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Abstract: The 2D P colonies is a version of the P colonies with a two-dimensional environment
designed for observing the behavior of the community of very simple agents living in the shared
environment. Each agent is equipped with a set of programs consisting of a small number of simple
rules. These programs allow the agent to act and move in the environment. The 2D P colonies have
been shown to be suitable for the simulations of various (not only) multi-agent systems, and natural
phenomena, like flash floods. The Grey wolf algorithm is the optimization-based algorithm inspired
by social dynamics found in packs of grey wolves and by their ability to create hierarchies, in which
every member has a clearly defined role, dynamically. In our previous papers, we extended the
2D P colony by the universal communication device, the blackboard. The blackboard allows for the
agents to share various information, e.g., their position or the information about their surroundings.
In this paper, we follow our previous research on the numerical 2D P colony with the blackboard.
We present the computer simulator of the numerical 2D P colony with the blackboard and the results
of the computer simulation, and we compare these results with the original algorithm.

Keywords: 2D P colonies; blackboard; Grey wolf optimization algorithm; data structures; algorithms;
P systems; simulation

1. Introduction

Membrane systems, P systems, (see [1,2]) are bio-inspired computational systems.
The inspiration is taken from living cell membranes, where the computation is provided by
letting an object from the environment pass through the membranes of the cell.

Many variants of the P systems were introduced during two decades of research in
the field of membrane computing. One of the variants of the P systems is the P colony
(see [3,4]). P colony consists of the very simple organisms, the agents, living in the shared
environment. The environment of the P colony is a multiset of objects, and each agent
is equipped by the set of programs allowing them to handle the objects. Each program
consists of rules allowing the agent to exchange one object from the environment for
another one inside the agent, or evolve the object inside of them into the other object.

The 2D P colony (see [5]) is a variant of P colonies. The main difference between P
colony and the 2D P colony is that the environment of the 2D P colony is given by a matrix,
where each cell of the matrix is represented by a multiset of objects. Besides the mentioned
rules, the agents of the 2D P colony can use also rules for moving between the cells of the
environmental matrix.

The P colonies and 2D P colonies were successfully applied in various fields of
computer science. In [6], the P colony was used as a robot controller. In [7], the successful
simulation of flash floods was provided by the 2D P colony.

The optimization problem is one of the main issues in computer science. There are
many approaches to solving the optimization problem. One of the approaches is repre-
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sented by the Grey wolf algorithm. The Grey wolf optimization algorithm (GWO) is a
meta-heuristic optimization technology. Its principle is to imitate the hunting process
of the pack of grey wolves in nature. There are four types of grey wolves used—alpha,
beta, delta, and omega—to simulate the hierarchy in the pack. In addition, the three main
steps of hunting, searching for prey, encircling prey, and attacking prey, are implemented.
The algorithm was introduced by Mirjalili et al. in 2014 in [8].

P systems were successfully used for solving optimization problems. Recently, T. Y.
Nishida designed membrane algorithms (see [9]) for solving NP-complete optimization
problems, namely the traveling salesman problem (see [10]). G. Zhang, J. Cheng and M.
Gheorghe proposed ACOPS, the combination of the P systems with ant colony optimization
for solving the traveling salesman problems (see [11]). In [12], the similarities between
the distributed evolutionary algorithms and membrane systems for solving continuous
optimization problems were studied.

The original model of the 2D P colony cannot successfully simulate the GWO; while the
agents are able to communicate only via the environment, they are not able to share their
positions, hence they are not able to form the desired hierarchy, and successfully hunt down
the prey. Moreover, the environment of the 2D P colony is a multiset of objects. In [13–15],
we introduced a numerical version of the 2D P colony equipped by the blackboard, where
the discrete values of the fitness function represents the environment. These modifications
of the 2D P colony were designed for the simulation of the Grey wolf algorithm. In this
paper, we present the computer simulator of the extended version of the 2D P colony,
and the results obtained during the simulations.

2. Numerical 2D P Colony with a Blackboard

Let us remind the formal definition of the numerical 2D P colony with a blackboard
first (see [13,14]).

Definition 1. A numerical 2D P colony with blackboard is a construct
Π = (V, e, Env, A1, . . . , Ak, BB, f ), k ≥ 1, where

• V is the alphabet of the colony. The elements of the alphabet are called objects. b are special
objects, that can contain an arbitrary number.

• e ∈ V is the basic environmental object of the numerical 2D P colony,
• Env is a triplet (m× n, wE, fE), where m× n, m, n ∈ N is the size of the environment. wE is

the initial contents of the environment, it is a matrix of size m× n of multisets of objects
over V − {e} ∪ { fE(x)}. fE is an environmental function. The environmental function
represents the optimization problem, hence the domain and range are given by the definition of
the problem.

• Ai, 1 ≤ i ≤ k, are the agents. Each agent is a construct Ai = (oi, Pi, [o, p]), 0 ≤ o ≤ m,
0 ≤ p ≤ n, where

– oi is a multiset over V, it determines the initial state (contents) of the agent, |oi| = 2,
– Pi =

{
pi,1, . . . , pi,li

}
, l ≥ 1, 1 ≤ i ≤ k is a finite set of programs, where each program

contains exactly 2 rules. Each rule is in the following form:

* a→ b, the evolution rule, a, b ∈ V,
* c↔ d, the communication rule, c, d ∈ V,
*

[
aq,r
]
→ s, aq,r ∈ V, 0 ≤ q, r ≤ 2, s ∈ {⇐,⇒,⇑,⇓}, the motion rule,

* a � x , x ∈ R, a, x ∈ V, is the communication rule to read the numbers from
the environment.

