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Abstract: Plasmin (Plm), a trypsin-like serine protease, is responsible for fibrinolysis pathway and
pathologic events, such as angiogenesis, tumor invasion, and metastasis, and alters the expression
of cytokines. A growing body of data indicates that a Plm inhibitor is a potential candidate as an
anti-inflammatory and anti-cancer agent. A class of active site-directed plasmin inhibitors containing
tranexamic acid residue has been designed. As evidenced by docking studies, the inhibitor binds to
the active site not to the lysine binding site (LBS) in plasmin, thus preventing plasmin from digesting
the substrate. Further optimization of the series, concerning both activity and selectivity, led to
the second generation of inhibitors. This review focuses on the Plm inhibitory activity-structure
relationship of Plm inhibitors with the goal of realizing their design and clinical application.
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1. Introduction

Plasmin (Plm), a trypsin-like serine protease, plays a critical role in the fibrinolysis
pathway, in which Plm removes intra- and extra-vascularly formed thrombi by degrading
fibrin clots. Under normal conditions, Plm circulates in the blood in its zymogen form,
plasminogen (Plg), which is a single-chain glycoprotein of 92 kDa [1]. The activation
process of Plg to Plm takes place on the surface of fibrin. The C-terminal area of fibrin
monomers that are rich in lysine residues facilitates binding to the lysine binding sites (LBS)
on the kringles domain of both Plg and tissue Plg activator (tPA) to form fibrin-Plg-tPA
complex, which promotes the Plg activation process to generate Plm, having two-chains
linked by disulfide bonds [1–5].

On the other hand, a growing consensus indicates that Plm participates in a number of
physical processes as well as its dominant role in fibrin cleavage. When Plg is activated by
urokinase Plg activator (uPA) on a cell surface, Plm facilitates degradation of the extracellu-
lar matrix (ECM) to induce tissue remodeling [6–8], cell inversion, and metastasis [9,10],
and other actions, including the activation of the matrix metalloproteases (MMPs). Plm can
also bind to a variety of cells, such as monocytes, induce processing of proinflammatory
cytokines, and alter the expression of cytokines [11,12]. In fact, we showed that Plm in-
hibitor, N-(trans-4-aminomethylcyclohexanecarbonyl: TXA)-L-Tyr (OPicolyl)-NH-octyl
(YO-2) [13], suppressed the growth of human tumor xenografts and reduced MMP-9-
dependent T-cell lymphoid tumor growth [14]. In order to study the precise role of Plm
under a disease state, development of selective Plm inhibitors is required. Plm inhibitors
may also be potential candidates not only as anti-fibrinolytic agents but also as anticancer
and anti-inflammatory agents.

2. Active Site (AS) and LBS-Directed Inhibitors

Today, in the clinical treatment of hyper-fibrinolysis-associated bleeding events,
two kinds of Plm inhibitors are applied: aprotinin [15] and lysine analogues, ε-aminocaproic
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acid (EACA) [16] and tranexamic acid (TXA) [17]. Aprotinin is a Kunitz-type serine pro-
tease inhibitor against Plm; however, its clinical use has been limited due to several side
effects. In contrast, EACA and TXA are widely used. The latter is 10-fold more potent
than the former, but high doses of TXA are still necessary (typical efficient doses in human:
1–1.5 g given 3–4 times per day). Recent Clinical Randomisation of an Antifibrinolytic in
Significant Haemorrhage (CRASH)-2 trials demonstrated that the survival was increased
by administration of TXA to a large number of patients with traumatic bleeding [18].

