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Abstract: Although many benefits drawn from beer consumption are claimed, the epidemiological
records are contradictory with respect to cancer prevention. The purpose of this study was to investi-
gate the possible health-related activities involving genome safety and the ageing processes of two
types of lyophilised ale beers (blond and stout), as well as two of their bioactive compounds (tyrosol
and iso-alpha humulone). A multipurpose trial set of in vivo toxicity, antitoxicity, mutagenicity,
antimutagenicity, lifespan and healthspan assays using Drosophila melanogaster were used. In parallel,
several in vitro assays were designed using the cancer cell line HL-60 in order to establish the possible
chemopreventive activity of the selected substances, where epigenetic modulation of DNA methyla-
tion changes, clastogenic activity and tumour cell inhibition growth were evaluated. The safety of the
four substances was confirmed: lyophilised blond ale beer (LBAB), lyophilised stout ale beer (LSAB),
tyrosol and iso-alpha humulone were neither toxic nor genotoxic. Moreover, all substances, except
tyrosol, revealed the ability to protect individual genomes against oxidative radicals and to exert
antimutagenic activity against the genotoxin hydrogen peroxide. With respect to the degenerative
process indicators of lifespan and healthspan, tyrosol was the only compound that did not exert
any influence on the life extension of Drosophila; LBAB induced a significant lifespan extension in
D. melanogaster; LSAB and its distinctive compound iso-alpha humulone induced a reduction in
longevity. The in vitro assays showed the cytotoxic activity of LBAB, LSAB and tyrosol against HL-60
cells. Moreover, proapoptotic DNA fragmentation or DNA strand breakage was observed for both
types of beers and iso-alpha humulone at different concentrations. Furthermore, the lyophilised ale
beers and tyrosol exhibited an increasing genome-wide methylation status, while iso-alpha humu-
lone exhibited a demethylation status in repetitive cancer cell sequences. Although the biological
activities assigned to beer consumption cannot be linked to any specific molecule/element due to the
complexity of the phenolic profile, as well as the multifactor brewing process, the results obtained
let us propose lyophilised ale beers as safe potential nutraceutical beverages when consumed in
moderate amounts. The prevention of toxicity and genetic oxidative damage, as well as the induction
of tumor cell death and modulation of the methylation status, are the key activities of beer that were
shown in the present research.

Keywords: ale beer; iso-alpha humulone; tyrosol; Drosophila; genotoxicity; longevity; HL-60 cells;
apoptosis; methylation

1. Introduction

Dietary constituents can influence the carcinogenesis process at various stages through
a variety of mechanisms. Several nutrients, specific foods and food patterns are believed to
be particularly chemopreventive, although little is known about the mechanisms underly-
ing cancer prevention [1,2].

Processes 2021, 9, 485. https://doi.org/10.3390/pr9030485 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-1091-3527
https://orcid.org/0000-0001-9130-2669
https://doi.org/10.3390/pr9030485
https://doi.org/10.3390/pr9030485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9030485
https://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/9/3/485?type=check_update&version=1


Processes 2021, 9, 485 2 of 20

Nonetheless, it is well known that both genes and environmental external factors
play essential roles in human development and gene expression [3]. Internal elements,
such as genes, can be strongly influenced (turned on/off) by external factors, such as
temperature, chemicals or light. All these factors acting together will affect the way an
organism develops and functions [4].

Beer is the alcoholic beverage of choice in many countries and the most consumed one [5].
This complex beverage is nowadays basically made from malt, hops (Humulus lupulus), water
and brewer’s yeast. The most remarkable difference relative to other worldwide beverages
(water and tea) is its high content in essential nutrients, such as minerals, vitamins, amino
acids and the most interesting non-nutrient elements, such as phenolics [6]. The hops’
contribution to beer phenolics accounts for around 30% of the total [7]. The type and
quality of beer depend on the brewing, where a series of factors influence this process, with
the most crucial being the barley entry, as well as the malting process, pH and temperature
during mashing, sparging and boiling, along with the variety of hops used and yeast
fermentation.

A fermentation process in which “top-fermenting” yeast (20 to 25 ◦C) is acting pro-
duces ale-type beer. Beer can either be consumed right after this step or undergo a short
period of ageing [8].