If the program contains evolution or communication rule r1, r2 that each works with ob-
jects with numbers, it can be extended by a condition: 〈x > y : r1, r2〉, 〈x ≥ y : r1, r2〉,

– [o, p], 0 ≤ o ≤ m, 0 ≤ p ≤ n, is an initial position of agent Ai in the 2D environment,

• BB is the blackboard—the blackboard is, in general, a matrix-like structure, which is accessible
for all the agents for storing and obtaining the information. The structure of the blackboard is
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given by the definition of the particular P colony. The communication between the blackboard
and agents is ensured by the functions Get and Update.

• f ∈ V is the final object of the colony.

A configuration of the numerical 2D P colony with the blackboard is given by the state
of the environment—matrix of type m× n with pairs—multiset of objects over V − {e},
and a number—as its elements, and by the states of all agents—pairs of objects from the
alphabet V, and the coordinates of the agents. An initial configuration is given by the
definition of the numerical 2D P colony with the blackboard.

The environment of the numerical 2D P colony is, in general, given by the matrix.
Each element of the matrix is represented by the multiset of objects over the alphabet
V − {e} and it also contains the value of the environmental function, a real number in
general. The values of the environmental function form the three-dimensional graph of
the function.

A computational step consists of three steps. In the first step, the set of the appli-
cable programs is determined according to the current configuration of the numerical
2D P colony with the blackboard. In the second step, one program from the set is chosen
for each agent, in such a way that there is no collision between the communication rules be-
longing to different programs. In the third step, chosen programs are executed, the values
of the environment and on the blackboard are updated. If more agents execute programs
to update the same part of the blackboard, only one agent is non-deterministically chosen
in order to update the information. The agent has no information if his attempt to update
the blackboard was successful or not.

A change of the configuration is triggered by the execution of programs, and updating
values by functions. It involves changing the state of the environment, contents and
placement of the agents.

A computation is non-deterministic and maximally parallel. The computation ends
by halting, when there is no agent that has an applicable program.

The result of the computation is the number of copies of the final object placed in the
environment at the end of the computation.

3. Grey Wolf Optimization Algorithm

Let us also recall basic features of the Grey wolf optimization algorithm (GWO)
(see [8,16]). The grey wolves create a social hierarchy in which every member has a clearly
defined role. Each wolf can fulfill one of the following roles:

• Alpha pair is the dominant pair and the pack follows their lead.
• Beta wolves support and respect the Alpha pair during its decisions.
• Delta wolves are subservient to Alpha and Beta wolves, follow their orders, and control

Omega wolves. Delta wolves divide into scouts—they observe the surrounding area
and warn the pack if necessary, sentinels—they protect the pack when endangered,
and caretakers—they provide aid to old and sick wolves.

• Omega wolves help to filter the aggression of the pack and frustrations by serving
as scapegoats.

The primary goal of the wolves is to find and hunt down prey in their environments.
The hunting technique can be divided into five steps:

1. Search for the prey
2. The exploitation of the prey
3. Encircling prey
4. The prey is surrounded
5. The attack

The GWO algorithm is inspired by this process and smooth transitions between
scouting and hunting phases. The prey represents the optimal solution to the given problem,
and the environment is represented by a mathematical fitness function that characterizes
this problem. The value of the function at the current position of the particular wolf
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represents the highest-quality prey. The wolf with the best value is ranked as Alpha, the
second one as Beta, third as Delta, and all the others are Omegas.

In the scouting phase, the pack extensively scouts its environment through many ran-
dom movements, so that the algorithm does not get stuck in a local extremum, while in the
hunting phase, the influence of random movements is slowly reduced and pack members
draw progressively closer to the discovered extremum.

4. The Analysis of the System

First, we provide a general analysis of the application. The use case diagram presented
in Figure 1 gives us a clear overview of the basic functions that are provided by the appli-
cation. The single-user application allows us to run the simulation of the GWO algorithm,
simulated by the 2D P colony based on the inputs given by the user.

Figure 1. The use case diagram of the application.

The inputs of the application are:

• the environment,
• GWO inputs,
• the rules of the agents.

The user (without the programmer’s knowledge) can edit each of the inputs.
The application provides the following user functionalities:

• simulation, including the information about the configuration of the agents and the
blackboard, and allows to follow each derivation step of each agent, and

• visualization of the simulation, a graphical representation of the environment,
blackboard, and the agents, visualization of the model behavior in each step.

The application provides the console output for a full overview of the information
about the status of the system during the simulation, and the graphical interface used for
the visualization of the simulation.

5. The Inputs of the Algorithm

The inputs of the algorithm are a crucial part of the application. The inputs must be in
the given structure; otherwise, the parser will not be able to parse and read the input data.
In the following sections, we will describe particular inputs, their parsing process, and we
will also give examples of the particular data.
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5.1. The Environment

In general, the environment of the 2D P colony is a matrix of multisets. For the purpose
of the simulation, we use matrix of integers only.

The representation of the environment is implemented as a matrix of size m × n.
The matrix is saved in the text file having the following structure:

• each element of the matrix is represented by a float number,
• the numbers (columns) are separated by the space (“ ”),
• the rows of the matrix are separated by a new line (“\n”), and
• the matrix must have the same number of elements in each line.

