiments

Figure 3 plots the phenol biodegradation and cell growth with various initial phenol
(50–600 mg L−1) and cells concentration (7.68–8.73 mg cell L−1). The required time for
phenol complete degradation at all levels was about 24 h (Figure 3a). There was no
significant lag phase that occurred from 50 to 600 mg L of initial phenol concentration.
After 24 h, the cell growth reached a constant value ranging from 24.7 to 211 mg cell L−1

under different initial phenol concentration (Figure 3b). The time required for complete
phenol degradation by P. putida CCRC 14365 was in the range of 6–47 h as the initial phenol
concentration increased from 0.27 to 4.25 mM [27]. Kumar et al. [28] conducted a batch



Processes 2021, 9, 133 8 of 23

reactor to evaluate the phenol degradation by P. putida MTCC 1194. They reported that the
cells had the ability to degrade an initial phenol concentration of 1000 mg L−1 completely
in 162 h. Figure 4a illustrates the p-cresol degradation varying from 50 to 600 mg L−1.
It can be seen that the needed time for the complete biodegradation of p-cresol ranged from
24 to 52 h under varying initial p-cresol concentrations of 50–600 mg L−1. As illustrated
in Figure 4b, the lag phase of cells growth was obvious, and the lag time was about 8 h.
The time required to achieve a steady-state cell growth ranged from 24 to 52 h. The range
of final cell concentration was 21.3 to 176 mg cell L−1.
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P. putida cells: (a) p-cresol and (b) P. putida cells.

4.2. P. putida Cells Growth on Phenol or p-Cresol

Figure 5a plots ln(X/X0) versus time to determine the specific growth rate of the cell on
phenol. The specific growth rate on phenol was ranged from 0.0769 to 0.175 h−1. Figure 5b
illustrates the ln(X/X0) plotted with time at varying initial p-cresol concentration and
cell concentrations. The range of the specific growth rate on p-cresol was 0.0515–0.082 h−1.
As shown in Figures 6 and 7, it is noted that the P. putida cells had the maximum specific
growth rate as the initial phenol and p-cresol concentrations were approximately 220 and
140 mg L−1, respectively. The cells growth was inhibited when the initial phenol and
p-cresol concentrations were greater than 220 and 140 mg L−1, respectively. The batch
experimental data were fitted by Haldane’s kinetics to obtain the bio-kinetic values of µmax
Ks and Ki on phenol and p-cresol, respectively, by a non-linear least squares regression
method using the Excel software [27]. Haldane’s equations for phenol and p-cresol with
the best-fit bio-kinetic parameters were yielded as follows:

Phenol: µP =
0.45SP

221.4 + SP + S2
P/310.5

(19)
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P-cresol: µC =
0.185SC

65.1 + SC + S2
C/243.56

(20)

where µP and µC are the specific growth rates of P. putida cells on phenol and p-cresol, respec-
tively. The µmax, Ks, and Ki values for phenol were 0.45 h−1, 221.4, and 310.5 mg L−1, re-
spectively. The µmax, Ks, and Ki values for p-cresol were 0.185 h−1, 65.1, and 243.56 mg L−1,
respectively. The cells with a higher maximum specific growth rate utilized phenol more
faster than p-cresol. In addition, the larger Ks value on phenol resulted in a lower affinity
of cells to phenol. The higher Ki value on phenol (310.5 mg L−1) displayed that the cells
had a stronger resistance to phenol inhibition than to p-cresol (243.56 mg L−1). A higher
inhibition to cells growth by p-cresol than that by phenol was observed, as the initial con-
centration was over 200 mg L−1. The phenol biodegradation by P. putida shows the µmax
value for phenol (0.45 h−1) falling between 0.33 and 0.90 h−1 according to the literature
survey [29–31]. The Ki value for phenol obtained here (310.5 mg L−1) also falls within the
ranges of 54.1–669.0 mg L−1 [29–31]. The Ks value (221.4 mg L−1) for phenol obtained in
this study was close to that obtained from the study of Banerjee et al. [32]. The Ks value
obtained in their study was 190.8 mg L−1.
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mum specific growth rate (μmax) is 0.185 h−1, the p-cresol half-saturation constant is 65.1 mg/L, and 
the phenol inhibition constant is 243.56 mg/L. 

