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Abstract: Non-intrusive load monitoring (NILM) is a fast developing technique for appliances
operation recognition in power system monitoring. At present, most NILM algorithms rely on the
assumption that all fluctuations in the data stream are triggered by identified appliances. Therefore,
NILM of identifying unidentified appliances is still an open challenge. To pursue a scalable solution
to energy monitoring for contemporary unidentified appliances, we propose a voltage-current (V-I)
trajectory enabled deep pairwise-supervised hashing (DPSH) method for NILM. DPSH performs
simultaneous feature learning and hash-code learning with deep neural networks, which shows
higher identification accuracy than a benchmark method. DPSH can generate different hash codes to
distinguish identified appliances. For unidentified appliances, it generates completely new codes
that are different from codes of multiple identified appliances to distinguish them. Experiments
on public datasets show that our method can get better F1-score than the benchmark method to
achieve state-of-the-art performance in the identification of unidentified appliances, and this method
maintains high sustainability to identify other unidentified appliances through retraining. DPSH can
be resilient against appliance changes in the house.

Keywords: non-intrusive load monitoring; V-I trajectory; deep pairwise-supervised hashing; feature
learning; hash-code learning

1. Introduction

Information and Communication Technologies (ICT) and Intelligent Data Analytical
Technologies (IDAT) have become the new trend for various industries’ development [1–3].
Following this trend, ICT and IDAT are increasingly implemented in multiple industries [4–6].
Load Monitoring is one of the ICT and IDAT implementation cases in the power system,
and it can disaggregate the whole electricity consumption signal into the signals of appli-
ances in a residential, commercial, or industrial building. Load monitoring can identify
appliances and report consumers consumption patterns to improve consumer behavior [7].
Furthermore, finding the detailed electricity consumption patterns of the customers helps
energy suppliers to efficiently plan and operate power system networks.

Traditional load monitoring equipment is intrusive, that is, a sensor with communi-
cation function is installed for one monitoring equipment in the total load, and then, the
power consumption information is received through the network for real-time monitoring.
This method requires a large number of sensors, which increases installation and mainte-
nance costs. Unlike it, non-intrusive load monitoring (NILM) installs a smart meter at the
user’s entrance to obtain the total current and terminal voltage. NILM can apply digital
signal chemistry to the collected data, and then use algorithms to analyze and extract the
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power consumption information of various types of indoor appliances. The advantages of
this method are as follows: low installation cost, little interference to users, and flexible
application. Therefore, non-intrusive load monitoring technology has received widespread
attention from scholars in recent years.

NILM was first proposed by Hart for residential load decomposition [8]. The operating
states of appliances are divided into steady and transient. Therefore, the load monitoring
methods can perform load decomposition based on steady or transient characteristics. The
transient characteristics mainly include the change of the current or voltage waveform at
the moment when the appliance starts. The duration of transient characteristics is short
and unique, which can improve the recognition between loads. However, the transient
feature extraction needs complex hardware, and the transient process of the load is affected
by conditions such as grid voltage fluctuations, and the aging of electrical equipment.
Steady-state load characteristics such as current harmonics [9], power harmonics [10,11],
and current waveforms [12–14] have been successively applied to NILM. Steady-state
characteristics are generally obtained by index quantification. They are less affected by
noise, but the probability of similarity of the single steady-state characteristics of the load
increases when the number of loads rises. In order to distinguish multiple appliances, a
new load characteristic that is V-I trajectory has been developed for NILM in recent years.
The V-I trajectory is plotted based on the steady-state voltage and current, and it is used to
express appliances’ electrical characteristics. The V-I trajectory in conjunction with many
popular classification algorithms can offer better or generally comparable overall precision
of prediction, robustness, and reliability [15]. In short, the V-I trajectory has advantages as
a currently popular feature.

Based on different load characteristics, a variety of load identification algorithms
have been proposed in NILM [16,17]. With the development of machine learning, the
system results from the learning process can deliver the optimal predictive performance for
appliance loads. Therefore, machine learning techniques have become a popular choice for
NILM, since they showed significant disaggregation performance; in particular, Factorial
Hidden Markov models (FHMMs) [18–20], Neural Networks (NN) [21–24], graph-based
signal processing [25], Support Vector Machines (SVM) [26], k-Nearest Neighbours [26],
and Decision Trees [27] have been successfully employed for NILM. Specifically, Refer-
ence [28] proposed a NILM algorithm based on features of the V-I trajectory. Ten V-I
trajectory features were quantified based on physical significance, which accurately repre-
sented those appliances that had multiple built-in modes with distinct power consumption
profiles, and the support vector machine multi-classification algorithm was employed for
load identification. Reference [29] proposed a NILM algorithm based on the joint use of
active and reactive power in the Additive Factorial Hidden Markov Models framework. In
particular, in the proposed approach, the appliance model was represented by a bivariate
Hidden Markov Model whose emitted symbols are the joint active-reactive power sig-
nals. The disaggregation was performed by means of an alternative formulation of the
Additive Factorial Approximate Maximum a Posteriori (AFAMAP) algorithm for dealing
with the bivariate HMM models. Reference [30] proposed an experimental design process
for the application of energy disaggregation using multi-label classification. This paper
took the electrical parameters of the current (I), real power (P), reactive power (Q), and
power factor (PF) at every one-minute and employed RAndom k-labELsets (RAkEL) with
Decision Tree as the multi-label classification algorithm together with the right model
parameter configuration.

However, it is worth noting that most classification algorithms described in the lit-
erature cannot identify unidentified appliances in the consumer environment. In these
algorithms, the unidentified appliance will be assigned a label and power consumption.
They correspond to the identified appliance which have the most similar features. This
leads to confusion between the identification of identified appliances and unidentified
appliances. At the same time, the accuracy of appliance identification is reduced. Therefore,
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the household power consumption that is fed back to consumers and the power department
is inaccurate.

