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Abstract: Industry 4.0 promotes manufacturing and process industry towards digitalization and
intellectualization. Edge computing can provide delay-sensitive services in industrial processes to
realize intelligent production. Lightweight virtualization technology is one of the key elements of
edge computing, which can implement resource management, orchestration, and isolation services
without considering heterogenous hardware. It has revolutionized software development and de-
ployment. The scope of this review paper is to present an in-depth analysis of two such technologies,
Container and Unikernel, for edge computing. We discuss and compare their applicability in terms
of migration, security, and orchestration for edge computing and industrial applications. We de-
scribe their performance indexes, evaluation methods and related findings. We then discuss their
applications in industrial processes. To promote further research, we present some open issues and
challenges to serve as a road map for both researchers and practitioners in the areas of Industry 4.0,
industrial process automation, and advanced computing.

Keywords: big data analytics; lightweight virtualization; cloud computing; edge computing; indus-
trial process; Industry 4.0; Internet of things; machine learning; process industry; fault diagnosis

1. Introduction

Industry 4.0 represents a new industrial revolution, enabling suppliers and manu-
facturers to leverage new technologies, i.e., Internet of Things (IoT), Big Data analytics,
Edge Computing, Cloud Computing, and Cyber-Physical Systems to improve various
processes ranging from wafer fabrication and electronic manufacturing to oil refinery
and pharmaceutical production [1]. It promotes the development of manufacturing to-
wards informatization, digitalization, and intellectualization. Edge computing and cloud
computing play an important role in realizing the vision that industry 4.0 promises. In
particular, edge computing can handle the data locally and provide delay-sensitive services.
Cloud computing can deal with large-scale aggregated data, e.g., data mining, training
of deep learning models, in different applications of industrial processes. Virtualization
technologies are key elements of edge computing and cloud computing.

Virtualization technologies have been in use for years. It makes large expensive
mainframes of computing easily shared among different user applications. It can enable
users to run multiple operating systems on a single physical server. In this physical server,
each operating system runs as a self-contained computer [2]. Virtualization is becoming
increasingly important in different scenarios (e.g., computing, storage, and networking). It
can improve system efficiency, reliability, and availability, reduce cost, and provide great
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flexibility to users. In order to be shared over diverse applications, the virtualization of
Information Technology (IT) infrastructure enables the consolidation and pooling of IT
resources. It abstracts physical computing resources logically, producing a computing envi-
ronment that is not limited by the configuration and architecture of physical hardware [3].
It is the creation and orchestration of small virtual computational chunks in the form of
an abstract computing platform. Virtualization technologies are widely used in cloud
computing [4,5], which can offer an efficient method to harness the cloud power by frag-
menting a cloud physical host into small manageable virtual portions [6]. They make cloud
computing services simple, convenient, and cost-effective. Hypervisor (e.g., VMware and
VirtualBox [7]) has been widely used in hardware virtualization of cloud computing. How-
ever, there are some problems, such as high resource overhead [8], long start-up time [9],
and large attack surface [10,11]. To overcome its disadvantages, lightweight virtualization
technology (e.g., Container and Unikernel) with fast deployment and high efficiency is now
applied to cloud computing and edge computing [12,13]. Docker container [14] is gaining
great attraction in the IT community, since it allows users to deploy applications in most
environments faster and more efficiently than using virtual machines (VMs). Container can
use only one kernel for multiple isolated environments or operation systems. Container-
based application virtualization is viewed as an appropriate isolation solution with less
overhead than VMs. Container has several advantages, e.g., rapid development, portability
across different machines, and simplified maintenance [14]. They solve the problems of
traditional VMs. As a result of their ease-of-use and performance enhancements, such
containers as Docker [15], OpenVZ [16], and Linux Container (LXC) [17], are being widely
adopted in industry, academia, and other scientific communities. Undoubtedly, Container-
based virtualization delivers a lightweight and efficient environment, but raises some
security concerns as it allows an isolated process to utilize an underlying host kernel [18].
Moreover, Docker container is not suitable for IoT applications with frequent interaction of
small data and resource-constrained IoT devices [19].

In order to solve the problems of VMs and the low security of Container in the
applications, Madhavapeddy et al. propose a lightweight virtualization technology called
Unikernel [20]. It has high level security, simplified architecture, and high efficiency. In
addition to its container features, it can take full advantage of the resource management and
isolation techniques of Hypervisor to provide high-level security. It can also be deployed
directly on bare metal hardware without any system dependencies, which is beneficial to
the application of an edge computing paradigm in IoT scenarios. Hence it promises to be
a virtualization technology beyond containers. Edge computing is an extension of cloud
computing at the edge network [21], and it promotes the IoT development. Lightweight
virtualization technology is a key to facilitating the realization of edge computing. This
paper focuses on the research and applications of lightweight virtualization technology,
Container and Unikernel, in edge computing. In Section 2, the research and applications
of Container for edge computing are summarized. The applicability of Unikernel for
edge computing are illustrated and the comparison between Container and Unikernel
is depicted in Section 3. We describe the evaluation metrics and results of lightweight
virtualization technologies in Section 4. The applications of Container and Unikernel
to industrial processes are discussed in Section 5. Open issues related to lightweight
virtualization technologies are analyzed in Section 6. The conclusion of this review paper
is concluded in Section 7.