Let us focus on an example. Let the matrix A defines an environment:

A =

1 2
3 4
5 6

 (1)

The only structure of the A the algorithm accepts is the following text file:

1 2
3 4
5 6

(2)

The file containing the environment has an extension “env”.
The environment parser is very simple. The parsing algorithm uses two nested for

loops to access each of the elements from the input file (see Algorithm 1).
The structure of the loaded file is an array. Attributes NumberOfLines and NumberOf-

Columns define the number of rows and columns in this array, and they are obtained while
using the function np.shape (see [17]) from the loaded env file.

Each of the elements stored in the file is checked during the parsing phase. The file
is successfully parsed only if all of the elements are of the float type, and the number of
elements is the same in each line. Otherwise, a syntax error occurs.

After the parsing phase, the stored elements are drawn into the graphical interface of
the application.

As an example, we show a fitness function F = −
(

x2 + y2); x, y ∈ (−5, 5). The plot
of the function is in Figure 2.

Figure 2. Three-dimensional (3D) plot of the function F.

The following matrix represents this function in the form acceptable by the algorithm.
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Algorithm 1: Parsing the environment
Environment = [ ][ ]
for x ∈ range(0, NumberO f Lines) do

for y ∈ range(0, NumberO f Columns) do
Environment[x][y]← Element(x, y)

end for
end for

75 84 91 96 99 100 99 96 91 84 75
94 103 110 115 118 119 118 115 110 103 94

111 120 127 132 135 136 135 132 127 120 111
126 135 142 147 150 151 150 147 142 135 126
139 148 155 160 163 164 163 160 155 148 139
150 159 166 171 174 175 174 171 166 159 150
159 168 175 180 183 184 183 180 175 168 159
166 175 182 187 190 191 190 187 182 175 166
171 180 187 192 195 196 195 192 187 180 171
174 183 190 195 198 199 198 195 190 183 174
175 184 191 196 199 200 199 196 191 184 175
174 183 190 195 198 199 198 195 190 183 174
171 180 187 192 195 196 195 192 187 180 171
166 175 182 187 190 191 190 187 182 175 166
159 168 175 180 183 184 183 180 175 168 159
150 159 166 171 174 175 174 171 166 159 150
139 148 155 160 163 164 163 160 155 148 139
126 135 142 147 150 151 150 147 142 135 126
111 120 127 132 135 136 135 132 127 120 111
94 103 110 115 118 119 118 115 110 103 94
75 84 91 96 99 100 99 96 91 84 75

(3)

5.2. The Rules of the Agents

The Rules of the Agents can be defined by the user in an XLS (MS Excel) file. The file
has the following structure. The first line describes the columns of the file. This line is for
the user to orientate in the file only, and it does not affect the algorithm. The following
lines define the rules. An example of the definition of the rules is in the Table 1.

Table 1. The structure of the file of the rules of the agents.

State X Y Try Else

The state of the
rule

The first object
of the agent

The second
object of the

agent
[Actions] [Alternative

actions]

Each rule consists of five attributes:

• The state of the rule—a positive integer value defines the state of the rule. The initial
value of the state equals 0. In the Actions or Alternative actions, the state of the rule can
be changed to a different value. In such a case, the agent provides more actions in one
iteration step. The next iteration, the synchronization of the agents, starts when the
state is set back to 0. This also means that the rule was applied successfully.

• The first and the second objects of the agent—the configuration of the agent—the
objects inside the agent represented by the characters.
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• [actions]—a sequence of the actions to be run if the previous conditions are fulfilled
(the state of the rule and configuration of the agent).

• [alternative actions]—a sequence of the alternative actions to be run if any of the
actions fail.

Let us focus on the possible values in particular cells:

• The state of the rule (column State) = {S, S ∈ N}, agents are synchronized if S = 0
(rule was applied successfully)

• The first object of the agent (column X) = {x, x ∈ {a, . . . , z, A, . . . , Z} ∪ int}, where
int is the keyword that represents any number from the Z.

• The second object of the agent (column Y) = {y, y ∈ {a, . . . , z, A, . . . , Z} ∪ >=},
where >= is the keyword to compare the first and second objects of the agent–the
assumption is that X, Y ∈ Z.

• [Actions] (column Try) and [Alternative actions] (column Else) contain the keywords
that are separated by space:

– x = i, and y = j, are the keywords for updating objects X or Y inside the
agents, where: i, j ∈ {a, . . . , z, A, . . . , Z}∪{env, BB[i], Rand(g)(h)}. The keyword
env activates the function getting int value from the environment, and BB[i];
i = A, B, D, is the keyword activating the function obtaining the value from the
blackboard at the position i (A = Alpha, B = Beta, D = Delta). Rand(g)(h) is
the keyword that activates the function generating random value in the range
from g to h.

– state = n, n ∈ S, is the keyword that changes the state of the rule.
– Update(BB[i]); i = A, B, D, is a keyword that activates the function updating

value on the blackboard at position i (Alpha, Beta, Delta).
– Move(q), q = {L, R, U, D} or {1, 2, 3, 4}, is the keyword activating the func-

tion moving the agent, where L = 1 = Le f t, R = 2 = Right, U = 3 = Up,
D = 4 = Down.

– AssistMove() is the keyword that activates the function moving the agent with
an assistance of the blackboard, i.e., all directions will be tried.

– death() is the keyword terminating the activity of the agent.
– Index(a) is the keyword that returns true if the index of the agent equals a.

The parser for the rules of the agents file is implemented in the very same way as the
parser of the files of the environment. The algorithm uses two nested for loops to read each
of the elements from the input (.xls) file (see Algorithm 2).