Considering that the V-I trajectory is an image feature, its application enables NILM
to be transformed into image retrieval. With the explosive growth of data in real applica-
tions like image retrieval, approximate nearest neighbor (ANN) search [31] has become
a hot research topic in recent years. Due to its fast query speed and low memory cost,
hashing [32] has become one of the most popular and effective techniques among exist-
ing ANN techniques. Existing hashing methods can be divided into data-independent
methods and data-dependent methods. In data-independent methods, the hash function is
typically randomly generated. It is independent of any training data. The representative
data-independent methods include locality-sensitive hashing (LSH) [33] and its variants.
Data-dependent methods try to learn the hash function from some training data, and they
are also called learning to hash (L2H) [34] methods. Compared with data-independent
methods, L2H methods can achieve comparable or better accuracy with shorter hash codes.
Representative learning to hash methods include fast supervised hashing (FastH) [35], su-
pervised discrete hashing (SDH) [36], column-sampling based discrete supervised hashing
(COSDISH) [37], and column generation hashing (CGHash) [38].

Therefore, this paper proposes a V-I trajectory enabled deep pairwise-supervised
hashing (DPSH) method for NILM. It contains simultaneous feature learning and hash-
code learning. DPSH encodes the V-I trajectory images of identified appliances into compact
binary hash codes. According to different coding results, we can identify various identified
appliances in the environment, and DPSH can detect previously unidentified appliances
in an automated way. When there is an unidentified appliance, DPSH will encode the V-I
trajectory images of this appliance into brand new hash codes, which are different from
other identified appliances. Thence, our proposed method can provide a scalable solution
to energy monitoring for contemporary unidentified appliances.

The main contributions of this paper can be summarized as follows:
Firstly, to the best of our knowledge, DPSH which can perform simultaneous feature

learning and hash-code learning for applications with pairwise labels is first applied to
NILM. This method transfers appliance identification to approximate nearest neighbor
search, and improves the identification accuracy of identified appliances.

Secondly, the majority of the NILM approaches are sensitive to the replacement and
addition of appliances in the house, and thus require regular retraining. In this paper, the
focus lies on creating a classification algorithm that is able to detect unidentified appliances.
Therefore, the algorithm can be resilient against the replacement and addition of appliances
in the house. If an unidentified appliance is detected, labeling and retraining are requested
to restore the identified environment and then identify the next unidentified appliance.

Thirdly, this paper also reflects the retraining results of our proposed method after
identifying the unidentified appliance. The results show that the identification accuracy
of DPSH can be restored to a high level through retraining, and when the next uniden-
tified appliance appears, DPSH can still recognize it. In other words, DPSH maintains
high sustainability. Experiments on public datasets show that DPSH can outperform the
benchmark method to achieve state-of-the-art performance in NILM.

This paper is organized as follows. Section 2 defines some symbols and issues in
DPSH method. Section 3 explains the model and learning process of DPSH method as well
as how it can be used for load disaggregation. Section 4 introduces benchmark datasets,
the input of network, performance metrics, and selection of code length. The experimental
results on publicly available datasets are presented in Section 5 to evaluate the performance
of the proposed DPSH method for NILM. Moreover, the conclusions are given in Section 6.

2. Notation and Problem Definition

We convert the classification of electrical appliances to approximate nearest neighbor
search of V-I trajectories in this paper.
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2.1. Notation

The lowercase letters like z are used to denote vectors. We use uppercase letters like
Z to denote matrices. ZT denotes the transpose of Z. The Euclidean norm of a vector is
denoted as || · ||2. sgn(·) is used to denote the element-wise sign function. If the element is
positive, sgn(·) will return 1. Otherwise it will return −1.

2.2. Problem Definition

Suppose we have n V-I trajectory images X = {xi}n
i=1 where xi is the i-th element

in set X. Besides the set of V-I trajectories, the training set of supervised hashing with
pairwise labels also contains a set of pairwise labels S = {sij}n×n with sij ∈ {0, 1}. sij = 1
denotes V-I trajectory xi is similar to V-I trajectory xj. Otherwise, they are dissimilar. Here,
the pairwise labels typically refer to semantic labels provided with manual effort.

The goal of supervised hashing with pairwise labels is to classify V-I trajectories
correctly by learning hash function h(x). We can get a binary code bi ∈ {−1, 1}c for every
trajectory xi, where bi = h(xi) = [h1(xi), h2(xi), ..., hc(xi)], and c means the length of code.
All of binary codes are collected in the set B = {bi}n

i=1. The similarity in S should be
preserved in the binary codes B. If sij = 1, it means that the Hamming distance between
the binary codes bi and bj should be as small as possible. Otherwise sij = 0, when the
binary codes bi and bj have a high Hamming distance.

3. Deep Pairwise-Supervised Hashing

In this section, we introduce the DPSH model based on the V-I trajectory in detail.
This section contains the model composition and learning algorithm.

3.1. Model Composition

The workflow of the proposed method that is able to detect unidentified appliances
is shown in Figure 1. In the training phase, a hash function that can encode samples of
the same appliance into the same binary hash codes is computed from the V-I trajectory
images by training the feature learning part. The V-I trajectory images must be paired and
labeled respectively as must- or cannot-links. This depends on if the images belong to the
same class or not. The transformation does not depend on the appliance label. On the
transformed input, DPSH determines the final encoding results of each identified appliance
by minimizing pairwise loss. In the test phase, a V-I trajectory image is encoded to a kind of
only binary hash codes. Next, we calculate the Hamming distance (d) to all representation
codes. If the distance is equal to zero, the V-I trajectory is classified as one of the identified
appliances. If the distance is not equal to zero, the trajectory is labeled as ‘’unidentified”.

DPSH model has an end-to-end deep learning architecture, which contains two es-
sential parts: feature learning part and objective function part, and it is shown in Figure 2.
Specifically, the feature learning part and objective function part feedback with each other
during the training procedure. Feature learning part aims to learn a deep neural network
which can extract multiple features from V-I trajectory images, and then features are en-
coded into compact binary hash codes. The goal of objective function part is to learn how
to encode the features, which can reflect the supervised information (similarity) between
two V-I trajectory images. The combination of the two parts achieves the purpose of
load identification.