2. Container for Edge Computing

Container-based virtualization can be considered as one of the lightweight alternatives
to Hypervisor-based virtualization. Traditional VMs has been applied for a decade in cloud
computing with resource virtualization and isolation. VMs are based on Hypervisor, which
operates at the hardware level and supports standalone VMs. In each VM instance, a full
operating system (OS) is installed on top of the virtualized hardware. Thus, the image files
of based on VMs are large and its overhead is non-negligible.
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Container avoids the virtualization of hardware and drivers [22]. It implements the
virtualization at the OS level. It shares the same OS kernel with the host machine, mak-
ing it possible to isolate standalone applications that own independent virtual network
interfaces, independent process space, and separate file systems. The shared kernel fea-
ture allows Container to run a higher density of virtualized instances with small image
volume on a single machine. Docker Container is popular and has achieved much more
practical use recently, which is a high-level platform. It introduces a container engine,
which allows easily one to build, run, manage, and remove containerized applications.
It has been widely used for deployment, live migration, orchestration, and isolation of
applications in edge computing. A large number of container applications are managed
by different orchestration tools and cluster managers such Google Borg, Docker Swarm
Manager, and Kubernetes [23]. To realize the resource management of edge nodes with
relatively low computing power, Park et al. [24] propose a method of dynamic container
layer replacement for a serverless architecture-based Function-as-a-Service, considering
a resource-limited environment on edge nodes. Its experimental results show that it can
improve boot-up latency by using their proposed method, and provide faster service than
container creation. The boot-up latency of the proposed method is lower than that required
to create the container. The smaller the size of the dynamic container, the much lower the
boot-up latency. Mendki [25] uses Docker container-based analytics services to process the
data locally in edge computing. Their feasibility is verified by setting up a deep learning
framework on Raspberry Pi for real-time analysis of surveillance video. Its performance
benchmarking shows that its overhead is negligible in terms of central processing unit
(CPU) processing compared with the bare metal deployment. Deploying the analytics
solution in Docker container can provide ease of service management and orchestration for
edge nodes. Anand et al. [26] use Docker container to deploy a practical, edge analytics
framework in resources-constrained heterogenous environments. It provides an agnostic
logical abstraction layer residing over existing hardware and software layers enabling ease
of orchestration. Through the framework and use case, it demonstrates how to employ
an edge analytics framework that integrates existing systems agnostically and seamlessly.
To solve the problems of live migration for offloading services in mobile edge computing
environment, Ma et al. [27] propose an edge computing platform architecture, which uses
Docker container to support seamless migration of offloading services. In contrast to the
state-of-the-art service handoff method in edge computing, the system yields 80 percent (56
percent) reduction in handoff time under 5 Mbps (20 Mbps) network bandwidth conditions.
In edge computing, virtualized resources can support and enhance service provisioning.
However, migration of edge-enabled services poses significant challenges in the edge com-
puting environment. Bellavista et al. [28] propose an edge computing platform architecture
that supports service migration through Docker Container among heterogeneous edge
devices. Their experimental results confirm that proactive migration can significantly
minimize the service downtime in the case of layered services, by imposing a very limited
overhead on the overall support infrastructure. Other studies [29–31] use Container for live
migration in a mobile edge computing environment, which can reduce the service down-
time to ensure the quality of services (QoS) for users. In terms of security concerns in edge
computing, Maurantonio et al. [32] discuss the security of Container in different application
scenarios, e.g., Augmented Reality, Smart Home, Smart Cities, E-health, and smart factories.
Container can leverage the flexibility given by the additional layers between application
images and hardware to provide seamless patching, and ease the need for updates. It is
less vulnerable to be attacked than Real Time Operating System (RTOS). Soltesz et al. [33]
provide insights into resource, security and isolation for avoiding crosstalk unwanted
snooping and fault propagation between containerized systems, although container usage
for provisioning security isolation may not seem favorable [34,35]. Table 1 summarizes the
studies of Container for different functions.
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Table 1. Studies of Container for different functions.

Reference Migration Orchestration Security Isolation Summary of Findings

Park et al., 2019 [24]
√

1© Realizing the resource
management of edge nodes;
2© Performing dynamic container

layer replacement;
3© Improving boot-up latency;
4© Providing faster services than

container creation.