Both inhibitors were discovered by Okamoto et al. from the 1950s to the 1960s. The two
agents are surrogates of the amino acid, lysine, and bind to the lysine binding site (LBS) on
the kringle domains of Plg, but not to the active site (AS) of Plm. Fibrinolysis is effectively
suppressed, as seen in enzyme assays using TXA (IC50 = 50 µM), while fibrinogenolysis
and amidolysis are hardly suppressed (IC50 = 10 mM and Ki = 40 mM, respectively) [19].
This means that, despite the presence of TXA, AS is capable of degrading both fibrinogen
and a small substrate. The alternative class of Plm inhibitors, which block the digestion of
fibrinogen and a small substrate, may also be required in the clinic. Thus, we have focused
on the design of AS-directed Plm inhibitors with the objective of obtaining potent and
selective inhibitors to prevent not only fibrinolysis but also amidolysis and fibrinogenolysis.

In this review, development of Plm inhibitors, YO-2 and its derivatives, are described.
They showed the Plm inhibitory activity against a chromogenic substrate, demonstrating
that they interacted to AS not LBS, in spite of having a TXA moiety in the molecule.
Other than YO-2 derivatives, cyclohexane-based inhibitors [20,21], CU2010 [22] and its
macrocyclic analogues [23,24], nitrile warheaded inhibitors [25,26], peptide aldehyde-based
inhibitors [27], etc., are known as AS-directed Plm inhibitors. This review highlights not
only functional but also structural aspects of the YO-related compounds.

3. Design and Synthesis of Substrate-Based Inhibitors

In order to design novel Plm inhibitors, we focused on the structure of the chromogenic
substrate, H-D-Ile-Phe-Lys-pNA (1) [28]. We have reported that 1 mildly inhibits Plm
fibrinolytic activity (IC50 = 180 µM), although 1 itself is a good substrate for Plm (Km = 20
µM). First of all, we prepared H-Lys-pNA derivatives with substitution at the N-terminus
of the Lys residue and screened Plm inhibition; the results are summarized in Table 1 [28].
Interestingly, Tos-Lys-pNA (3) was not cleaved by Plm, but did inhibit amidolytic activity
(IC50 = 700 µM against S-2251) as well as fibrinolytic activity (IC50 = 780 µM). For the
purpose of obtaining lysine derivatives that are not susceptible to Plm, we replaced the p-
nitroanilide group with more hydrophobic amides such as 4-benzylpiperidineamide (BPP),
4-benzoylanilide (BZA), or 4-acethylanilide (ACA). Their effects on Plm are summarized in
Table 2 [28]; replacement increased the Plm inhibition not only of amidolytic activity by
some 3- to 5-fold but also of fibrinolytic activity by some 5-fold.

Table 1. Plasmin (Plm) inhibitory activity of compounds 1–3 [28].

Comp. IC50 (µM)

S-2251 Fibrin

1
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Table 1. Cont.

Comp. IC50 (µM)

S-2251 Fibrin

3

Processes 2021, 9, 329 3 of 14 
 

 

Table 1. Plasmin (Plm) inhibitory activity of compounds 1–3 [28]. 

Comp.  IC50 (microM) 
  S-2251 Fibrin 

1 

 

(Km = 20 M)  180 

2 

 

(Km = 200 M)  250 

3 

 

700 780 

S-2251: H-D-Val-Leu-Lys-pNA. 

  

700 780

S-2251: H-D-Val-Leu-Lys-pNA.

Table 2. Plm inhibitory activity of compounds 4–10 [28].

Comp. IC50 (µM)

S-2251 Fibrin

4

Processes 2021, 9, 329 4 of 14 
 

 

Table 2. Plm inhibitory activity of compounds 4–10 [28]. 

Comp.  IC50 (microM) 
  S-2251 Fibrin 

4 

 

300 150 

5 

 

210 100 

6 

 

3,000 2,100 

7 

 

140 150 

8 

 

>100 >25 

9 

 

69 180 

 
10 

 

210 250 

S-2251: H-D-Val-Leu-Lys-pNA. 

Tos-Lys-BZA (7: IC50 = 140 and 150 μM for S-2251 and fibrin, respectively) hydrolyzed 
a small chromogenic substrate, S-2251, more strongly compared with TXA (IC50 = 75,000 
and 60 μM for S-2251 and fibrin, respectively), demonstrating that 7 was an AS-directed 
Plm inhibitor rather than an LBS-directed inhibitor. 