3.1.1. Feature Learning Part

Convolutional neural network (CNN) is a type of neural networks (NNs) that are
often used in computer vision because they are highly suitable to classify images. We adopt
a classical CNN model to extract the features of V-I trajectory images in this part. The
feature learning part contains the Alexnet [39] model as a component, which has eleven
layers and is good at extracting the features of images. The structure of the DPSH model is
symmetrical. In other words, there are two Alexnets (top Alexnet and bottom Alexnet) in
the feature learning part. These two Alexnets have the same structure and share weights.
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That is to say, the input of the model are pairs of V-I trajectories and pairwise labels between
the trajectories. The feature learning part is an indispensable foundation for NILM.

Pairs of V-I 

trajectory images
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Deep hash function

Similarity 
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pairwise loss
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Figure 1. The work flow of the deep pairwise-supervised hashing (DPSH) method that is able to
detect unidentified appliances.
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Figure 2. The end-to-end deep learning architecture of the proposed method.

The network structure and parameters of the Alexnet model have been introduced in
Table 1. More specifically, there are 5 convolutional layers (Conv 1–5), 3 max-pooling layers
(MaxP 1–3), and 3 fully connected layers (FC 1–3) in the Alexnet model. The role of the
convolutional layers is to extract local features of the trajectories. The progress of Alexnet
is to imitate a large receptive field effect by using multiple convolution kernels in sequence.
Alexnet uses convolution kernels and pooling kernels to deepen the network structure
continuously and improve performance. The max-pooling layers are used to reduce the
size of images, and fully connected layers are to reassemble the extracted local features
into a complete graph through the weight matrix. The parameters of the Alexnet model are
mainly concentrated in three fully connected layers. As shown in Table 1, the size of the
convolution kernels in each segment gradually decreases, and the pooling kernels’ size in
each segment is the same.
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Table 1. The network structure and parameters of Alexnet model.

Layer Size of Filter Number of Channels Stride

Conv1 11× 11 64 4
MaxP1 3× 3 - 2
Conv2 5× 5 192 1
MaxP2 3× 3 - 2
Conv3 3× 3 384 1
Conv4 3× 3 256 1
Conv5 3× 3 256 1
MaxP3 3× 3 - 1

Layer Input Size - Output Size

Fc1 25,088 - 4096
Fc2 4096 - 4096
Fc3 4096 - 1000

3.1.2. Objective Function Part

We can define the likelihood of pairwise labels S = {sij}n×n as follows, when the
binary codes B = {bi}n

i=1 for all the V-I trajectory images are given.

p(sij|B) =
{

σ(Ωij) , sij = 1

1− σ(Ωij) , sij = 0
(1)

where Ωij =
1
2 bT

i bj, and σ(Ωij) =
1

1+e−Ωij
. Ωij means half of the inner product of two codes.

When the two codes are the same, the inner product is the largest. In contrast, when two
codes are completely different, the inner product is the smallest, so Ωij can indicate the
similarity of two codes. It is worth noting that bi ∈ {−1, 1}c.

By taking the negative log-likelihood of the pairwise labels observed in S, we can get
the following optimization problem:

min
B

J1 = − log p(S|B) = − ∑
sij∈S

log p(sij|B) = − ∑
sij∈S

(sijΩij − log(1 + eΩij) (2)

The optimization problem in (2) fully reflects the goal of supervised hashing with pairwise
labels. The Formula (2) ensures that the Hamming distance between two similar V-I
trajectory images can be as small as possible, while the Hamming distance between two
dissimilar V-I trajectory images can be as large as possible. Therefore, the purpose of
distinguishing various appliances through the V-I trajectories is achieved.

However, the problem in (2) is a discrete optimization problem that is hard to solve.
Although it is solved by (1), directly relaxing B = {bi}n

i=1 from discrete to continuous,
satisfactory performance still cannot be obtained. Therefore, we adopt a novel strategy
that can directly solve the problem in (2) in a discrete way. In other words, there is no
need to give up the accuracy of B and convert it. We reformulate the problem in (2) as the
following equivalent problem:

min
B,U

J2 = − ∑
sij∈S

(sijΘij − log(1 + eΘij)

s.t.ui = bi, ∀i ∈ {1, 2, ..., n}
ui ∈ Rc×1, ∀i ∈ {1, 2, ..., n}
bi ∈ {−1, 1}c, ∀i ∈ {1, 2, ..., n}

(3)

where Θij =
1
2 uT

i uj, and U = {ui}n
i=1.
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To optimize the above problem, we can move the equality constraints in (3) to the
regularization terms, so we reformulate the optimize problem (3) as the following equiva-
lent one:

min
B,U

J3 = − ∑
sij∈S

(sijΘij − log(1 + eΘij) + η
n

∑
i=1
‖ bi − ui ‖2

2 (4)

where η is the regularization term that is a hyper-parameter.

3.1.3. DPSH Model

The DPSH model uses an end-to-end framework, which integrates the above fea-
ture learning part and objective function part together, and the end-to-end framework is
expressed as

ui = WTφ(xi; θ) + v (5)

where the network parameters of Alexnet model in the feature learning part are denoted as
θ. Furthermore, We define the output of the Alexnet model with the network parameter
θ as φ(xi; θ), when the V-I trajectory image xi is used as the input of the Alexnet model.
W ∈ R1000×c is a weight matrix, and v ∈ Rc×1 denotes a bias vector. That is to say, our
DPSH model integrates the feature learning part and the objective function part into
an end-to-end framework through a weight matrix and a bias vector. This method is
similar to the function of a fully connected layer. After integrating the two parts, the final
problem becomes

min
B,W,v,θ

J = − ∑
sij∈S

(sijΘij − log(1 + eΘij) + η
n

∑
i=1
‖ bi − (WTφ(xi; θ) + v) ‖2

2 (6)

Therefore, we get an end-to-end DPSH model. It can perform both feature learning
and hash-code learning simultaneously in the same framework. The method can generate
different hash codes to distinguish identified appliances and a completely new kind of
hash codes for the unidentified appliance.