Algorithm 2: Reading the rules
for Agents in state 0 do

if X == [First object o f the agent] and Y == [Second object o f the agent] then
Try: do [Actions]
Else: do [Alternate actions]

end if
end for

In case that the applied action (or alternative action) changes the state of the rule to
the value higher than 0 (by the action “state=n”), the rules of the same value of the state
are being executed, until the rules of all agents are in state 0 again.

We give two examples of the definitions of the rules.
The set of rules in Table 2 defines the simulation of the Grey wolf optimization

algorithm using 2D P colonies. Note the use of the space character (“ ”) as a separator
between each action in the Try and Else columns. The states 1 and 2 in the 4. and 5. line are
used to give an example of the more complex rule that compares up to three values—the
agents are not synchronized until all of their rules are in the state 0.
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The set of rules defined in Table 3 defines the simulation model of a simple swarm
optimization algorithm. One of the agents–agent with index 0 is the so-called leader.
The leader sends information about its movements to the blackboard, and the other agents
repeat it with a delay of one step. In this model, the fitness values are not important,
they do not affect the movements of the agents in any way.

One must keep in mind that, if the rule is composed of several states, there must
always be a path back to state 0.

Table 2. GWO-2D P colony model, the definition of the rules.

State X Y Try Else

0 e e X=env Y=BB[A]

0 int >= Y=A Y=BB[B] state=1

0 int A Update(BB[A])
X=e Y=e

1 int >= Y=B state=0 Y=BB[D] state=2

2 int >= Y=D state=0 Y=BB[i] Y=O
state=0

0 int B Update(BB[B])
X=e Y=e

0 int D Update(BB[D])
X=e Y=e

0 int O AssistMove()
X=e Y=e X=f Y=f

0 f f death() X=e Y=e

Table 3. A simple swarm optimization algorithm, the definition of the rules.

State X Y Try Else

0 e e Index(0) state=1 state=2

1 e e X=Rand(1)(4)
Y=m

1 int m Move(X) Y=u

1 int u Update(BB[A])
X=e Y=e state=0

2 e e X=BB[A] Y=m

2 int m Move(X) X=r
Y=r

2 r r X=e Y=e state=0

5.3. Input Arguments for GWO

The original Grey wolf optimization algorithm expects the arguments that are de-
scribed in Table 4 as its input.

Table 4. GWO input arguments.

Input Argument Preset Value

Population size (number of wolves) 6 (typical number of wolves in a pack)

Comparison operator for Fitness function
(smaller than or greater than) >(finding the maximum)

Termination criterion 100 iterations
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In the application, the users can modify these values in a dialogue window before
running the simulation, as it can be seen in Figure 3.

Figure 3. Defining GWO inputs in the application.

The user can also modify the initial positions of the agents in the environment, as it
can be seen in Figure 4. It is useful to verify the correct location of the agents, in the case of
specific requirements, like testing the desired behavior.

Figure 4. Changing the position of the agents.

6. The Components of the Application

In this section, we present individual components of the algorithm. These components
can be sensed as the classes or object, respectively. There are three main components:

• the agent,
• the configuration of the system, and
• and the blackboard.

6.1. The Agent

Each agent is implemented as an object of the class Agent and it is defined by the
following set of attributes. The attributes forms the configuration of the agent:

• index—the index, pointer of the agent,
• pos—the position of the agent in the environment—X and Y coordinates,
• obj1 and obj2—two objects inside the agent, and
• ruleState—the state of the rule.

The activity of the agent is provided by executing the rules matching the configuration
of the agent. Each rule causes an activation of one of the following methods:

• AgentSymUpdate—evolving the objects inside the agent,
• MoveAgent—moving the agent in desired direction (left, right, up, or down),
• AssistMove—moving the agent with the assistance of the blackboard.
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Figure 5 shows the flowchart of the algorithm controlling the behavior of the agents.
The algorithm can be divided into the following blocks:

• start of a iteration—selecting the applicable rule,
• execution of the rule(s), and applying the changes to the environment, and
• update of the blackboard.

Figure 5. The updates of the configuration of the agent.

First, the applicable rule is found for each agent. The rule is chosen on the dependence
on the recent configuration of the agent. This step can only be executed only if the parameter
State = 0, which means that the agents are synchronized (no agent is executing any of its
rules) and a new iteration starts. One iteration of the agent can consist of several steps.
This happens when the value of the State is set to the value greater than 0 by some [Actions]
or [Alternative actions]. The algorithm continues by finding another rule with the same
value of the State. If the value of the parameter State equals 0, the rule is applied, and the
agent changes its state to Waiting for synchronization before a new iteration.

Let us focus on the difference between the step and the iteration now. First, the iteration
can be composed of several steps. In a step, the actions (or alternative actions) of each of the
agents that are not waiting for synchronization are applied. Changes to the environment
are made at the end of this step. If there is at least one rule having parameter State greater
than 0, the next step is provided. The new iteration begins when every agent is waiting
for synchronization, hence every agent has completed a rule, changed its configuration,
and the parameter State parameter is zero.

At the beginning of a new iteration, the blackboard is updated and the termination
criterion is checked.

The Configuration of the System Information

The output console (see section Graphical interface, Section 8) displays information
regarding the recent configuration of the system, i.e., the configurations of the agents,
information about applied rules, used actions, and derivation steps. The configuration is
displayed in the plain text. The Table 5 describes information given in the console.