As plotted in Figures 8 and 9, the growth yield (Y) of cells on phenol and p-cresol was 
estimated from batch tests data using Equation (3), respectively. The calculated values of 
Y on phenol and p-cresol are listed in Table 1. The growth yields on phenol were in the 
range of 0.337–0.343 mg mg−1 under initial phenol concentrations ranging from 50 to 600 
mg L−1. The average growth yield on single phenol (YP) was 0.340 mg mg−1 and the stand-
ard deviation value was 2.116 × 10−3. The growth yield on single p-cresol (YC) varied from 
0.274 to 0.283 mg mg−1 to acquire a mean value of 0.279 as well as a standard deviation 
value of 2.769 × 10−3. Abuhamed et al. [33] carried out batch tests with various initial phe-
nol concentrations of 10–200 mg L−1. Their experiment results revealed that the Y value 
was 0.44 mg mg−1, which is greater than the Y value obtained in this study due to the lower 
initial phenol concentrations. 

Figure 6. Specific growth rate of cells varied with various initial phenol concentrations. Haldane
kinetics was fitted to the experimental data using the least-squares methodology. The maximum
specific growth rate (µmax) is 0.45 h−1, the phenol half-saturation constant is 221.4 mg/L, and the
phenol inhibition constant is 310.5 mg/L.
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Figure 7. The specific growth rate of cells varied with various initial p-cresol concentrations. Haldane
kinetics was fitted to the experimental data using the least-squares methodology. The maximum
specific growth rate (µmax) is 0.185 h−1, the p-cresol half-saturation constant is 65.1 mg/L, and the
phenol inhibition constant is 243.56 mg/L.

As plotted in Figures 8 and 9, the growth yield (Y) of cells on phenol and p-cresol was
estimated from batch tests data using Equation (3), respectively. The calculated values
of Y on phenol and p-cresol are listed in Table 1. The growth yields on phenol were in
the range of 0.337–0.343 mg mg−1 under initial phenol concentrations ranging from 50
to 600 mg L−1. The average growth yield on single phenol (YP) was 0.340 mg mg−1 and
the standard deviation value was 2.116 × 10−3. The growth yield on single p-cresol (YC)
varied from 0.274 to 0.283 mg mg−1 to acquire a mean value of 0.279 as well as a standard
deviation value of 2.769 × 10−3. Abuhamed et al. [33] carried out batch tests with various
initial phenol concentrations of 10–200 mg L−1. Their experiment results revealed that the
Y value was 0.44 mg mg−1, which is greater than the Y value obtained in this study due to
the lower initial phenol concentrations.
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Figure 8. Cont.
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Figure 8. Batch kinetic tests to determine growth yield on phenol: (a) 50, (b) 100, (c) 200, (d) 300, (e) 400, (f) 500, and (g)
600 mg/L.
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Table 1. Batch Tests to Evaluate Growth Yield (Y) under Various Initial Concentrations.

Run No. Initial Phenol
Concentration (mg L−1)

Initial p-Cresol
Concentration (mg L−1)

Bio-Kinetic Parameters

YP (mg mg−1) YC (mg mg−1)

1 50 50 0.340 0.274
2 100 100 0.338 0.278
3 200 200 0.343 0.278
4 300 300 0.342 0.280
5 400 400 0.340 0.283
6 500 500 0.337 0.280
7 600 600 0.339 0.280

mean - - 0.340 0.279
standard deviation - - 2.116 × 10−3 2.769 × 10−3
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4.3. Phenol Plus p-Cresol in Binary Substrates System

The biodegradation of phenol plus p-cresol and the growth of P. putida cells is illus-
trated in Figure 10. As plotted in Figure 10a, the time required for the complete removal
of phenol was 52–56 h for the initial phenol concentration ranging from 50 to 500 mg L−1.
However, the phenol removal was about 96.8% as the operating time was 56 h. As shown
in Figure 10b, the time needed to remove p-cresol completely was 48–56 h for the initial
p-cresol concentration between 50 and 500 mg L−1. At the operating time of 56 h, only
79.7% removal efficiency for p-cresol was attained.
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Figure 10. Batch experiments in the binary substrates system: (a) phenol biodegradation, (b) p-cresol
biodegradation, and (c) P. putida cells growth.