In conclusion, DPSH contains three key components. The first component is a deep
neural network to learn image features from pixels. The second component is a hash
function to map the learned image features to hash codes, and the third component is a
loss function to measure the quality of hash codes guided by pairwise labels.

3.2. Learning Algorithm

In the DPSH model, known parameters include the pairwise labels S and the regu-
larization term η. Other parameters including W, v, θ, and B need to be learned. In this
paper, we adopt a minibatch-based strategy for learning. That is to say, in each iteration, we
sample a mini-batch of V-I trajectory images from the whole training set, and then we can
perform learning based on these sampled V-I trajectory images, and we design a method of
alternating learning. More specifically, we optimize one parameter while other parameters
are fixed. The hash codes bi can be directly optimized as follows:

bi = sgn(ui) = sgn(WTφ(xi; θ) + v) (7)

where sgn(·) can extract the sign of the input.
we adopt the back-propagation (BP) algorithm to calculate the gradient in order to

update other parameters W, v, and θ. In particular, we can calculate the derivative of the
loss function with regard to ui according to the following formula:

∂J
∂ui

=
1
2 ∑

j:sij∈S
(aij − sij)uj +

1
2 ∑

j:sij∈S
(aji − sji)uj + 2η(ui − bi) (8)
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where aij = σ( 1
2 uT

i uj).
Then, we can calculate the gradient and use back-propagation algorithm to update

the parameters W, v, and θ respectively:

∂J
∂W

= φ(xi; θ)(
∂J
∂ui

)T (9)

∂J
∂v

=
∂J
∂ui

(10)

∂J
∂φ(xi; θ)

= W
∂J
∂ui

(11)

4. Experiment
4.1. Tool and Environment

All the experiments are implemented using Python 3.6 on a standard PC with an
Intel Core i7-6700MQ CPU running at 3.40 GHz and with 16.0 GB of RAM. The CNN
architecture is constructed based on Pytorch, and the pre-trained CNN model is migrated
to DPSH.

4.2. Benchmark Datasets

The performance of the proposed algorithm is validated on the Reference Energy Dis-
aggregation Data Set (REDD) and the Plug-Level Appliance Identification Dataset (PLAID).

4.2.1. REDD Dataset

REDD is a freely available data set containing detailed power usage information from
several homes. It is aimed at furthering research on energy disaggregation [40]. The data
contains power consumption from real homes over several months’ time. They are the
power consumption of the whole house as well as for each individual circuit in the house.
All data in REDD is recorded with UTC time stamps. For each monitored house, REDD
record the AC waveform itself in order to compute both real and reactive powers easily.
This dataset includes low-frequency power data in each house, high-frequency voltage,
and current data in house 3 and house 5. The list of appliances in the REDD dataset has
been introduced in Table 2.

4.2.2. PLAID Dataset

The Plug-Level Appliance Identification Dataset is a public and crowd-sourced dataset
for load identification research. PLAID dataset includes short voltage and current measure-
ments for different residential appliances. The measurement equipment collects data in the
order of a few seconds. The goal of PLAID is to provide a public library for high-resolution
appliance measurements. It can be integrated into existing or novel appliance identification
algorithms [41]. PLAID currently includes current and voltage measurements sampled at
30 kHz from 11 different appliance types present in more than 60 households in Pittsburgh,
Pennsylvania, USA. Data collection took place during the summer of 2013 and winter of
2014. Measurements with significant noise in the voltage due to measurement errors were
removed [42]. The list of appliances in the PLAID dataset has been introduced in Table 3.

Table 2. The list of appliances in the Reference Energy Disaggregation Data Set (REDD) dataset.

Ap1 Ap2 Ap3 Ap4 Ap5

lighting refrigerator disposal dishwasher furnace

Ap6 Ap7 Ap8 Ap9 Ap10 (Un10)

washer dryer bathroom GFI kitchen outlets microwave electric heat
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Table 3. The list of appliances in the Plug-Level Appliance Identification Dataset (PLAID) dataset.

Ap1 Ap2 Ap3 Ap4 Ap5 (Un5) Ap6

compact fluorescent lamp fan incandescent light bulb laptop microwave vacuum

4.3. The Input and Architecture of DPSH

Our paper adopts an event detection method and a trajectory extraction method, which
are proposed in Reference [28]. An event is defined as the state-switching process of an
appliance within a certain period of time. In this paper, the event is detected by comparing
the variation in power during that durations with two predetermined thresholds.

|∆Pt| ≥ Pon1&|∆Pt+1| ≥ Pon1&...&|∆Pt+TR−1| ≥ Pon1

&|∆Pt+TR| < Pon1&|∆Pt+TR+1| < Pon1

&|Pt+TR − Pt| ≥ Pon2

(12)

Event detection is summarized by (12). Stride is represented by R in (12), and R is set
to 1 s. The aggregated apparent power at t s is Pt. The difference between two adjacent
aggregated apparent powers is denoted by ∆Pt (∆Pt = Pt+1 − Pt). The event begins when
|∆Pt| ≥ Pon1, and continues to calculate |∆Pt+1|, |∆Pt+2|, ..., until |∆Pt+TR| < Pon1 and
|∆Pt+TR+1| < Pon1. If |Pt+TR − Pt| ≥ Pon2, the appliance has a state transition at t ∼ t + TR
s. In other words, the integral event begins at t s and finishes at t + TR s. T is the number
of strides that represents the duration of the event. Pon1 and Pon2 are set as 30W and 100W
respectively in this paper. We believe that power fluctuations below Pon1 are considered to
be caused by noise, and it is considered a complete state switching process that the power
difference before and after the event is greater than Pon2, and event detection is an essential
step for V-I trajectory extraction. The voltage and current data must be processed before
plotting the trajectory.