Table 5 uses the following symbols:

• i is the index of the agent,
• n is the user defined number of the steps,
• X, Y are the objects inside the agent, and
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• PosX, PosY are the coordinates of the agent.

Table 5. State information of the agents.

State Information Description

Time of last n step(s) Information about the time in total taken by
the simulation.

Agent i configuration: position: (PosX, PosY) ;
object1 = X ; object2 = Y

Information about the current configuration of
the agent.

Agent i is now waiting for synchronization. Information, that the i− th agent is waiting for
the synchronization.

Agent i wants to be [Alpha, Beta, Delta] Information that the i− th concluded it is
Alpha/Beta/Delta.

Agent i found the rule just for him. i− th agent has found an applicable rule.

No rule for this configuration! X, Y Information about the missing rule for some
configuration.

[Actions, Alternate actions] completed
successfully. Configuration of i− th agent

changed.

i− th agent successfully finished all the actions
in the particular iteration and changed its

configuration according to the applied rules.

Agent i is trying to move i− th agent is trying to move without the
assistance of the blackboard.

Agent i is trying to move with BB assistance i− th agent is trying to move with the
assistance of the blackboard.

No agent i movement. i− th agent is remaining in its position.

6.2. The Blackboard

The blackboard is implemented as a structure of two arrays of size equal to a number
of wolves. The minimal size of vector v1 is 7 (six fields are reserved for Alpha, Beta,
Delta, and 1 for the position of prey). The application displays the blackboard in the
following form:

v1[r1, r2] = [AlphaValue, BetaValue, DeltaValue, AlphaDistance, BetaDistance,

DeltaDistance, PreyPosition],

v2[s1, s2] = [A1DistanceFromPrey, A2DistanceFromPrey, . . . , AnDistanceFromPrey],

where v1, v2 are the vectors, r1, r2 are coordinates of the first receiver, and s1, s2 are
coordinates of the second receiver.

In Figure 6, the visualization of the blackboard in the application is shown. We have
defined the following methods for manipulating these arrays:

• Update()—method updating the values reserved for Alpha, Beta, or Delta wolves,
• Get()—method reading the values from arrays, and
• Newiteration()—method calculating a new position of the prey and the distances of

wolves from the prey.

Figure 6. The representation of the blackboard in the application.

The communication between the agent and the blackboard is implemented by the
method of blackboard, called Message. This method expects the following arguments:
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function (0 = Get, 1 = Update), function argument (for example value to update), the index
of the agent, and sender (agent) position in the environment).

For example, a message Message(0, 0, sel f .index, pos) means, that the agent with
sel f .index, at position pos, is trying to use function Get(0).

In the model that was introduced in [14], two receivers are listening to the signals
(messages) from the agents. The receivers play important role. They calculate the distances
of agents from the blackboard (receivers). The distance of the agent is computed as
an intersection of the circles R1 and R2, with center at the position of the receivers, and
r = now− sent, where now is a time of receiving the message, and sent equals to timestamp,
x is randomly chosen in the intersected area. The shapes of the intersection change during
the time due to the movements of the receivers—they rotate around the environment,
initial position of the first receiver is (0, 0), and of the second receiver (i, j), where i and j
are given by the size (dimensions) of the environment.

When compared to the previously presented model, the implementation is a bit
different. Receivers are used to approximate the calculation of the agent distance from the
blackboard only. Instead of time, rounded positions of the agents and exact positions of the
receivers are used. Thanks to this change, the implementation is simpler and it does not
affect the functionality of the model. Theoretically, receivers can be replaced by the simple
random value, but they are preserved with respect to the model.

The functions of the blackboard Get and Update can be used by the agents and they
are activated in the action part of the rule. For example, the action Update(BB[A]) updates
the first value of the vector v1 (AlphaValue). In the same way, Update(BB[B]) updates the
second value of the vector v1 (BetaValue), and Update(BB[D]) updates the third value of
the vector v1(BetaValue).

The action of the rule X = BB[A] or Y = BB[A] serves to get the first value of the
vector v1 (Alphavalue) and store it into X (first object of the agent) or Y (second object
of the agent). In the same way, other values B and D (BetaValue and DeltaValue) can
be obtained.

The values A1DistanceFromPrey, A2DistanceFromPrey, and A3DistanceFromPrey de-
pend on the distance of the agent from the receivers. These values are updated at the same
time as the values AlphaValue, BetaValue, or DeltaValue, and they are changed while
using the Get function.

The Value PreyPosition of the vector v1 is an auxiliary variable for computing the
values of the vector v2, and the agent cannot read or overwrite it. This value is computed
at the beginning of each iteration by applying the following formula:

PreyPosition =
AlphaDistance + BetaDistance + DeltaDistance3

3
.

Function Get(i), where i is the index of an agent, can be used to obtain a value from
vector v2. This value depends on the distance of the agent from the prey, and it is computed
according to the following formula:

AiDistanceFromPrey = AiDistance− PreyPosition,

where AiDistance value is obtained in the same way as values AlphaDistance,
BetaDistance, and DeltaDistance (thanks to receivers). The action of the rule
AssistMove() causes the Get(i) function to be used multiple times. Firstly, to determine
the distance of the agent from prey in the current position in the environment, and then in
the new positions in order to determine which position is better.

In summary, during an iteration, the blackboard is collecting data from the agents.
The value PreyPosition of the vector v1, and the positions of the receivers are updated at
the beginning of a new iteration. The values of the vector v2 are updated in real-time
(only if the agents request it), and the value depends on the PreyPosition value at the
current iteration.
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7. The Description of the Algorithm

Figure 7 shows the flowchart diagram of the algorithm. It is a diagram of the full
process of the algorithm.