Mendiki, 2019 [25]
√

1© Providing analytics services based
on Docker in edge computing;
2© Verifying a deep learning

framework on Raspberry Pi;
3© Docker’ overhead being negligible.

Anand et al., 2017 [26]
√ 1© Deploying an edge analytics based

on Docker;
2© Easing the services orchestration.

Ma et al., 2019 [27]
√

1© Proposing an edge computing
platform based on Docker to support
seamless migration of services;
2© Reducing handoff time.

Bellavista et al., 2019 [28]
√

1© Proposing an edge computing
platform based on Docker for
proactive migration;
2© Reducing the service downtime.

Elgazar and Harras,
2019 [29]; Maheshwari et al.,

2018 [30]; Dupont et al.,
2017 [31]

√ 1© Being suitable for live migration in
mobile edge computing;
2© Reducing service downtime.

Caprolu et al., 2019 [32]
√

1© Comparing the security among
Container, Unikernel, and RTOS;
2© Being less vulnerable to security

attacks than RTOS.

Soltesz et al., 2007 [33]
√ 1© Achieving security and isolation

between containerized systems.

Bernstein, 2014 [34]
√

1© Comparing security between
Container and VMs;
2© Presenting a cluster manager for

Docker Container.

Combe et al.,2016 [35]
√ 1© Being more flexible than VMs;

2© Being vulnerable to security attacks.

According to [27,28], resources, e.g., computing, storage, and networking ones, can be
virtualized by Container without regard to their heterogeneousness. Container is running
on OS and their images occupy some memory, and edge devices in IoT edge computing
have no OS, and are resource-constrained. They are suitable for edge computing but not for
IoT edge computing. Container can be utilized for image deployment, resource manage-
ment, and orchestration services, which only imposes little time to the systems. In addition,
Container directly shares the kernel with their host machines. They occupy fewer resources
and have lower virtualization overhead than VMs. Container-virtualization technologies
used in edge nodes with relatively rich resources produces an almost negligible impact
for edge computing systems’ overhead. In terms of security isolation, Container is able to
protect Container-specific information from unwanted leakage to some extent. However,
Container-based applications share the same system core, which challenges system security.
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In addition, Container has been applied in edge computing platforms. Next, we
present a review of the work concerning the combination of an edge computing platform
and Container. ParaDrop is a research project in Wisconsin Wireless and NetworkinG Sys-
tems (WiNGS) laboratory at the University of Wisconsin-Madison (Madison, WI, USA) [36].
It is suitable for IoT applications and uses Container (Docker) to isolate the operating
environment of different applications. A single edge server can run multiple tenant applica-
tions. All applications on the gateway are deployed and revoked by a cloud server. EdgeX
Foundry is founded by the Linux Foundation to create an interoperable, plug and play,
and modular IoT edge computing ecosystem. It is a standardized microservice framework
focusing on IoT applications, and its design meets the independence of hardware and OS.
All microservice applications in EdgeX Foundry can run in various operating systems in
the form of Container [37]. FocusStack [38] is developed to support the deployment of
complex applications to IoT devices. Container on edge devices supports its OpenStack
services, including virtual network access and application-based granularity configuration.
CloudPath [39] is an edge computing system to support the on-demand allocation and
dynamic deployment of a multi-level architecture. Its PathExecute module has a container
architecture and supports lightweight application functions. AirBox is a secure, lightweight
system with scalable edge functions. Its edge functions are deployed through system-level
containers [40]. Central office Re-architected as a Datacenter (CORD) is an open-source
project for network operators. It can reconstruct the existing network edge integration
implementation by using a software-defined-network (SDN), network function virtual-
ization (NFV), and cloud computing technology. OpenStack in CORD is used to manage
computing and storage resources, create and configure VMs, and provide an Infrastructure-
as-a-Service (IaaS) function. Docker as a Container engine uses Container technology to
instantiate services provided to users [41]. AKraino Edge Stack is an open-source project
for high-performance edge services, and provides an overall solution for edge infrastruc-
ture. It includes an application, middle, and infrastructure layers. The application layer
is dedicated to creating an ecosystem of virtual network function (VNF) to promote the
development of edge applications [42]. Azure IoT Edge is a fully hosted service built on the
Azure IoT center launched by Microsoft. Its IoT Edge modules run as Docker, which can
deploy Azure services, third-party services or custom code to IoT Edge nodes, which are
locally executed at the nodes [43]. OpenEdge [44] is an open-source edge computing system
developed by Baidu. It adopts modular and containerized design. KubeEdge [45] is an
open-source edge computing system that relies on container arrangement and scheduling
capabilities based on kubernetes to achieve cloud-edge collaboration.