We extract the same number of voltage and current waveforms before and after the
event. Four kinds of waveforms (the voltage waveforms before the event, the current wave-
forms before the event, the voltage waveforms after the event, and the current waveforms
after the event) are interpolated and averaged separately. Then, the voltage waveforms
before and after the event are averaged. The current waveform before and after the event
takes the difference. Therefore, we can plot the V-I trajectory as a delta-form signature,
which makes use of the difference between two consecutive snapshots and meets the
feature-additive criterion [12]. We extracted 10 types of appliances’ V-I trajectories from
the REDD dataset to verify the effectiveness of our proposed method. According to the
above method, the V-I trajectories for different appliances from REDD database are shown
in Figure 3. Then, we directly use the raw images as input in DPSH model. We extract
4400 V-I trajectory images to train the proposed model. Each image belongs to one of the
10 classes. For these classes, the number of images of each class is at least 100, and we
randomly select 1100 V-I trajectory images for the test set.

PLAID is a data set composed directly of the voltage and the current data of many
appliances. It requires the same data processing to extract the trajectory. However, PLAID
dataset is different from REDD dataset. PLAID currently includes current and voltage
measurements sampled from different appliance types present in more than 60 households.
We need a method to reduce the fluctuation of the image shape, so we convert every V-I
trajectory image into a binary V-I image (n× n matrix) by meshing the V-I trajectory. Each
cell of the mesh is assigned a binary value that denotes whether or not it is traversed by
the trajectory. Binary V-I image can reduce the volatility of data generated by different
appliance types present in different households, and we choose 6 binary V-I trajectory
images to test DPSH algorithm, as shown in Figure 4. We select 757 V-I trajectory images to
train the proposed model. Each image belongs to one of the 6 classes. For these classes, the
number of images of each class is different. The category with the fewest numbers contains
26 images, and we randomly select 226 V-I trajectory images for the test set.
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(a) lighting (b) refrigerator (c) disposal

(d) dishwasher (e) furnace (f) washer dryer

Figure 3. The V-I trajectories for different appliances from REDD database (taking 6 trajectories
as examples).

(a) compact fluorescent lamp (b) fan (c) incandescent light bulb

(d) laptop (e) microwave (f) vacuum

Figure 4. Binary V-I trajectories for six different appliances from PLAID database.

All of the V-I trajectory images are resized as 224 × 224. Then we directly use the
raw image pixels as input in DPSH model. Please note that there are two Alexnets (top
Alexnet and bottom Alexnet). These two Alexnets have the same structure and share the
same weights. That is to say, both the input and the loss function are based on pairs of
images. The extracted V-I trajectories are input into the Alexnets in pairs. The features of
V-I trajectories, which are extracted after 5 convolutional layers, 3 max-pooling layers, and
3 fully connected layers, form many feature vectors of 1000 elements. DPSH model learns
a hashing function can convert 1000-dimensional feature vectors to trajectory codes in the
training period. The code length is a hyper-parameter. We can set it according to our own
needs. The trajectory codes must ensure that the Hamming distance between two similar
V-I trajectory images is as small as possible, while the Hamming distance between two
dissimilar V-I trajectory images is as large as possible. In other words, the trajectory codes
can reflect pairwise similarity. Therefore, we can identify the category information of V-I
trajectories according to these codes in the testing period. Two V-I trajectories will belong
to the same category if the Hamming distance between two trajectory codes is close to 0,
and the proposed model can produce a lot of coding results that have never been seen in
the training period when there are unidentified appliances in the consumer’s environment.
At this point, we can retrain the model quickly to accommodate the addition of a new
appliance. The retrained model can also continue to detect other newer appliances.
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4.4. Performance Metrics

In this paper, the problem of NILM is considered as an approximate nearest neighbor
search task, which should assign each V-I trajectory image into one of predefined classes.
We utilize a meaningful performance metric, mean average precision (MAP), which can
illustrate the performance in many multi-class classification tasks [43]. We estimate the
ranks of data samples in the calculation of average precision(AP). The discrete form of AP
for class Ck is

APk =
1
|Ck| ∑

xi∈Ck

rank(si; {sj|xj ∈ Ck})
rank(si; {sj|xj ∈ X})

where we use xi to represent the ith query V-I image. |Ck| denotes the cardinality of set Ck,
and rank(s; S) is the rank of s in set S. A smoothed pair-wise rank function can be used to
estimate ranking relation between two samples xi and xj. This function is defined in [42]
as follows.

rank(xi; xj) =
1

1 + e−αk [dk(xi)−dk(xj)]

For M-class classification, we will generally use the mean of all APs of different classes to
evaluate the overall performance.

MAP = − 1
M

M

∑
k=1

APk

We adopt three classification metrics to evaluate the effect of classification. They are
shown in the following equations based on True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). These metrics analyze how well the algorithm can
identify changes in the appliance’s status.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score = 2× Precision× Recall
Precision + Recall

F1-score is a measure of the test’s accuracy and is obtained by calculating the weighted
average of the Precision and Recall. It calculates the percentage of energy correctly assigned
to each appliance in the dataset. A higher F1-score value indicates a better identification of
the appliance. To obtain the final test result, the average F1-score is taken:

Faverage =
N

∑
i=1

F1,i

where N is the amount of different appliances, and F1,i is the F1-score when appliance i is
used as hold out appliance.

4.5. Selection of Code Length

We adopt the REDD dataset and PLAID dataset to verify the performance of DPSH. In
the experiment on each dataset, both training and testing are done on all of the appliances.
The number of V-I trajectory images produced by each kind of appliance has a different
proportion in the total. The reason is that the frequency of opening and closing is different
in the operation of various appliances. We adopt a pre-trained Alexnet model to reduce
training times. Besides, we set the mini-batch size to be 64 and tune the learning rate
among [10−6, 10−2]. For DPSH method, the hyper-parameter η is set to be 50 by using a
validation strategy. The most important parameter is the length of the output hash code.
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The optimal code length determines the recognition accuracy and space complexity of
DPSH algorithm. Therefore, the code length is set to be 12, 24, 32, 48 bits [35–37] so that we
can verify the effect of this parameter on experimental results. As shown in Figure 5, the
DPSH method based on the Alexnet model shows high accuracy in terms of MAP when
the code length is set to be 12, 24, 32, 48 bits.