  

300 150

5

Processes 2021, 9, 329 4 of 14 
 

 

Table 2. Plm inhibitory activity of compounds 4–10 [28]. 

Comp.  IC50 (microM) 
  S-2251 Fibrin 

4 

 

300 150 

5 

 

210 100 

6 

 

3,000 2,100 

7 

 

140 150 

8 

 

>100 >25 

9 

 

69 180 

 
10 

 

210 250 

S-2251: H-D-Val-Leu-Lys-pNA. 

Tos-Lys-BZA (7: IC50 = 140 and 150 μM for S-2251 and fibrin, respectively) hydrolyzed 
a small chromogenic substrate, S-2251, more strongly compared with TXA (IC50 = 75,000 
and 60 μM for S-2251 and fibrin, respectively), demonstrating that 7 was an AS-directed 
Plm inhibitor rather than an LBS-directed inhibitor. 

  

210 100

6

Processes 2021, 9, 329 4 of 14 
 

 

Table 2. Plm inhibitory activity of compounds 4–10 [28]. 

Comp.  IC50 (microM) 
  S-2251 Fibrin 

4 

 

300 150 

5 

 

210 100 

6 

 

3,000 2,100 

7 

 

140 150 

8 

 

>100 >25 

9 

 

69 180 

 
10 

 

210 250 

S-2251: H-D-Val-Leu-Lys-pNA. 

Tos-Lys-BZA (7: IC50 = 140 and 150 μM for S-2251 and fibrin, respectively) hydrolyzed 
a small chromogenic substrate, S-2251, more strongly compared with TXA (IC50 = 75,000 
and 60 μM for S-2251 and fibrin, respectively), demonstrating that 7 was an AS-directed 
Plm inhibitor rather than an LBS-directed inhibitor. 

  

3,000 2,100

7

Processes 2021, 9, 329 4 of 14 
 

 

Table 2. Plm inhibitory activity of compounds 4–10 [28]. 

Comp.  IC50 (microM) 
  S-2251 Fibrin 

4 

 

300 150 

5 

 

210 100 

6 

 

3,000 2,100 

7 

 

140 150 

8 

 

>100 >25 

9 

 

69 180 

 
10 

 

210 250 

S-2251: H-D-Val-Leu-Lys-pNA. 

Tos-Lys-BZA (7: IC50 = 140 and 150 μM for S-2251 and fibrin, respectively) hydrolyzed 
a small chromogenic substrate, S-2251, more strongly compared with TXA (IC50 = 75,000 
and 60 μM for S-2251 and fibrin, respectively), demonstrating that 7 was an AS-directed 
Plm inhibitor rather than an LBS-directed inhibitor. 

  

140 150

8

Processes 2021, 9, 329 4 of 14 
 

 

Table 2. Plm inhibitory activity of compounds 4–10 [28]. 

Comp.  IC50 (microM) 
  S-2251 Fibrin 

4 

 

300 150 

5 

 

210 100 

6 

 

3,000 2,100 

7 

 

140 150 

8 

 

>100 >25 

9 

 

69 180 

 
10 

 

210 250 

S-2251: H-D-Val-Leu-Lys-pNA. 

Tos-Lys-BZA (7: IC50 = 140 and 150 μM for S-2251 and fibrin, respectively) hydrolyzed 
a small chromogenic substrate, S-2251, more strongly compared with TXA (IC50 = 75,000 
and 60 μM for S-2251 and fibrin, respectively), demonstrating that 7 was an AS-directed 
Plm inhibitor rather than an LBS-directed inhibitor. 

  

>100 >25

9

Processes 2021, 9, 329 4 of 14 
 

 

Table 2. Plm inhibitory activity of compounds 4–10 [28]. 

Comp.  IC50 (microM) 
  S-2251 Fibrin 

4 

 

300 150 

5 

 

210 100 

6 

 

3,000 2,100 

7 

 

140 150 

8 

 

>100 >25 

9 

 

69 180 

 
10 

 

210 250 

S-2251: H-D-Val-Leu-Lys-pNA. 