Seven batch experiments were carried out at 30 ◦C to determine the interaction
parameters of IC,P and IP,C using the non-linear least-squares regression method [27].
The cell growth in the binary system varied with time, which is plotted in Figure 10c.
The specific growth rates on binary phenol plus p-cresol ranged from 0.185 to 0.204 d−1

under different initial phenol and p-cresol contents. Figure 11 presents the specific growth
rate of the cell on phenol plus p-cresol. The bio-kinetic parameters of IC,P and IP,C were
determined by fitting experimental data to sum the model. The kinetic parameters (µm,
Ks, and Ki) in the equation are the same as those presented in the Haldane’s equations for
phenol and p-cresol biodegradation [34]. The best-fitted sum kinetic Equation (21) was
given as:

µ =
0.45SP

221.4 + SP + S2
P/65.1 + 4.8SC

+
0.185SC

65.1 + SC + S2
C/243.56 + 12.7SP

. (21)
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The values of IC,P and IP,C were 4.8 and 12.7, respectively, with a correlation coefficient 
(R2) of 0.989. 
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Figure 11. Kinetic best-fit of the specific growth rate of P. putida cells on the binary substrates of
phenol and p-cresol with a correlation coefficient R2 = 0.9894.
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The values of IC,P and IP,C were 4.8 and 12.7, respectively, with a correlation coefficient
(R2) of 0.989.

4.4. Mass Transfer Coefficients

Wakao and Smith [35] proposed a random pore model to determine the effective
diffusivity in gel beads. Furthermore, Korgel et al. [36] used the random pore model to
predict the galactose effective diffusivity in the entrapped cell system. Based on the random
pore model, the effective diffusivity (De) is described as

De = Ds(1 − βX)2 (22)

where Ds is the diffusion coefficient in gel beads (cm2 d−1); X is cell concentration (g L−1);
and β is the specific volume of cells (L g−1). The values of X and α are 0.496 g L−1

and 3.842 × 10−3 L g−1 using the proposed measurement methods of Ju and Ho [37].
The diffusion coefficient (Ds) of phenol and p-cresol in gel beads employed in a continuous
stirred-tank bioreactor is regarded as the same as that in water. The formula derived from
Wilke and Chang [38] was used to calculate the values of Ds for phenol and p-cresol, which
was 0.949 and 0.856 cm2 d−1, respectively. The effective diffusivity (De) of phenol and
p-cresol was 0.945 and 0.853 cm2 d−1, respectively. The following equation was applied to
estimate the mass transfer coefficient kf [39]

k f =
Sh·Ds

dp
(23)

where Sh is Sherwood number = {4 + 1.21(Re)2/3(Sc)2/3}1/2, Re is Reynolds number, and Sc
is Schmidt number. The value of Re for both phenol and p-cresol was 38.7. The value of Sc
for phenol and p-cresol was 724.7 and 803.4, respectively. The value of Sh for phenol and
p-cresol was 33.48 and 34.65, respectively. By substituting these values into Equation (23),
the mass transfer coefficient kf for phenol and p-cresol was 105.91 and 98.87 cm d−1,
respectively.

4.5. Biodegradation of Phenol and p-Cresol in Immobilized Cells

In order to validate the kinetic model system described above, phenol and p-cresol
concentrations in bulk liquid phase estimated by the kinetic model were compared with
the experimental results under 125 mg L−1 initial concentrations of phenol and p-cresol,
respectively, in the feed. Table 2 summarized the bio-kinetic and reactor parameters as
well as operating conditions applied in kinetic model simulation as reported earlier in the
various batch tests.