Some beer compounds are highly recommended for improving health. Several ac-
tivities related to degenerative/ageing/oxidative processes have been described for beer
compounds besides the antimicrobial ones. Nevertheless, the limited epidemiological data
are not enough, as there are no clinical assays supporting them, precisely in dermatology,
where fair bioassays are difficult to develop. Consequently, adequate trials are needed
to ensure the safe and correct use of such substances and to eventually be able to advise
regular/moderate beer consumption [7].

It is known that moderate consumption of alcoholic drinks is related to a reduction in
mortality rates in humans when compared to those that do not drink alcohol [9]. Epidemi-
ological data provide a positive association between beer consumption and a lower risk of
suffering cardiovascular disease. Approximately 50% of blood cholesterol comes from one’s
diet [10]. Furthermore, the use of beer could counteract kidney stone development [11].

Several molecules contained in beer belonging to the phenol and vitamin groups are
often claimed to be health promoters because they are involved in the reduction/remission
of age-related diseases [12]. Some of them are included in the crude materials used in the
brewing process (alive yeast, barley and hops) and can be detected in the final product
alongside the new molecules produced during brewing [13].

We focused this research on two phenolics that are present in beers: tyrosol, as the
most abundant simple phenol present in all beer, and iso-alpha humulone, as a specific
phenolic constituent of hops that is found at high levels in stout beers.

Tyrosol, 4-(2-hydroxyethyl)phenol, is a natural phenolic antioxidant that is abundant
in wine, virgin olive oil, vermouth and beer, recently becoming very popular as a result
of diet advice [14]. This aromatic alcohol is produced via fermentation of the amino acid
tyrosine and is present at exceptionally high concentrations (up to 40 mg/L) in beers [15].
Although the absolute antioxidant activity of tyrosol is lower than its hydroxyl form,
hydroxytyrosol (2-(30,40-dihydroxyphenyl)ethanol) [16,17], several cellular experimental
models reported potent biological activities for tyrosol, which seem not to be related to the
lower in vitro activity reported [18–20]. The Caenorhabditis elegans animal model has been
used to study the bioactivities of tyrosol by Cañuelo et al. [21], revealing that this phenol
improves the survival stress-resistance curves. The epidemiological data about the high
longevity rates for humans in the Mediterranean area could be caused by the higher intake
of olive oil and wine, which are known to contain high concentrations of tyrosol [22].

Hops contain humulone, which is a distinctive molecule whose isomere, iso-alpha
humulone, confers the bitter taste to beer [23]. This isomere is retained in mature beer,
reaching concentrations of up to 100 mg/L in some bitter ales [24]. The most important class
of hop compounds are the hop acids, which are distinguished as alpha acids (humulones)
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and beta acids (lupulones) [12]. Beta acids are extremely sensitive to oxidation and do
not survive the brewing process, whereas the transformations of the humulones during
wort boiling have been studied in great detail. The most important chemical conversion
during the brewing of beer is the isomerisation of alpha acids to iso-alpha acids; this
process is involved in the generation of the bitter flavour of beer [25]. Iso-alpha humolone
is considered as one of the most essential components of beer derived from hops due
to its physicochemical characteristics in solutions and surfaces [26]. Moreover, several
studies support the important role that isohumulone plays in beer foam stability, which
is considered a major and valuable property of beer [27]. Furthermore, this phenol has
an important function in beer as it is able to protect beer from spoilage by hindering the
growth of Lactobacillus in a dose-dependent manner [28].

Previous in vivo and in vitro studies with two types of hops in model organisms
support the beneficial claims that this substance is safe, nutraceutical and chemopreven-
tive [29]. In addition to its anti-inflammatory and antioxidative effects, the hop bitter
acids also exhibit Gram-positive antibacterial activity [30]. Humulone can suppress the
TNF-α-dependent cyclooxygenase-2 induction with an IC50 as low as about 30 nM/L in
comparison to dexamethasone, which does it at 1 nM/L [31]. Topical application of humu-
lone exhibited an anticarcinogenic effect via suppressing TPA-induced activation of NF-κB
in mouse skin stimulated with the tumour promoter 12-O-tetradecanoylphorbol-13-acetate
(TPA) [32]. The potent angiogenic inhibitor activity of humulone is remarkable [33]. Many
beer compounds are able to regulate sleeping rhythm, basically due to their hop content
and precisely due to their alpha acid components [34]. Taking into account the above
information about hops, many clues point towards humulone as the key molecule for the
various biological activities that are assigned to hops.