Tos-Lys-BZA (7: IC50 = 140 and 150 μM for S-2251 and fibrin, respectively) hydrolyzed 
a small chromogenic substrate, S-2251, more strongly compared with TXA (IC50 = 75,000 
and 60 μM for S-2251 and fibrin, respectively), demonstrating that 7 was an AS-directed 
Plm inhibitor rather than an LBS-directed inhibitor. 

  

69 180

10

Processes 2021, 9, 329 4 of 14 
 

 

Table 2. Plm inhibitory activity of compounds 4–10 [28]. 

Comp.  IC50 (microM) 
  S-2251 Fibrin 

4 

 

300 150 

5 

 

210 100 

6 

 

3,000 2,100 

7 

 

140 150 

8 

 

>100 >25 

9 

 

69 180 

 
10 

 

210 250 

S-2251: H-D-Val-Leu-Lys-pNA. 

Tos-Lys-BZA (7: IC50 = 140 and 150 μM for S-2251 and fibrin, respectively) hydrolyzed 
a small chromogenic substrate, S-2251, more strongly compared with TXA (IC50 = 75,000 
and 60 μM for S-2251 and fibrin, respectively), demonstrating that 7 was an AS-directed 
Plm inhibitor rather than an LBS-directed inhibitor. 

  

210 250

S-2251: H-D-Val-Leu-Lys-pNA.

Tos-Lys-BZA (7: IC50 = 140 and 150 µM for S-2251 and fibrin, respectively) hydrolyzed
a small chromogenic substrate, S-2251, more strongly compared with TXA (IC50 = 75,000
and 60 µM for S-2251 and fibrin, respectively), demonstrating that 7 was an AS-directed
Plm inhibitor rather than an LBS-directed inhibitor.



Processes 2021, 9, 329 4 of 12

4. Substitution of P2, P1 and P1′ Residues
4.1. Incorporation of TXA

On referring to the structure of 7, each part of the Tos, Lys, and BZA moieties was
replaced with various moieties: Lys, EACA, TXA, and cis-4-aminocyclohexycarboxyric
acid instead of Tos (Table 3); D-Lys and ornithine instead of Lys (Table 4); and ACA,
4-benzoylphenyl ester, BPP instead of BZA (Table 5). In this series (Tables 3–5) [29], H-TXA-
Lys-BZA (13: IC50 = 15 and 6.1 µM for S-2251 and fibrin, respectively) and H-TXA-Lys-ACA
(17: IC50 = 39 and 9.3 µM for S-2251 and fibrin, respectively) exhibited strong Plm inhibition.
The main question that arises from this result is: which amino group (TXA or Lys in 13 and
17) interacts with Asp residue at the S1 site of Plm? To clarify this point, an amino group of
TXA and Lys in H-TXA-Lys-4-benzoylphenoxymethyl ketone (20: IC50 = 660 and 200 µM for
S-2251 and fibrin, respectively) molecule were individually masked by a benzyloxycarbonyl
(Cbz) to give Cbz-TXA-Lys-benzoylphenoxymethyl ketone (21) and H-TXA-Lys(Cbz)-
benzoylphenoxymethyl ketone (22) (Figure 1). The former derivative was significantly
less active than the parent molecule, while the latter derivative retained inhibitory activity
(IC50 = 200 and 60 µM for S-2251 and fibrin, respectively). Those findings [29] implied
that the free amine of TXA, not Lys, interacted with the Asp at the S1 site, and the new
series of Plm inhibitors, having a sequence of (P1-P1′-P2′), in which P1 was a TXA residue,
was proposed.

Table 3. Plm inhibitory activity of compounds 11–14 [29].