After introducing the existing virtualization techniques of these edge computing
systems, we can conclude that Container, especially Docker, are widely used in edge
computing systems due to their rapid deployment and resource management services.
Yet some edge computing systems adopt the virtualization mode of combining VMs and
Container to manage the hardware resources and application services. Table 2 shows the
illustration of virtualization technologies used in an edge computing system.

Table 2. Illustration of Container used in edge computing platforms.

Platform Virtualization Technique Application Scenarios

ParaDrop [36] Container IoT
EdgeX Foundry [37] Container IoT

FocusStack [38] Container IoT
CloudPath [39] Container Mobile

AirBox [40] Container IoT
CORD [41] VM and Container No Limit

AKraino Edge Stack [42] VM and Container No Limit
Azure IoT Edge [43] Container No Limit

OpenEdge [44] Container No Limit
KubeEdge [45] Container No Limit
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Container can be utilized in edge nodes with relatively sufficient resources, e.g., edge
servers. It is not suitable for edge nodes without OS and enough resources, especially
for edge devices in IoT edge computing environment. In addition, security is another
vulnerability of Container. We demand other lightweight virtualization technologies
for edge computing. Unikernel to be discussed next, stands out as such lightweight
virtualization technology.

3. Unikernel for Edge Computing

Unikernel [46] is a single-purpose appliance that is specialized at compile time into
standalone kernel and sealed against modification after deployment. Additionally, it
provides increased security through a reduced attack surface and better performance by
reducing unnecessary components from the applications. It was designed initially for
cloud computing, but its small footprint and flexibility make it suitable for edge computing,
especially upcoming IoT edge computing. The attack surface of Unikernel is strictly
confined to the application embedded within. It does not include a uniform operating
system layer, and everything is directly compiled into the application layer. Therefore, each
Unikernel may have a different set of vulnerabilities, which implies that an attacker that
can penetrate one may not threaten to others. In addition, Unikernel is principally designed
to be stateless. Therefore, edge intelligent algorithms (e.g., compression, encryption, and
NFV) can be executed easily with it.

There are many research projects about Unikernel, mainly including MirageOS Uniker-
nel [47], IncludeOS [48], OSv Unikernel [49], ClickOS [50], and others [51–57]. Table 3
summarizes their characteristics, in terms of programming languages, supporting plat-
forms, characteristics, and application scenarios.

Due to its small image file size and high security, Unikernel has been under active
research and development since its inception in 2013, especially for edge computing. Ex-
pending it from cloud computing to edge computing, researchers focus on the issues related
to migration, orchestration, network, and isolation for edge computing. To enable service
migration in mobile edge environment, Ramirez et al. [58] develop a practical framework
for service management in vehicular networks. Docker and Unikernel are used as the
migration techniques for the migration of a Network Memory Server. Experimental results
show that the average migration time with Unikernel is less than one with Docker, and
Unikernel can support new applications and services in highly mobile environment. To
provide reliable network storage in highly mobile environments, Ezenwigbo et al. [59] ex-
plore how services can be migrated as users travel around. They use migration techniques,
e.g., Docker and Unikernl, to implement the migration of a simple Network Memory
Server. Their results show that the migration time based on Unikernel is less than other
virtualization technologies in proactive and reactive service migration scenarios.

In [60], a fog-enabled cellular vehicle-to-everything architecture is proposed, which
provides resources at core, edge and vehicle layers. This architecture enables the connection
of VMs, Container and Unikernel to form an Application-as-a-Service function chain, which
can efficiently manage and orchestrate all the underlying physical resources. In a cellular
Vehicle-to-everything (C-V2X) use case, the live migration and scaling functionalities are
evaluated, and the experimental results demonstrate that the proposed scheme maximizes
the accepted requests, without violating the applications’ service level agreement. To
support the composition and deployment of machine learning-based data analytics in
IoT devices, Zhao et al. [61] design a Zoo system to address these challenges. MirageOS,
a Unikernel technology, is utilized for the model deployment. Deploying Unikernel is
proved to be of low memory footprint, and thus quite suitable for resource-constrained
IoT devices.
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Table 3. Summary of different Unikernel based products.

Unikernel Programming Languages Supporting Platforms Characteristics Application Scenarios

MirageOS [47] OCaml
Xen,

FreeBSD,
POSIX

Supporting secure and high
performance network services.

Cloud computing,
edge computing

HalVM [51] Haskell Xen
Implementing advanced
lightweight VM on Xen

by developers.

Cloud computing,
edge computing

LING [52] Erlang Xen

Supporting for concurrency,
distribution, and fault tolerance;

High security and avoiding
most attacks.

Cloud computing

Clive [53] Go Xen, KVM Being designed for distributed and
cloud computing environments.