12 24 32 48
code length /bit

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02
M

AP

REDD
PLAID

Figure 5. The mean average precision (MAP) of DPSH on REDD dataset and PLAID dataset.

Figure 5 shows that the MAP of DPSH for different code lengths. The specific values
of MAP are 0.9993, 0.9996, 0.9943, and 0.9873 when DPSH is tested on the REDD dataset.
Meanwhile, the performances of our proposed method on the PLAID dataset are 0.9169,
0.9235, 0.9310, and 0.9380 in the form of MAP. It can be seen that the performance of
DPSH on REDD is better than that on PLAID. This is because we believe that there is
only one V-I trajectory for each appliance when processing the REDD dataset, and the
V-I trajectory shape of each appliance is different in the PLAID dataset. In other words,
we assume that all 10 appliances in the REDD dataset are single-state appliances (Each
appliance corresponds to a V-I trajectory). In the PLAID dataset, there are many types
of V-I trajectories for each appliance. This may be a normal multi-state appliance, or it
may be caused by measurement errors, and the part of trajectories of various appliances
may be repeated. This is the reason why the results on REDD and PLAID are different.
However, DPSH can maintain high accuracy in both two datasets, as shown in Figure 5.
The minimum value of MAP in the PLAID dataset reaches 0.9169, when the code length is
set to be 12 bits.

According to the above analysis, the MAP of DPSH on the two datasets is high and
the performance is stable. Through calculation, we get the average MAP of each code
length as 0.9581, 0.9616, 0.9627, and 0.9627. It can be seen that the MAP value of 0.9627 is
the best result, but the average MAP of 32 bit and 48 bit are equivalent. At the same time,
a too-long code length will increase memory cost, so we chose 32 bit as the code length for
subsequent result analysis.

5. Results and Discussion

To define how well the DPSH model can identify identified appliances and unidenti-
fied appliances, we designed the following two scenarios. Scenario 1 simulates a normal
household electricity environment where all of appliances are identified. Scenario 2 simu-
lates a household environment where unidentified appliance exists.

5.1. Recognition of Identified Appliances

We train and test on two datasets to verify whether the proposed algorithm can
distinguish identified appliances well. The number of appliances used for training and
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testing is the same, and Table 4 details the performance indicators achieved by running
DPSH with 32-bit code length on different datasets. These are the best results of our
proposed method on two datasets. As shown in Table 4, the Precision, Recall, and F1-score
of every appliance are introduced in detail. This shows that our proposed algorithm is
highly effective in appliance identification. It can accurately identify all appliances in
REDD. DPSH also has a good ability to identify all appliances in the PLAID dataset. In
conclusion, this method has a strong adaptability to different datasets.

Table 4. The disaggregation performance indicators on different databases.

Method Appliance Precision Recall F1-Score

Ap1 1.000 1.000 1.000
Ap2 1.000 1.000 1.000
Ap3 1.000 0.840 0.913
Ap4 1.000 1.000 1.000

DPSH-32-bit Ap5 1.000 1.000 1.000
on REDD Ap6 1.000 1.000 1.000

Ap7 1.000 1.000 1.000
Ap8 0.862 1.000 0.926
Ap9 1.000 1.000 1.000

Ap10 1.000 1.000 1.000

Ap1 0.981 0.981 0.981
Ap2 0.968 0.882 0.923

DPSH-32-bit Ap3 0.892 0.971 0.930
on PLAID Ap4 0.981 0.981 0.981

Ap5 1.000 1.000 1.000
Ap6 1.000 1.000 1.000

The 32-bit encoding results of DPSH method on the PLAID dataset are shown as
Figure 6. It ensures that the Hamming distance between codes of different labels is as
large as possible, but a kind of appliance label does not necessarily correspond to only one
encoding result. This phenomenon illustrates the complexity of the PLAID dataset, and
multiple encoding results of DPSH increase the stability of the method. It ensures that
the algorithm can still maintain a high accuracy of appliance identification when the V-I
trajectory images of the appliance are deviated due to fluctuations or the appliance has
multiple states.
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Figure 6. The 32-bit encoding results of DPSH method on PLAID dataset.

The benchmark method in Reference [44] is based on siamese neural network and DB-
SCAN clustering method (SN-DBSCAN). Figure 7 is the Precision and Recall for proposed
DPSH and SN-DBSCAN [44] algorithm on REDD and PLAID datasets. The appliances
in Figure 7 correspond to Tables 2 and 3. Figure 7a,b reflects the results generated by
testing on REDD. It is obvious that the Precision and Recall for DPSH-32-bit are stable. The
Precision for the SN-DBSCAN algorithm has a slight deviation. However, the Recall for the
SN-DBSCAN algorithm has great fluctuation. It has the lowest Recall value for the third
appliance, only 0.556. Meanwhile, as shown in Figure 7c,d, the results on the PLAID dataset
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are similar to the above. The Precision and Recall for DPSH-32-bit only fluctuate a little bit
and are basically stable at very high values. Due to the complexity of PLAID, the Precision
and Recall for DPSH-32-bit have some fluctuations on the second and third appliances. The
Recall value of the second appliance is the lowest, but it has reached 0.882. The Precision
and Recall of SN-DBSCAN not only have lower values on the second and third appliances
but also have larger deviations on other appliances. This shows that DPSH is more stable
on a complex PLAID dataset than SN-DBSCAN. In other words, this demonstrates that
DPSH leads to performance improvements with respect to the SN-DBSCAN even in the
presence of noise or measurement error. After the above analysis, it specifically reflects that
DPSH is always more accurate than the SN-DBSCAN algorithm. We can conclude from
Figure 7 that our proposed algorithm maintains high Precision and Recall on REDD and
PLAID to ensure high accuracy of appliance identification.
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appliance number

0.0
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Figure 7. The Precision and Recall for DPSH and SN-DBSCAN algorithm on two datasets. (a) The Precision on REDD dataset. (b) The
Recall on REDD dataset. (c) The Precision on PLAID dataset. (d) The Recall on PLAID dataset.