Comp. R: IC50 (µM)

S-2251 Fibrin
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4.2. Switch from Lys to Phe/Tyr

Starting from H-TXA-Lys-ACA (17), Lys and ACA moieties were converted to various
moieties; Phe and Tyr (2-BrZ) were used as an alternative to Lys and 4-carboxymethylanilide
and octylamide were used as an alternative to ACA. The structure-inhibitory activity
relationships are summarized in Table 6 [30]. H-TXA-Phe-ACA (23: IC50 = 36 and 21 µM
for S-2251 and fibrin, respectively) shows Plm inhibition corresponding to that of 17.
This means that the Lys residue is replaceable by a Phe residue. The enhanced inhibition
on compounds 24, 25, and 26 indicated that an additional phenyl ring of Bzl, Z, and Br-Z
may be acceptable at the S1’ site of Plm. In the new series, H-TXA-Tyr (2-BrZ)-ACA (26)
was the most potent Plm inhibitor; however, it inhibited not only Plm (IC50 = 0.23 µM for
S-2251), but also plasma kallikrein (PK: IC50 = 0.37 µM), uPA (IC50 = 43 µM), and thrombin
(Thr: IC50 = 63 µM).
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= 36 and 21 μM for S-2251 and fibrin, respectively) shows Plm inhibition corresponding 
to that of 17. This means that the Lys residue is replaceable by a Phe residue. The enhanced 
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Table 6. Inhibitory activity of compounds 23–26 [30] against various proteases.

Comp. R: IC50 (µM)

Plm PK uPA Thr

S-2251 Fibrin S-2302 S-2444 S-2238
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in enhanced inhibitory activity against Plm but reduced inhibition for PK and uPA 
(compounds 27–29: Table 7). Compounds 27–29, bearing unbranched alkylamides, 
strongly and selectively inhibited Plm, but compound 30, having a branched alkylamide, 
strongly inhibited Plm as well as PK. Furthermore, the introduction of an aromatic ring 
into the P2′ enhanced the PK inhibition rather than the Plm inhibition (compounds 31–34: 
Table 7), meaning that the bulkiness of S2′ sub-sites of Plm and PK was quite different. 
The above compounds had low solubility in an aqueous solution due to the hydrophobic 
property of the 2-BrZ moiety. To overcome this disadvantage, the 2-BrZ moiety was 
substituted with 4-methoxycarboylbenzl, 4-pyridylmethyl (Pic) and 4-
pyridineacethyloxycarbonyl to yield compounds 35–37 (see Table 8) [13]. All things 
considered, we decided to use compound 36 (YO-2) as a lead of Plm specific inhibitor; 36 
inhibited Plm (IC50 = 0.53 μM) but hardly affected PK (IC50 = 30 μM) and Thr (IC50 > 400 
μM). However, 36 also retained uPA inhibition (IC50 = 5.3 μM), meaning that 36 lost 
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4.3. Discovery of H-TXA-Tyr(OPic)-NH-Octyl (36, YO-2)

To improve selectivity for Plm, the ACA moiety was modified with branched and
unbranched alkylamides, p-alkylanilides, pyridineanilides, and pyridinealkylanilides [31].
As far as the P2’ substituent is concerned, increasing the alkyl chain length resulted in
enhanced inhibitory activity against Plm but reduced inhibition for PK and uPA (com-
pounds 27–29: Table 7). Compounds 27–29, bearing unbranched alkylamides, strongly
and selectively inhibited Plm, but compound 30, having a branched alkylamide, strongly
inhibited Plm as well as PK. Furthermore, the introduction of an aromatic ring into the P2′

enhanced the PK inhibition rather than the Plm inhibition (compounds 31–34: Table 7),
meaning that the bulkiness of S2′ sub-sites of Plm and PK was quite different. The above
compounds had low solubility in an aqueous solution due to the hydrophobic property
of the 2-BrZ moiety. To overcome this disadvantage, the 2-BrZ moiety was substituted
with 4-methoxycarboylbenzl, 4-pyridylmethyl (Pic) and 4-pyridineacethyloxycarbonyl
to yield compounds 35–37 (see Table 8) [13]. All things considered, we decided to use
compound 36 (YO-2) as a lead of Plm specific inhibitor; 36 inhibited Plm (IC50 = 0.53 µM)
but hardly affected PK (IC50 = 30 µM) and Thr (IC50 > 400 µM). However, 36 also retained
uPA inhibition (IC50 = 5.3 µM), meaning that 36 lost specificity (Plm/uPA) to a limited but
small degree.
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Table 7. Inhibitory activity of compounds 27–34 [31] against various proteases.