Cloud computing,
edge computing

ClickOS [50] C++ Xen
Building a multifunctional and

high performance software
middleware platform.

Network function
virtualization

IncludeOS [48] C++ KVM/VirtualBox Supporting for full virtualization. Cloud computing,
edge computing

Drawbridge [54] C Windows “picoprocess”

Combining picoprocess and library
operating system to improve the
performance of applications and

isolation security.

Desktop applications
on Windows

Runtime.js [55] Javascript Xen, KVM

Realizing the management of
low-level CPU and memory;
Running JavaScript using an

embedded V8 engine.

Cloud computing

OSv [49] Java, C, C++, Node.js
Xen, KVM,
VMware,

VirtualBox

Supporting a variety of
programming language;

Being compatible with existing
Java programs;

Being supported by
multiple hypervisors.

Cloud computing,
edge computing

Rumprun [56]
C, C++, Erlang, Go, Java,
Javascript, PHP, Bsash,

Pythons

Xen, KVM,
bare metal

Supporting from bare metal ARM
hardware to hypervisor;

Supporting applications written in
various languages.

Cloud computing,
edge computing

HermitCore [57] C, C ++, Fortran, Go Xen, KVM,
x86_64

Supporting to expand into
multi-core processor VM system;

Supporting limit scale computing.
Cloud computing

An orchestration framework is proposed to enable edge-cloud collaborative com-
puting for road context assessment [62]. Mirage OS Unikernel is utilized for developing
this orchestration platform due to its multiple advantages in terms of isolation, mem-
ory footprint and fine-grained function encapsulation. Experimental results illustrate the
Unikernel’s boot time is substantially lower than Amazon Firecracker microVM’s. In
addition, it is suitable for processing a small amount of information. To efficiently exploit
the resources of constrained edge devices through fine-grained computation offloading,
Fine-Grained edge offloading with Unikernels (FADES) is proposed [63]. It takes advantage
of MirageOS Unikernel to isolate and embed application logic in concise Xen-bootable
images. Its performance is evaluated under various hardware and network conditions.
The results show that FADES can effectively strike a balance between running complex
applications in the cloud and simple operations at the edge.

Valsamas et al. [64] propose an elastic content distribution platform, which serves
the Internet content using tiny Unikernel-based VMs. It provides a dynamic deployment
service at the edge. It is demonstrated that the proposed platform is valid. Virtualization
technologies are widely used in NFV. In [65], VMs, Container and Unikernel are utilized
to deploy virtualized network functions at the network edge. Their performances are
evaluated by deploying two services, i.e., Apache and Redis with them. Experimental
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results show that Unikernel has a small image size and very small memory consump-
tion. Moreover, Unikernel can eliminate the overhead of context switching, applications
with high context switching between user and kernel mode can outperform than other
two. Filipe et al. [66] also compare the use of two virtualization technologies, e.g., Con-
tainer and Unikernel, for virtual network function (VNF) instantiation in edge computing.
They develop a failure detection and recovery mechanism to ensure VNF reliability. The
experimental results show that the mechanism can ensure near zero downtime. In a
resource-scarce isolated environment, multiple virtualization techniques including VMs,
Container, Unikernel, and kata-containers are explored to deploy network functions [67].
The performance of NFV virtualization by deploying web services is analyzed. Exper-
imental results show that Unikernel is secure, lightweight and is suitable for running
applications requiring many interactions among various smart devices or smart objects.
Table 4 summarizes the studies of Unikernel for different functions.

Table 4. Studies of Unikernel for different functions.

Reference Migration Orchestration Network Security Isolation Summary of Findings

Ramirez et al., 2020 [58]
√

1© Enabling service migration by using
Unikernel in mobile edge environment;
2© Comparing the average migration

time between Docker and Unikernel.

Ezenwigbo et al., 2020 [59]
√

1© Using Docker and Unikernel to
implement the migration;
2© Requiring less migration time based

on Unikernel than other
virtualization technologies.

Sarrigiannis et al., 2020 [60]
√ √

1© Proposing a fog-enabled cellular
vehicle-to-everything architecture;
2© Using Unikernel to efficiently

manage and orchestrate all the
physical resources.

Zhao et al., 2018 [61]
√ √

1© Designing a Zoo system to
implement the deployment of machine
learning-based data analytics;
2© Using MigrageOS for

model deployment.

Cozzolino et al., 2020 [62]
√ √ 1© Using MigrageOS for

services orchestration.

Cozzolino et al., 2017 [63]
√ 1© Proposing FADES for

computation offloading;
2© Using MirageOS to isolate images.

Valsams et al., 2018 [64]
√

1© Proposing an elastic content
distribution platform;
2© Using Unikernel-based VMs to serve

Internet content.