Figure 12 plots the model-predicted and experimental data of phenol and p-cresol
effluent concentrations against time. The effluent curve of phenol concentration consists
of three segments. During a half day, the phenol and p-cresol concentrations increased
sharply to 81.6 (0.653 Sb0,p) and 89.1 (0.713 Sb0,c) mg L−1. No significant biodegradation
of phenol and p-cresol was carried out during the half day. The phenol and p-cresol con-
centration curves were considered as the typical dilute-in curves, which is characteristic
of a continuous stirred-tank bioreactor, while the bioreactor was filled with only nutrient
media at the onset of the tests. The second segment of the phenol and p-cresol curves ran
from day 0.5 to day 7, when the curves started to deviate from the peak of the dilute-in
curves. The effluent concentrations of phenol and p-cresol leveled off and then decreased.
Obviously, the immobilized cell markedly degraded phenol and p-cresol during this pe-
riod, owing to the active growth of cells. The third segment of the phenol and p-cresol
concentration curves ran from day 7 day 29. During this period, the immobilized cells
system achieved a steady state, and the effluent concentration phenol and p-cresol was
approximately 2.95 (0.0236 Sb0,p) and 13.63 (0.109 Sb0,c) mg L−1, respectively. The removal
efficiency for phenol and p-cresol was 97.6% and 89.1%, respectively, under a steady-state
condition. The model simulations are in satisfactory agreement with the test results with a
correlation coefficient (R2) of 0.9392 for phenol and 0.9063 for p-cresol.
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Table 2. Summary of the Biokinetic and Reactor Parameters, as well as the Operation Conditions for the Model Simulation.

Symbol Parameters Description (Unit) Value Remarks

ε reactor porosity (dimensionless) 0.72 measured
A total surface area of gel beads (cm2) 3.522 × 104 calculated

DeP effective diffusivity of phenol in the gel bead (cm2 d−1) 0.945 calculated
DeC effective diffusivity of p-cresol in the gel bead (cm2 d−1) 0.853 calculated
kfP mass-transfer coefficient of phenol (cm d−1) 105.91 calculated
kfC mass-transfer coefficient of p-cresol (cm d−1) 98.87 calculated
Ki,P inhibition constant of phenol (mg L−1) 310.5 measured
Ki,C inhibition constant of p-cresol (mg L−1) 243.56 measured
Ks,P saturation constant of phenol (mg L−1) 221.4 measured
Ks,C saturation constant of p-cresol (mg L−1) 65.1 measured
IC,P inhibition of cell growth on phenol due to the presence of p-cresol (dimensionless) 4.8 measured
IP,C inhibition of cell growth on p-cresol due to the presence of phenol (dimensionless) 12.7 measured
Q influent flow rate (mL d−1) 6.272 × 103 measured

Sb0,P concentration of phenol in feed (mg L−1) 125.0 measured
Sb0,C concentration of p-cresol in feed (mg L−1) 125.0 measured

V effective working volume (mL) 1.568 × 103 measured
YP growth yield of cell on phenol (mg cell [mg phenol]−1) 0.340 measured
YC growth yield of cell on p-cresol (mg cell [mg p-cresol]−1) 0.279 measured

µmax,P maximum specific growth rate of cell on phenol (h−1) 0.45 measured
µmax,C maximum specific growth rate of cell on p-cresol (h−1) 0.185 measured
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Figure 12. Experimental results and model prediction in phenol and p-cresol effluent concentrations.

The batch bioreactors were performed by Yadzir et al. [40], who found that the encap-
sulated cells of Acinetobacter baumannii in the Ca-alginate beads had the ability to remove
phenol up to 2000 mg L−1 within 12 d. In their study, they also found that there was no
loss of Ca-alginate activity during five cycles of batch tests. Basak et al. [41] employed
sugarcane bagasse as a low-cost immobilization matrix for cells entrapment in the upflow
packed bed reactor to assess phenol degradation under different influent flow rates. The ex-
perimental results exhibited that the phenol removal efficiency reached up to 97%, while
the feed initial phenol concentration was 2400 mg L−1 and the flow rate was controlled at
4 mL min−1 within the operating times of 54 h. Furthermore, Dong et al. [42] combined a
zeolite imidazole framework (ZIF-8) with hydrochloric acid-modified SEP (CESEP) to form
a nanocomposite CESEP/ZIF-8 for P. putida immobilization, which provided adsorption
and biodegradation mechanisms for phenol removal. The experimental results exhibited
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that phenol at initial concentrations of 10 and 20 mg L−1 was effectively removed within
13 and 24 h as compared to 21 and 36 h for phenol removal by free P. putida alone.