Comp. R: IC50 (µM)

Plm PK uPA Thr

S-2251 Fibrin S-2302 S-2444 S-2238
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5. Improvement of Specificity (Plm/uPA)

For the further development of specific inhibitors, docking experiments with the
µPlm-36 (YO-2) complexes were performed, and the results are as follows [32]: the TXA
moiety was located in the S1 site where its amino group formed polar interaction with
the carboxyl group of Asp; the Tyr(OPic) laid along the hydrophobic S2 wall and the
extra S2 site in an extend conformation; the octylamide moiety was oriented toward the
hydrophobic region in the S1′ pocket [32]. The docking positions suggested that 36 (YO-2)
with the µPlm acquired a tripod shape (P2-P1-P1′), in which polar interactions between
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the amino moiety of TXA and the side chain of Asp in the S1 pocket and with additional
hydrophobic contacts at the S2, extra S2, and S1′ pockets produced the high inhibitory
activity of 36 (YO-2).

A number of trypsin-like serine proteases have a common Asp residue in the bottom
of the S1 pocket; however, there are also other secondary sites located from the S2 to S3/S4
of the sub-sites. Structural differences at the secondary sites among those enzymes do
exist. In Plm, the secondary binding pocket, S2/S3, is widely open due to the absence
of the loop segment 95–100 (corresponding to the chymotrypsin-numbering). On the
other hand, in uPA, the size of S2/S4 is greatly reduced because of an insertion of the
loop segment 95–100, which obstructs both sites. Regarding the differences within the
secondary sites, S2/S3 sub-site, Saupe and Steinmetzer designed the macrocyclic CU2010
analogues, which occupies the larger binding groove apart from the primary binding pocket
to specifically inhibit Plm [23,24]. Similarly, extension of the hydrophobic substituents in
the Tyr residue of 36 may generate Plm specific inhibitors.

Based on the above concept, the P2 residues were explored [33]. All compounds
(38–41) having the hydrophobic extension on P2 residue inhibited Plm with IC50 values
in the µM range (0.22–0.75 µM), while inhibiting uPA more moderately (IC50 values 77
to >200 µM) (Table 9). Compound 39, containing an O-(quinolin-2-yl)methyl moiety,
exhibited the highest and most Plm selective inhibition (IC50 = 0.22 and 77 µM for Plm
and uPA.

Table 9. Inhibitory activity of compounds 38–41 [33] against various proteases.

Comp. R: IC50 (µM)

Plm uPA trypsin

S-2251 S-2444 S-2238
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S-2251: H-D-Val-Leu-Lys-pNA; S-2444: pyroGlu-Gly-Arg-pNA; S-2238: H-D-Phe-Pip-Arg-pNA.

Further, our docking studies with the µPlm-39 complexes revealed that 39 bound with
µPlm in a similar manner to 36 (YO-2): the TXA inserted into the bottom of the S1 site;
the quinoline ring lay on the hydrophobic region of the S2 and extra S2 groove; the octyl
residue contributed to the additional hydrophobic interactions [33].