Behravesh et al., 2019 [65]
√

1© Utilizing Unikernel to deploy
virtualized network functions;
2© Using it to eliminate the overhead of

context switching.

Filipe et al., 2019 [66]
√

1© Comparing the performance of VNF
between Container and Unikernel;
2© Developing a failure detection and

recovery mechanism.

Aggarwal and
Thangaraju,2020 [67]

√
1© Comparing the performance of NFV

among VMs, Container, and Unikernel.
2© Concluding that Unikernel is

suitable for running applications
demanding interaction among devices.

Caprolu et al., 2019 [32]
√

1© Comparing the security among
Container, Unikernel, and RTOS;
2© Concluding that Unikernel has the

high-level security.
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According to the above analysis and discussion, we conclude that Unikernel has a
smaller image size and very small memory consumption. It can be used for the migration
in a mobile edge computing environment, especially Vehicular Networks. It can quickly
respond to user requests. Since its image size is small, it can run on the edge devices with
highly limited resources. It can also reduce the attack surface that can help guarantee code
integrity and ease of updates, and keep high security isolation. Its OS overhead is negligible,
and it is suitable for running applications with high context switching, processing a small
amount of information.

VMs, Container and Unikernel virtualization technologies, are expected to co-exist for
cloud computing, edge computing and IoT edge computing. We can choose an appropriate
virtualization technology to meet different requirements. The three virtualization architec-
tures are shown in Figure 1. Table 5 summarizes their main characteristics the comparison
among VMs, Container and Unikernel.
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Table 5. Comparison among VM, Container and Unikernel.

Virtual Machine
• KVM
• QEMU

Container
• Docker
• Open VZ
• LXC

Unikernel
• MirageOS
• IncludeOS
• ClickOS
• OSv

Instantiation Time ~5/10 s ~800/100 ms ~<50 ms

Start-Up Time Slow Medium Fast

Image Size ~1000 MBs ~50 MBs ~<5 MBs

Memory Footprint ~100 MBs ~5 MBs ~8 MBs

Programming Language No No Yes

Hardware Portability High High Medium

Security High Medium High

Live Migration Support Yes Yes Requires manual implementation

Application Scenario Cloud computing Cloud computing,
Edge computing

Cloud computing, Edge
computing, IoT edge computing

Multitenancy Yes Yes Yes

4. Evaluation for Lightweight Virtualization Technologies

A number of metrics can be used to evaluate the performance of Lightweight Virtual-
ization technologies, e.g., CPU performance, memory performance, Disk Input/Output
(I/O) performance, and Network I/O performance.

Watada et al. [68] present a performance comparison between Container and Uniker-
nel. They use some standard benchmarks called Sysbench (CPU performance); Iperf (for
checking network bandwidth) and STREAM (measuring sustained bandwidth of entire
cache hierarchy). Their experimental evaluation is done by using HP-Blade server with
64-bit Ubuntu 16:04. They choose tiny OSv and Rumprun VMs on top of Xen and kvm as
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unikernels. The CPU performance for lightweight virtualization technologies (e.g., Docker,
LXC/LXD, OSv, and Rumprun) are tested by Sysbench. Their experimental results show
that CPU performance of Docker is near that of the native system for a single instance, but
performance significantly drops down for multiple instances. OSv and Rumprun reveal
the worse performance than other containers. Their network performances are evaluated
by iperf. They have tested them via two instances (one acting as server and the others as
client). Their experimental results show Docker container and OSv are promising. In terms
of memory performance, Rumprun offers the better performance than others. In [65], the
performance of Container and Unikernel are also evaluated, including image size, memory
utilization, CPU utilization, the time serving each request, and transfer rate. Experimental
verification is done by using Intel Next Unit of Computing (NUC) device equipped with
a Kingston SODIMM DDR4 RAM with 16 GB capacity and Intel(R) Core (TM) i7-7567U
CPU with 3.5 GHz clock rate. Ubuntu 18.04.1 LTS is utilized as the host OS (64-bit Ubuntu
16:04) for all the platforms. Docker container engine (version18.06.1-ce) is installed for
running containers on the system. The experiment has two instances, i.e., Apache Hyper
Text Transport Protocols (HTTP) server and Redis. Experimental results [65] show the
image size of Rumprun unikenels for both services are significantly lower than Docker
container. This is because unikernels only contain the dependencies required to run the
application. Additionally, the memory usage of containers is much less than Rumprun
unikernels. The main reason is that containers can have the efficient and dynamic usage
of memory. However, Rumprun unikernels have the fixed size memory allocation. In
the idle mode, the CPU utilization of the services based on Container and Unikernel is
very low. It increases drastically, when more and more service requests arrive and the
corresponding services are performed. This is especially true for Rumprun unikernels aas
caused by their poor process management. By evaluating the transfer rate of the service,
Rumprun performs poorly and has a lower transfer rate than containers.