Figure 7. Flowchart diagram of the algorithm.

First, the input files are parsed. During the parsing process, the syntax of the input is
verified. The file containing the rules of the agents "rules.xls" is expected in the application
directory and it is automatically loaded after the start of the application. The environmental
file must be manually chosen by the user from the application menu (Figure 8).

Figure 8. An example of the file dialog window (environment files are highlighted).

If the inputs are parsed successfully, the simulation can be initialized. During this
phase, the user can specify the input arguments that are related to GWO. Subsequently,
the agents (pack of wolves) are initialized and placed into the environment.

At this point, the simulation can start. From now on, the user can control the simu-
lation, as it is described in the following section. Before each iteration, the termination
criterion is checked. In each iteration, each agent must apply at least one rule. During the
runtime, the semantics of the rules are checked. If an error occurs while applying the rules,
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e.g., an unknown keyword or an unexpected value occurs in a rule, the agent ignores it,
i.e., it takes no action, and the user obtains the error message in the console output.
The errors are continuously captured and, if a critical error occurs, the application will
be terminated.

Tables A1 and A2 in Appendix B present an overview of error and info messages,
related to the state of the application.

The behavior of the application is strictly dependent on the defined rules. Here we
present the pseudocode followed by the model using the rules specified in Table 2:

• in each iteration

1. calculate the value of the fitness function (get the environment value) of each
agent and determine the social hierarchy (compare it to Alpha, Beta, and Delta
value from the blackboard). The agent with the best value (closest to the opti-
mum) is the Alpha, the second-best is the Beta, the third-best is the Delta, and all
others are Omegas (update blackboard),

2. calculate the best solution found so far by Alpha, Beta, and Delta wolves from
the blackboard receivers, and then average it,

3. update the positions of all the agents (apply AssistMove rule),
4. check the termination criterion, and
5. the computation stops when the value of the fitness function reaches the preset value.

8. Graphic Interface

Figure 9 displays the main window of the application GUI. The GUI contains the
following elements described in separate subsections:

• application menu (highlighted in red),
• canvas displaying the simulation (in orange rectangle),
• buttons controlling the simulation (in blue rectangle),
• text field for the blackboard (in purple rectangle), and
• horizontal and vertical scrollbars (in green rectangle).

Figure 9. Graphic User Interface design.
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8.1. Application Menu

The applications menu is in the toolbar, on the top panel of the screen. It contains
three items. The submenus of the items open by clicking on the particular item (Figure 10).
Let us describe the items of the menu and their functionalities:

• Environment—allows user to load the environment file:

– Load environment—opens the file dialog window, where the user can select
and load the environment file, creates the environment from the loaded environ-
ment file.

• Simulation—contains a submenu for managing the simulation:

– Initialization—opens the dialog window with GWO attributes settings. After settings
the attributes, agents are initialized and placed into the environment. This item
is active before the simulation starts only.

– Draw simulation—opens a new window visualizing the history of agent move-
ments.

– Console output—the console output will be redirected to the new text field
window.

• Quit—contains the item to quit the application.

– Quit application—quits the application, including the active simulation.

Figure 10. Menu items.

8.2. Canvas Displaying the Simulation

Canvas displaying the simulation is visible only if the environment is loaded. The ex-
ample in Figure 11 displays the canvas with the loaded instance of the environment.
If the user moves the mouse cursor to some field, then they obtain the coordinates of it
highlighted by the red color of the text.

The agents are represented by the blue color of the text. By moving the mouse cursor
to the position of the agent, the user obtains detailed information about it in the following
form: Ai = (obj1, obj2, [PosX, PosY]), where i is the index of the agent, obj1 and obj2
are the objects inside this agent, and PosX and PosY are the coordinates of its position.
This behavior of the application can be seen in Figure 12.

Figure 11. Canvas displaying the simulation.
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Figure 12. The mouse cursor at the position without the agent (on the left) and at position of the
agent (on the right).

8.3. Buttons Controlling the Simulation

The Step button runs the predefined number of steps of the simulation. The number of
steps is defined in the field Step length. The iteration is a set of these steps. New iteration
starts when each agent performed all of the steps that are needed before the synchronization.

The Run button runs the simulation, until the simulation terminates reaching the
termination criterion, or the iteration reaches the maximal value, or when none of the delta
agents can move. Figure 13 displays the buttons controlling the simulation.

Figure 13. Buttons controlling the simulation.

8.4. Text Field for the Backboard

The text field for the blackboard is set as read-only and it has two lines. Each line
displays the vectors of the blackboard.

This text field is initialized together with the agents and updated at the end of each
iteration, as it was described in section Blackboard. Figure 6 presents the visualization of
the blackboard in the application.

8.5. Console Output

By default, the application sends the console text to the default printer (typically,
command line in Windows, Bash, or Shell console in Unix based OS).

While the application can only be used in the graphic interface, the console output can
be redirected to a new text field window (see Figure 14). This functionality can be enabled
in the application menu (Menu→ Simulation→ Console output) and it is equivalent to
the default console form.

Figure 14. Console output redirected to the text field window.

In the console, the user can monitor text messages with the following information in
real-time:
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• the information about the state of the agents (see Table 5), and
• application error messages (see Tables A1 and A2).