4.6. Immobilized Cells Growth

Figure 13a presents the immobilized cells growth as a function of time by model
prediction. As can be seen, there is no the elapsed time required for immobilized cells to
start to grow. The model predicted that the immobilized cells vigorously grew to utilized
phenol at a transient-state period from 5 to 25 days. The growth of immobilized cells
reached up to a maximum value of around 32 mg L−1.
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4.7. Flux into Gel Bead 
Figure 13b plots the model-predicted fluxes of phenol and p-cresol that diffuses from 

the bulk liquid into the bead. Flux represents the phenol utilization by immobilized cells. 
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graded phenol and p-cresol in the bead—thus the difference between the concentrations 
of phenol and p-cresol in the bulk liquid and that at the bead/liquid interface increased, 
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4.7. Flux into Gel Bead

Figure 13b plots the model-predicted fluxes of phenol and p-cresol that diffuses
from the bulk liquid into the bead. Flux represents the phenol utilization by immobilized
cells. At the beginning of the experiment, the flux started at zero, and the immobilized
cell growth was negligible. The flux of the immobilized cells increased abruptly at a
logarithmic rate for the first four days. During this period, the immobilized cells vigorously
degraded phenol and p-cresol in the bead—thus the difference between the concentrations
of phenol and p-cresol in the bulk liquid and that at the bead/liquid interface increased,
significantly increasing the fluxes of phenol and p-cresol into the beads due to biological
activity. During days 4–29, the phenol and p-cresol concentrations in the effluent reached
a constant concentration in a steady-state condition. The fluxes of phenol and p-cresol
reached a maximal constant value, respectively, which was approximately 0.0220 and
0.0202 mg cm−2 d−1.

4.8. Phenol Concentration Profiles

The concentration variations of phenol and p-cresol along the liquid film and bead
phrase attained at 10, 20, and 29 days are illustrated in Figure 14. The concentration
profiles for phenol and p-cresol due to the diffusional resistance in the liquid film and
bead phases was determined by model prediction. It can be seen that phenol and p-cresol
concentrations decreased in the liquid film and bead phases when the operating time
increased. The continuous stirred-tank bioreactor achieved the steady state on day 10.
The entrapped cells concentration in the bead was about 16 mg L−1, and the cells actively
utilized phenol and p-cresol simultaneously for their growth. The concentrations of phenol
and p-cresol reduced promptly at 20 days around the center of bead. The values of phenol
and p-cresol concentration approached to around zero on day 29. At this operating time,
the fluxes of phenol and p-cresol remained a constant value, while a maximal value of the
growth of entrapped cells was achieved.
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5. Conclusions

The biodegradation kinetic model for the simultaneous removal of phenol and p-cresol
was validated by conducting a continuous stirred-tank bioreactor with immobilized cells in
Ca-alginate beads. Diffusion and biodegradation are two major mechanisms considered in
the model system. The model agreed with experimental data very well in the continuous-
flow reactor. Experimental results demonstrate that the immobilized cells process yields
the high biodegradation of phenol and p-cresol, which was 97.6% and 89.1%, respectively.
The fluxes of phenol and p-cresol that diffuse from the bulk liquid into the gel beads
increased rapidly, while the entrapped cells in beads grew firmly during the unsteady-state
period. The approaches of experiments and kinetic model presented in this study can be
applied to layout a pilot-scale or full-scale entrapped cells bioreactor for the simultaneous
biodegradation of phenol and p-cresol contaminants from various industrial wastewaters.
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