In another study [67], the performances of Container and Unikernel are evaluated in
terms of the image size, boot time, memory utilization and CPU utilization. Its system
comprises of a Xen server with DDR4 4 GB RAM and 10 GB storage capacity. Ubuntu 18.04
LTS is used as the host OS for all platforms. Unikernel uses QEMU, and Docker engine
(version 18.09.5) is installed for running docker containers. The Apache Benchmarking tool
is installed on the host operating system to send requests and analyze their performances.
The experimental results and findings of [67] are similar to those of [65].

In summary, Container has satisfactory performances in almost all aspects on servers
with rich resources. It provides near real-time and good resource utilization, and its
overheads are negligible. Its image size is bigger than Unikernel’s, and it is not free from an
issue regarding isolation and security. From the perspective of its maturity and performance
evaluation, Container is highly suitable for edge servers with sufficient resources in edge
computing. Unikernel offers promising features such as significantly reduced memory
footprint, fast booting, high-level security, efficient resource utilization, and many more.
Unikernel offers important advantages for those cases with many IoT devices and especially
fit to IoT edge computing whose nodes have highly limited processing power and storage
facilities. It is not suitable for processing the services with large volumes of data. However,
to achieve the desired technical maturity, much work remains to be done, including
microprocessor stability, process management, and persistent storage.

5. Applications to Industrial Processes

With the development of artificial intelligence, IoT, digital twin [69], and parallel
intelligence [70], the manufacturing industry is moving towards the goal of smart manufac-
turing. A number of edge computing frameworks or applications based on virtualization
technologies are deployed to different industrial processes, e.g., semiconductor manufac-
turing [71], robotic assistance for emergency management [72], explosion prevention in
mining industry [73], maintenance management [74,75], Fabric defect detection for textile
production [76], oil and gas production [26,77], spectroscopic inspection for olive [78], and
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Augmented Reality for shipbuilding [79]. In this section, we focus on illustrating equip-
ment fault diagnosis and computation of scheduling tasks. Additionally, we depict the
reasons for adopting a specific lightweight virtualization technology for this application.

5.1. Fault Diagnosis Processes

Fault diagnosis in industry can improve the production efficiency, and reduce equip-
ment maintenance cost. Machine learning (ML) has been applied to fault diagnosis [80,81].
Figure 2 is a data-driven and edge-cloud collaboration-based fault diagnosis system for
an industrial process (semiconductor manufacturing). It includes three tiers, i.e., edge
devices, edge servers, and cloud data centers layers. The models of fault diagnosis are
deployed to edge servers by Container and Unikernel. Thus, it can reduce the delay time
of fault detection by edge computing. In this system, models are trained in cloud data
centers rich with resources, and the processes of inferring faults are executed in edge
servers. Additionally, the unidentified fault data can be transmitted to the cloud data
center for updating models, and then updating the corresponding models in edge servers.
In edge nodes and servers, we need to install Docker container environment, and then
Docker-based model image can be deployed and executed quickly. It greatly facilitates the
deployments and execution of applications. Unikernel can also be used to deploy models
to edge nodes with limited resources, and it has high security isolation.
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In our experiment [81], the Tennessee Eastman dataset is used, which contains 52 pro-
cess variables and 21 process faults. Firstly, we use a dimensionality reduction algorithm
called fisher discriminant analysis (FDA) to extract fault features. Then, an ensemble
learning method called AdaBoost is utilized for classifying faults. We build the image files
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based on Container and Unikernel for fault diagnosis, and then deploy them to Raspberry
Pi 3B+. Experimental results show that Unikernel image only occupies 81 MB, thus only
11.86% of Docker’s 683 MB.

It only takes 24.003 s to package the Python file into Unikernel image and execute
the program, thereby requiring 68.6% of Docker’s 35.022 s. Thus, Unikernel has some
advantages over Container, especially for edge devices with constrained resources.