6. X-ray Crystal Structures of 35 and 39 in the Complex with µPlm

The co-crystal structures of 39 in the complex with µPlm [34] revealed an unexpected
binding mode in which the TXA residue goes straight into the primary binding site (S1 site).
In addition, the double aromatic rings occupy other secondary binding sites (the S1′ and
S3′ sites) in particular to make extensive interactions at the S3′subsite where the pyridine
ring of the quinolin moiety takes a perfect face-to-edge CH- stacking with Phe587. A larger
P3′ residue would be acceptable by the S3′ site of Plm. Additionally, a number of different
possible binding forms between 39 and Lys607 are observed by the electron density map.
Surprisingly, the hydrophobic octyl residue has no interaction with the S2′ pocket; on the
contrary, it point away from the surface of the protease. Although 36 (YO-2) with µPlm
reveals a similar binding mode to 39 at the primary binding site, the pyridine ring of
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the picolyl moiety forms an imperfect face-to-face-stacking with Phe587 [34]. Compared
with amino acid sequence of Plm and uPA, first, Phe587 is replaced with Val181 in uPA
and, second, the equivalent position to Lys607 is Asp208 in uPA. Ruby et al. ague that
those replacements may interfere with the binding of 39 to reduce the uPA inhibitory
activity (Figure 2).
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39 (orange stick, pdb 5ugg) at the sub-site S1 to S1′, S2′, and S3′; (B) Picolyl and quinolinyl moieties extended from Tyr
side chain in the S3′ pocket; (C) Superimposition of the active sites of µPlm (white molecular surface, pdb 5ugd) and uPA
(magenta molecular surface, pdb 1fv9); (D) Close up view of the S3′ pockets; The quinoline moiety collides with both Tyr209
and Arg178 residues of at the S3′ site of uPA. *The numbers of amino acid residues correspond to full-length Plm or uPA.

7. Challenge for Application beyond TXA

The data that 36 suppresses matrix metalloproteinase 9-mediated cytokine release
to protect colitis in mice [35] and prevents macrophage activation syndrome in a murine
model [36] are discussed relative to the various functions of Plm. However, the biological
properties of 39 have not been determined.

Independently, Bristol-Myers Squibb (BMS) reported the discovery of compound
40 [37], which contains TXA and phenylalanine (Phe) residues, comparable to that of 36
and 39. The dual inhibition of Plm and FXa was shown for 40 (Ki = 8.4 and 0.0003 µM
for Plm and FXa, respectively) [37,38]. Based on the structure of 40, the development
of orally bioavailable FXIa inhibitors (41, 42) is progressing at BMS [39,40] (Figure 3).
Bayer AG investigated other analogues of Plm inhibitors containing both TXA and side-
chain extended Phe residues. For example, compound 43 elongated at the para position of
Phe and at the C-terminal heterocycle moiety and exhibited dual inhibition (IC50 = 0.32
and 3.5 nM for Plm and FXIa, respectively) [41] (Figure 4). Steinmetzer et al. discussed the
similar molecular alteration in their review [42]. Bayer AG derivatives are currently being
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evaluated for their pharmacokinetics and pharmacodynamics properties, and for safety for
eventual application in antithrombotic therapy.
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8. Conclusions

To seek active site-directed Plm inhibitors, substrate H-D-Ile-Phe-Lys-pNA (1) was en-
gineered into H-TXA-Tyr(OPic)-NH-Octyl (36, YO-2), which inhibited Plm (IC50 = 0.53 µM)
and uPA (IC50 = 5.3 µM), but only weakly inhibited PK (IC50 = 30µM) and Thr (IC50 > 400 µM).
Following various explorative studies, the TXA residue (as a primary contacting moiety)
and Tyr(OPic) residue (as a secondary contacting moiety) led to the development of 36. Con-
sidering the difference of the secondary binding site between Plm and uPA, 36 was further
engineered to H-TXA-Tyr[O-(quinolin-2-yl)methyl]-NH-Octyl (39), which showed similar
inhibitory activity to that of 36 with a significant improvement in selectivity (Plm/uPA)
by 35-fold. The crystal structures of 36 and 39 disclose that the TXA residue in both 36
and 39 interacts to the primary site, the S1 site, as well as to the secondary sites, S1′, S2′,
and S3′. Those crystal structures might provide comprehension for a rational approach to
developing new compounds.
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