The radar chart in Figure 8 shows the F1-score for each appliance in the experiment
including two datasets, and the area of each colored line is proportional to the Faverage of the
related algorithm. It shows that the DPSH method gives better results for every appliance
on F1-score, compared with the SN-DBSCAN algorithm. The Faverage of DPSH and SN-
DBSCAN are 0.984 and 0.932 on REDD, respectively, and the indicators on the PLAID
dataset are 0.969 and 0.815. The more complex the test environment, the greater difference
in Faverage between DPSH and SN-DBSCAN. Compared with the SN-DBSCAN algorithm,
the experimental results indicate that the proposed method significantly improves the
accuracy and can be efficiently generalized when they are tested on the same database.
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Figure 8. The performance on F1-score of DPSH and siamese neural network and DBSCAN clustering
method (SN-DBSCAN) algorithm on two datasets. (a) The F1-score on REDD dataset. (b) The F1-score
on PLAID dataset.

5.2. Recognition of Unidentified Appliance

To define how well the method can identify unidentified appliances, we complete the
experiment on two datasets. We choose the Ap10 to be an unidentified appliance and call
it Un10 in the REDD dataset. All other appliances are identified appliances, so training
is done on 9 appliances and testing on 10 appliances. Similarly, we choose the Ap5 to be
an unidentified appliance and call it Un5 in the PLAID dataset, and training is done on 5
appliances and testing on 6 appliances. The goal of our experiments is to detect unidentified
appliances in user environments. Therefore, we choose Un10 and Un5, respectively, in two
datasets as fixed unidentified appliances. This is called leave-one-appliance-out validation. In
the REDD, each appliance corresponds to one V-I trajectory, but there is more than one V-I
trajectory for each of these appliances in the PLAID, and they may be similar to each other,
so we designed two experiments on two different datasets. It is validated whether (1) the
selected appliances are properly separated by different codes with high Hamming distance,
and (2) the unidentified appliance has its trajectory images classified as “unidentified”.

The 32-bit encoding results of DPSH method on the PLAID are shown as Figure 9 when
the last appliance is selected to be unidentified. Compared with Figure 6, we can see that
the encoding results of the unidentified appliance are different from the encoding results of
the identified appliances and include several forms. Therefore, our proposed method can
achieve the purpose of detecting the unidentified appliance. Note that the encoding results
of the same labels in Figures 6 and 9 are different. Because the samples used to learn the
hash function are different (in Figure 9, the samples for the fourth appliance are not used).
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Figure 9. The 32-bit encoding results of DPSH method with the unidentified appliance.
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To know which appliances are mixed up, a confusion matrix is created: Figure 10a,b
reports for each appliance type (row index) the number of labels that were correctly
predicted or confused with other appliances (column index). The values in the matrix are
percentages, and the colors represent the recall value per row (thus per appliance). It can be
seen that the recognition accuracy of the appliances used for training is still very high. Due
to measurement errors or similar shapes to other appliances, the unidentified appliance is
encoded into a variety of discrete hash codes, so the unidentified appliance may be confused
with other appliances. On the REDD dataset, only a small number of identified appliances
are distinguished as unidentified. All the unidentified appliances are distinguished and
marked correctly. Due to the complexity of the environment, the identified and unidentified
appliances are confused on the PLAID, during the process of differentiation, but the number
is small. In conclusion, we can discover that the DPSH algorithm also has high accuracy
for the identification of unidentified appliances by analyzing the experimental results on
the two datasets.
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Figure 10. The confusion matrix when leave-one-appliance-out validation is used. (a) The confusion
matrix on REDD. (b) The confusion matrix on PLAID.

According to Reference [44], the training appliances are used for learning form clusters.
The samples belonging to the holdout appliance do not belong to any cluster and neither
form a cluster as the siamese neural network is not trained on them. They have spread
around and get the label “unidentified”. We train and test SN-DBSCAN on the same
datasets. The experimental results of the two methods on REDD and PLAID with the
unidentified appliance are shown in Tables 5 and 6. For all appliances, the recognition
accuracy of DPSH is basically higher than that of SN-DBSCAN. At the same time, we find
that DPSH can maintain a high recognition capability for identified appliances.

F1-score is an evaluation that comprehensively considers Precision and Recall and can
more fully reflect the appliance identification. Therefore, we next focus on this indicator.
The radar chart in Figure 11 shows the F1-score for each appliance in the experiment,
including all the appliances in two datasets. In the REDD experiment, the F1-score of DPSH
on Ap1 and Ap2 are slightly lower than SN-DBSCAN. On Ap1 and Ap2, especially on
the unidentified appliance, DPSH’s F1-score are significantly higher than SN-DBSCAN,
and the Faverage values of DPSH and SN-DBSCAN are, respectively, 0.942 and 0.860. In the
PLAID experiment, DPSH can better identify the unidentified appliance, but the F1-score
of DPSH on Ap2 and Ap6 are slightly higher than SN-DBSCAN. The Faverage values of
two algorithms are, respectively, 0.883 and 0.726. When unidentified appliances appear in
the environment, although the SN-DBSCAN algorithm can identify them, the recognition
accuracy of the identified and unidentified appliances decreases significantly. Concerning
SN-DBSCAN algorithm, the proposed approach shows a higher improvement. The relative
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differences of Faverage are +0.082 and +0.157. In conclusion, the recognition ability of DPSH
is very prominent for both identified appliances and the unidentified appliance.

Table 5. The disaggregation performance on REDD with unidentified appliance.