8.6. Canvas Drawing the Simulation

The function Canvas drawing the simulation is used by the user for an overview of
the area of the environment that is searched by the agents. An example can be seen in
Figure 15. The environment points are scaled into an 800× 600 canvas area (the size of
the environment is adapted to the size of the canvas). The points that have already been
visited by the agents are circled by different colors. Each color corresponds to the particular
agent. If two different agents visit the same position, the color of the agent that last visited
it is used. In the canvas, the initial position of the agent is described by text Si, and the
current position is described by Ai, where i is the index of the agent. The visited points are
connected by an edge (line) of the same color as the color of the agent, according to the
movements of the agent in the environment.

Figure 15. Visualization of the history of the movements of agents.

In the future, we plan to implement an option for showing the full path of each agent
separately. This improves the clarity of the output of this functionality, and the user will be
able to identify the positions visited by a particular agent.

9. Example of Use

Let us give the example of the use of the application. This example can also serve as
the application guide.

As the first step, the user checks or modifies the rules in the file “rules.xls”, according
to Section 5.2. Subsequently, the user launches the application using the executable file in
the application directory structure. The main application window will open.

Figure 16 shows the main application window at startup. At this point, the canvas
displaying the simulation is empty, so the environment should be loaded (Menu→ Envi-
ronment→ Load environment). A file dialog window (see Figure 8) opens, and the user
selects an environment file (.env file).
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Figure 16. The main application window at startup.

If the application is not run from the command line or console, then it is useful to open
the console output in a separate window at this point (Menu→ Simulation→ Console
output). If the application is run from the command line or console, the text output is
directly available in the command line or console. It is useful (and sometimes necessary) to
monitor the current configuration of the simulation and individual agents.

When the environment file has been selected and displayed on the canvas, the simula-
tion can be initialized (Menu→ Simulation→ Initialization). Before initializing the agents
and placing them into the environment, it is possible to adjust the configuration of the algo-
rithm, and the positions of the agents, in separate windows (see Section 5.3, and Table 4).

The user controls the application using the buttons that are described in Section 8.3.
During the simulation, the user can monitor the console output, the canvas visualizing the
simulation (to see agents and their movements in the environment), and the blackboard
(for example, to see the best values of Alpha, Beta, and Delta agents).

If the optimal value has been found (termination criterion reached) or the simulation
is stagnant, i.e., increasing the iterations no longer improves the results, agents no longer
move, there is no reason to continue the simulation. At this point, the user can use canvas
drawing the simulation (Menu→ Simulation→ Draw simulation) to determine which
area of the environment was searched (scanned).

The application can be terminated at any time (Menu→ Quit→ Quit application).

10. Testing

The first version of the simulator was not acting as desired, but the complications
were expected. In the first derivation steps, most of the wolves tried to be the Alpha
wolf, and they tried to write to the alpha position on the blackboard. This behavior of the
simulator led to the situation when the Omega wolves were without the lead and they
reached the final configuration soon, and the simulation stopped unsuccessfully very often,
giving no result. When considering these results, we decided to make a slight change in
the behavior of the wolves in the first steps of the derivation. Once the wolf tries to write
to the alpha position (on the blackboard) unsuccessfully, it is allowed to try to write to the
beta and delta position, respectively. This modification is still in the scope of the P colonies,
and we were not forced to introduce some outer mechanism setting the hierarchy of the
pack. The wolves were able to set the hierarchy themselves, and the simulation proceeded
as expected.

Let us focus on the performed testing of this implementation. While the application is
the simulator of the 2D P colony, it is a bit problematic to compare the time the 2D P colony
and GWO consume; therefore, we will measure and compare the performance of the
algorithms in the iterations.

We compared the performance of the original GWO algorithm and our 2D P colony
simulator. The number of agents (wolves) was set to 6 in both of the algorithms (typical
number of wolves in packs). The fitness functions used for optimization can be seen in
Table 6 and the 3D plots can be seen in Figure 17.
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Table 6. The functions used for testing the performance.

Fitness Function Optimization Goal Maximum Number of
Iterations

F1 = −
(

x2 + y2); x, y ∈
(−10, 10)

Find maximum 100

F2 = −100
(

sin(x)
x +

sin(y)
y

)
+

200; x, y ∈ (1, 20)
Find maximum 200

F3 = x ∗ y; x, y ∈ (0, 100) Find maximum 100

Figure 17. 3D plot of functions F1, F2, and F3.

The test results are summarized in the Table 7, and the charts are in the pictures
Figures A1–A3.

Table 7. Summary of testing.

Comparison Original GWO 2D P colony – GWO

Function F1 F2 F3 F1 F2 F3

Number of
agents 6 6

The real
global

extreme of
function

200 243 10,000 200 238 (dis-
cretized) 10,000

Best fitness
value in

the initial-
ization
phase

189 217 8236 159 149 304

Convergence
after

iterations
6 47 3 49 182 5

Best
solution
found

198 243 10,000 187 238 8836

The original GWO algorithm found the optimal value faster and more accurately in all
three cases, when compared to the implemented model. The implemented model is slower,
especially because of the size of the step of the agent. It is at most one in one iteration, i.e.,
the 2D P colony agent can in one step move only one position further (move left, right, up,
or down), unlike the GWO, where the movement of the agent is not that limited. This is
also one of the reasons the 2D P colony does not achieve the results of the same quality.

Another factor influencing the 2D P colony performance is the position of the agent.
Once the agent gets to the position in which there is no better position in the near vicinity,
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i.e., the agent is stuck in some local extremum, it will not change its position and is not able
to find the optimal value anymore. This problem of larger areas in an environment, with the
same fitness value of several adjacent points, can be eliminated by a better discretization of
the fitness function.