5.2. Oil Extraction Process

An oil extraction process in the Oil and Gas industry is a fault-sensitive process. It
requires high reliability and extra safety measures to protect the surrounding environment.
Thus, efficient and environment-friendly oil extraction is a challenging operation. To
overcome these challenges and protect the environment from pollution, one needs to
build smart oil fields with many devices (e.g., sensors and actuators) for achieving clean
oil and gas extraction. Cloud data center can handle the generated data by devices, but
impose high latency, which cannot for detecting oil spill anomalies [82], and analyzing a
large amount of data to predict the oil spill spread direction and quantity [83]. Figure 3
is the system architecture of collaborative edge computing for environment-friendly oil
extraction, where an edge scheduler-based an edge device in every oil extraction site is
demonstrated. The system includes three tiers, i.e., IoT, edge nodes, and cloud data center
layers. IoT devices, including physical sensors of smart oil fields, takes physical quantities.
Edge nodes are located locally for processing data. Containers satisfy latency-sensitive
operational requirements. Instead, edge computing can provide delay-sensitive services,
due to its ability to process data locally. Thus, edge computing systems are utilized to
each rig of smart oil fields. To overcome the limited resources of single oil rig and rapid
deployment of edge computing systems, it is necessary to build a collaborative edge
computing platform with nearby oil rigs at the edge, thus sharing computing resources
among each other [77].
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In this scenario, the computation tasks of each rig can offload to nearby edge nodes
(rigs). In this system, edge machines own limited storage, computing, and networking
resources, which are placed on the platform of oil rig. They process different tasks, e.g., im-
age processing, are used, which makes the migration and deployment of applications easy.
To verify the system model, Minimum Expected completion Time (MECT) [84], Success
with Computational Certainty (SCC) heuristics, and Highest Probability of Success [77] are
adopted to evaluate the resulting system. Experimental results show that they can greatly
reduce improve task deadline miss rate.

6. Open Issues and Challenges

In this section, we discuss the technical challenges research issues for Container and
Unikernel. To promote the development in industrial applications, we must focus on the
following issues of Container to achieve its convenience, faster and easier deployment, and
greater elasticity.

(1) Weaker isolation. The existing Container isolation mechanism [68] is much weaker
than that of Unikernel. It shares one kernel for multiple isolated environments,
thus facing the risk to collapse the entire containerized environment. To solve the
security problems of Container, several methods can be explored, including using
trusted images, managing container secret, securing the runtime environment, and
vulnerability scanning [68].

(2) Lack of tools and support. To realize the large-scale application of containers, the con-
tainer monitoring and managing tools are needed. However, we have only Container
orchestrators, like Kubernetes. More container management orchestrators need to be
researched and developed to support the management of different containers

(3) Generalization for all services. Container is suitable for microservices and it does not
well support monolithic architecture. For a monolithic architecture, Container only
provides simplified a delivery mechanism by offering easy packaging technologies.

(4) Data storage. Container is not suitable for storing permanent data, i.e., data collected
for IoT sensors. It is risky to storage significant data on edge nodes due to both the
volatile environment of edge nodes and the security risks of containers. Therefore,
important data need to be stored in centralized nodes or cloud datacenters and
retrieved on demand. This may reduce the feasibility of lightweight virtualization-
based edge computing in some highly data-intensive applications. To address the
situation, we should improve the Data Volumes of Container, which are needed to be
implemented in more seamless way.

Although Unikernel has many advantages, e.g., faster booting, small size, and high
security, it has the following problems and challenges.

(1) Unikernel’s usability. Unikernel does not have a shell and not support online debug-
ging. If Unikernel fails, we can only reboot it. It does not support online upgrades
and updates either. If the application and configuration need to be updated, the
user needs to recompile the source code to produce a new Unikernel and deploy a
new version, which can be very costly and sometimes prohibitive. We can build a
mechanism similar to Docker container’s to realize the remote deployment, update,
and upgrading of Unikernel.

(2) Security. Unikernel’s security is guaranteed by the isolation provided by the underly-
ing operating system or Hypervisor, and it is more secure than Container. However, it
is just a process in application space, and thus it is vulnerable to various traditional at-
tacks. Process management needs to be improved for promoting Unikernel’s security.
Blockchain technologies [85] can be considered.

(3) High development cost of Unikernel based on library operating system(LibOS). LibOS
is the core technology of Unikernel. When developing it, we should consider not
only specific application requirements and programming languages, but also the
association and boundary among the underlying operating systems. To solve this
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problem, we can build a platform adaption layer, which can resolve the dependencies
of LibOS on the underlying host operating systems, and improve its compatibility.

(4) Construction and deployment. There are no mature compilation tools for Unikernel,
and there are certain technical barriers to build and deploy Unikernel. It is very
inconvenient that different unikernels need to build and generate a matching tool
chain, and configure the corresponding development environment. So we can build
comprehensive and easy-to-use tools for quickly compiling application into Unikernel,
like Unik [86] to facilitate more applications, e.g., [87–97].

7. Conclusions

In this paper, we have summarized lightweight virtualization technologies in edge
computing, and compared the characteristics of Container and Unikernel to indicate what
edge computing scenarios they fit. According to their performance evaluation results,
we have discussed which lightweight virtualization technologies fit to what application
scenarios. We have presented their possible applications in some industrial processes in
which lightweight virtualization technologies are required. Finally, we have discussed
some technical challenges and open issues for future research in this area. We hope that
this review article can stimulate more researchers and engineers to apply recent edge
computing technologies to their various industrial processes and realize what industry 4.0
promises to bring.
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