Method Appliance Precision Recall F1-Score

Ap1 1.000 0.754 0.860
Ap2 0.803 1.000 0.891
Ap3 1.000 0.680 0.810
Ap4 1.000 1.000 1.000
Ap5 1.000 1.000 1.000

DPSH-32-bit Ap6 1.000 1.000 1.000
Ap7 1.000 1.000 1.000
Ap8 0.857 0.960 0.906
Ap9 1.000 1.000 1.000
Un10 0.909 1.000 0.952

Ap1 1.000 0.977 0.988
Ap2 1.000 0.960 0.980
Ap3 1.000 0.360 0.529
Ap4 1.000 0.624 0.768
AP5 1.000 0.816 0.899

SN-DBSCAN [44] Ap6 1.000 1.000 1.000
Ap7 1.000 0.880 0.936
Ap8 0.957 0.880 0.917
Ap9 1.000 0.960 0.980
Un10 0.429 1.000 0.601

Table 6. The disaggregation performance on PLAID with unidentified appliance.

Method Appliance Precision Recall F1-Score

Ap1 0.981 0.981 0.981
Ap2 0.875 0.824 0.848

DPSH-32-bit Ap3 0.882 0.882 0.882
Ap4 0.845 0.942 0.891
Un5 0.784 0.690 0.734
Ap6 0.923 1.000 0.960

Ap1 1.000 0.962 0.980
Ap2 0.600 0.441 0.508

SN-DBSCAN [44] Ap3 0.871 0.794 0.831
Ap4 0.974 0.731 0.835
Un5 0.500 0.857 0.632
Ap6 0.667 0.500 0.571

To further illustrate the effectiveness and practicality of DPSH, this paper conducts
retraining experiments. We label the V-I trajectory images of unidentified appliances that
are identified by two algorithms in the above experiments, and we add these V-I trajectory
images to the respective training set. This new training set is used to retrain DPSH and
SN-DBSCAN model. The indicators for evaluating the effectiveness of the two models are
shown in Tables 7 and 8. By observing F1-score, it can also be concluded that the ability of
DPSH to recognize the appliances is very strong. We calculate that the Faverage values of
the two methods on REDD are 0.984 and 0.918, and the Faverage values of the two methods
on PLAID are 0.967 and 0.763. We can see that the accuracy of DPSH can be restored to
a very high level through the retraining process, although the number of unidentified
appliances used for retraining is relatively small. In contrast, the accuracy of SN-DBSCAN
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is greatly affected by the amount of training data, and the accuracy after retraining is
not satisfactory. When other unidentified appliances appear, the number of retraining
increases, the accuracy of SN-DBSCAN will become lower and lower. However, DPSH
will still accurately identify all appliances. Therefore, we can conclude that DPSH has
good practicality. It is able to detect other unidentified appliances after retraining. The
sustainability of this method performs well.
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Ap3Ap4

Ap5

Ap6

Ap7

Ap8 Ap9

Un10

0.2
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Figure 11. The performance on F1-score of DPSH and SN-DBSCAN algorithm with unidentified
appliance. (a) The F1-score on REDD dataset. (b) The F1-score on PLAID dataset.

Table 7. The disaggregation performance of retraining on REDD dataset.

Method Appliance Precision Recall F1-Score

Ap1 1.000 1.000 1.000
Ap2 1.000 1.000 1.000
Ap3 1.000 0.840 0.913
Ap4 1.000 1.000 1.000

DPSH-32-bit Ap5 1.000 1.000 1.000
Ap6 1.000 1.000 1.000
Ap7 1.000 1.000 1.000
Ap8 0.862 1.000 0.926
Ap9 1.000 1.000 1.000

Ap10 1.000 1.000 1.000

Ap1 1.000 0.983 0.991
Ap2 1.000 0.977 0.988
Ap3 1.000 0.360 0.529
Ap4 1.000 0.840 0.913

SN-DBSCAN [44] Ap5 1.000 0.848 0.918
Ap6 1.000 1.000 1.000
Ap7 1.000 0.980 0.990
Ap8 1.000 0.800 0.889
Ap9 1.000 0.980 0.990

Ap10 0.956 0.993 0.974
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Table 8. The disaggregation performance of retraining on PLAID dataset.

Method Appliance Precision Recall F1-Score

Ap1 1.000 1.000 1.000
Ap2 0.968 0.882 0.923

DPSH-32-bit Ap3 0.895 1.000 0.944
Ap4 0.981 1.000 0.990
Ap5 1.000 0.917 0.957
Ap6 1.000 0.981 0.990

Ap1 1.000 0.981 0.990
Ap2 1.000 0.588 0.741

SN-DBSCAN [44] Ap3 0.871 0.794 0.831
Ap4 1.000 0.904 0.950
Ap5 1.000 0.415 0.587
Ap6 0.412 0.583 0.483

6. Conclusions

This paper has proposed a voltage-current trajectory enabled DPSH for NILM. Our
major purpose is that different appliance loads including unidentified appliances can be
distinguished by encoding their V-I trajectory images. DPSH model has an end-to-end
deep learning architecture containing feature learning part and objective function part.
Specifically, the feature learning part aims to learn a deep neural network which can extract
multiple features from the original images, and then, features are encoded into compact
binary hash codes. The purpose of the objective function part is to learn how to encode the
features, which can reflect the similarity between query images and database images well.
Experiments on real datasets have shown that DPSH model improves the accuracy and can
outperform the benchmark method to achieve state-of-the-art performance in NILM. The
Faverage of DPSH on REDD and PLAID dataset are 0.984 and 0.969, separately. Meanwhile,
DPSH has solved a difficult problem that the accuracy of the recognition algorithm will
drop a lot when the unidentified appliance is added to the environment. In other words,
this method can identify the unidentified appliance, under the condition of ensuring
the accuracy of identified appliances. The Faverage of two experiments to distinguish
unidentified appliance are respectively 0.942 and 0.883, so we can add images of the
unidentified appliance to the training set and retrain the model so that it can recognize all
appliances well. The Faverage of two experiments increased to 0.984 and 0.967, respectively.
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