Despite the results of the tests, the proposed model and its implementation can be
considered to be a success. Firstly, we have proved that such a simple theoretical model,
like the 2D P colony, is able to successfully solve the optimization problem. The model
and/or the rules can be adjusted based on these results, so we will be able to reach
better performance.

11. Conclusions

In previous research, we proposed a model of 2D P colony simulating the behavior
of the pack of wolves in the same manner as in the Grey wolf optimization algorithm.
In [13–15], we introduced a numerical version of the 2D P colony that is equipped by the
blackboard, where the environment is represented by the discrete values of the fitness
function. In this paper, we introduced the computer simulator of the extended version of
the 2D P colony, and present the results of the simulations.

We present the complete description of the algorithm, from the basic analysis up to
the description of the algorithm, including its inputs. We have shown the design of the
model, including the methods and tools used in the implementation. This results in the
application that provides the user the console output for a full overview of information
regarding the current configuration of the system during the simulation, and the graphical
interface used for the visualization of the simulation. In Section 9, we describe the use of
the application. This section can be sensed as the application guide.

The tests we made resulted in the modification of the model that was proposed
in [13–15]. Further tests of our application and comparison to the GWO are presented in
Section 10. In this section, we also discuss and explain the results. Our model, which is
composed of very simple agents, successfully simulates the GWO, and it can solve the
optimization problems.

The implementation allowed us to study and improve the behavior of our model.
For further research, we plan to optimize the model and the application in order to obtain
a smoother simulation and hopefully better results.
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Appendix A. Test Results Charts

Figure A1. Results of testing function F1.

Figure A2. Results of testing function F2.

Figure A3. Results of testing function F3.
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Appendix B. Informative and Error Messages

Table A1. Error messages.

Message When It Happens Relevance

File rules.xls cannot be found. At the star of the application,
in the parsing phase

Critical error, the application
will be stopped

Invalid environment input file
Loading of environment file,

invalid file extension or
syntax error

Minor error, a file dialog to
select .env file can be opened

again

Invalid index in message to
Blackboard: [index value]

During the simulation, the
customs rule uses the

keyword BB[X] has invalid
index X

Minor error, simulation
continues, the rule is ignored

Unknown content of the
message to Blackboard:

[content value]

During the simulation, the
agent is trying to use

unknown blackboard action -
out of range (0=Get,

1=Update)

Minor error, simulation
continues, the rule is ignored

1 argument ’i’ should be used
in keyword BB[i]

During the action get value
from the blackboard, the number
i (arguments) must be equal to

1

Minor error, simulation
continues, the rule is ignored

2 argument ’i’, ’j’ should be
used in keyword rand(i)(j).

During action generate random
value, missing argument in i or
j, or too much arguments in i

or j.

Minor error, simulation
continues, the rule is ignored

Unknown direction to move
the agent. Check rules.

During action move the agent,
the argument value x in rule

Move(x) must be in range 1–4

Minor error, simulation
continues, the rule is ignored

Rule state must be integer.
During action change the state
of the rule, argument n in rule
State = n must be an integer.

Minor error, simulation
continues, the rule is ignored

Blackboard cannot be updated
by the agent

During the update of the
blackboard, agent refers to

unknown index of the
blackboard

Minor error, simulation
continues, the rule is ignored

[Invalid, Unknown ] keyword
in rule

Parsing the rule, semantics
validation, a rule contains

unknown or invalid keyword

Minor error, simulation
continues, the rule is ignored

’Number of agents’ value
must be in range (1, 99).

In the dialog window, before
the agent are initialized

Minor error, the user is asked
to change this value

’Maximum iteration’ value
must be in range (1, 1000)!

In the dialog window, before
the agent are initialized

Minor error, the user is asked
to change this value

Integer values are allowed
only.

In the dialog window, before
the agent are initialized

Minor error, the user is asked
to change this value

’Step length’ value must be in
range (1, 15)! After Step button was clicked

Minor error, value in text field
set step length must be
changed to range 1–15

’Step length’ value must be
integer! After Step button was clicked

Minor error, value in the field
set step length must be

changed to integer
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Table A2. Informative messages.

Message When It Happens Relevance

Receivers updated: rcv1 = [its
position], rcv2 = [its position]

At the beginning of a new
iteration

Information about the new
positions of the receivers

Rendered simulation opened
in a new window.

After using function Draw
simulation from the menu

The rendered simulation will
be opened in a new window

Console will be redirected to a
new window.

After using function Show
console from the menu

The console output will be
redirected to a new window

Optimal solution found! Best
value found: [value]

During the simulation, after
running a predefined number

of iterations

The termination criterion has
been reached

Optimal solution still not
found! Best value found:

[value]

During simulation, after
running a predefined number

of iterations

The termination criterion still
has not been reached

No termination criterion was
specified. Criterion check will

be skipped.

During simulation, after
running a predefined number

of iterations

Informative message about
the termination criterion will

be skipped, because
termination condition was not

specified.

Blackboard: [vectors v1 and
v2] At the end of each iteration Information about the new

blackboard updates.

___ITERATION I___ At the beginning of a new
iteration The iteration I starts.

Time of last x steps: t seconds. After the predefined number
of steps

Information about how much
time (t) in seconds predefined

number of steps (x) took.

Agents initializes to positions:
[positions]

After the agents are placed
into the environment

Information about the
position of the agents in the

environment
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