Many foods are claimed to have medicinal/nutraceutical purposes that provide pre-
ventive/curative effects for several illnesses. A nutraceutical substance should not only
be non-toxic but should also be able to prevent toxicity, avoid genetic oxidative damage,
modulate the epigenome marks and induce cell apoptosis in tumour cells [35].

The frame of the present research is to explore the possibility to propose new sub-
stances with therapeutic potential and consider them as an essential element for the daily
diet. The specific objective of our study was to evaluate the biological effects of two types
of lyophilised ale beers (a blond and a stout one) and two of their most important bioactive
components, namely, tyrosol and iso-alpha humulone, on degenerative processes. Towards
this goal, a multipurpose trial investigating the biological activity at the individual, cellular
and molecular levels drawn from the in vivo and in vitro assays was carried out using two
model systems. The Drosophila animal model, which contains more than 70% of human
disease homologous genes [36], is a choice system to assay toxicity, mutagenicity, longevity
and many degenerative processes [37]. Additionally, the human leukaemia cells (HL-60)
in vitro model system was used in parallel to study the cytotoxicity, DNA damage and the
modulation of methylation status caused by the selected substances.

2. Materials and Methods
2.1. Sample Preparation and Simple Compounds

A blond ale beer (Judas®, originally from Alken-Maes de Waarloos, Belgium) and a
stout ale beer (Guinness®, originally from St. James’s Gate Brewery, Ireland) both obtained
in a local Spanish market, were selected for this study. Furthermore, the molecules 4-(2-
hydroxyethyl)phenol (tyrosol) (TCI) and iso-alpha humulone (AroxaTM, Cara Technology
LTD Randalls Road Leatherhead, Surrey KT22 7RY, UK) contained in beer were selected to
be studied as single bioactive compounds. The different concentrations of single molecules
were determined in order to obtain their equivalent amount to the different concentrations
found in the beers.

Before carrying out the bioassays, the beers were lyophilised (SCAI, Servicio Central
de Apoyo a la Investigación, University of Córdoba, Córdoba, Spain) with the aim to obtain
a wide range of concentrations to be checked.
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Taking into account the daily food intake of Drosophila [38], the concentrations of each
compound were calculated to make them equivalent to the average for the same period in
humans (192 mL/day) [39].

2.2. In Vivo Assays

Drosophila melanogaster
Drosophila is used as a model organism in bioassays as it is useful for uncovering

insights that are important for humans, including degenerative processes, such as cancer
and ageing [40–42]. Two types of Drosophila strains were used, with each one characterised
by mutations in chromosome III:

• mwh/mwh, a recessive mutation (multiple wing hairs) that induces multiple hairs per
homozygous cell instead of one per cell in the wild-type phenotype [43].

• flr3/In (3LR) TM3, rippsep bx34eesBdS, where the flr3 (flare) mutation is homozygous
recessive lethal and cells carrying both doses are able to produce deformed hairs in
the late stages of larval development [44].

Strains were grown at 25 ◦C and 80% relative humidity (RH) conditions in a medium
containing yeast, NaCl, agar-agar, sucrose, propionic acid, streptomycin and water. Recip-
rocal crosses for the different assays were established using virgin female flies obtained
from the two strains.

2.2.1. Toxicity and Antitoxicity Assays

In the toxicity assays, we evaluated the percentage of treated individuals that survived
relative to the concurrent control. The concentrations assayed ranged from 3.125-50 mg/mL
for lyophilised blond ale beer (LBAB) and lyophilised stout ale beer (LSAB), 0.127-2.026 mM
for tyrosol and 1.207–77.25 mM for iso-alpha humulone. To perform the antitoxicity assays,
the tested concentrations were combined by adding the mutagen and toxic hydrogen
peroxide at 0.12 M (Sigma, H1009, Sigma Chemical CO., St. Louis, MO 63178 USA) [45].
Negative concurrent controls were prepared with medium and distilled water; meanwhile,
positive controls were made with medium, distilled water and combined with 0.12 M
H2O2 [35]. To evaluate the results, we used the nonparametric chi-squared test.

2.2.2. Genotoxicity and Antigenotoxicity Assays (SMART)

The methodology described by Graf et al. [46] was followed in both assays. The
tubes contained 0.85 g of Drosophila Instant Medium (Formula 4–24, Carolina Biological
Supply, Burlington, NC, USA) and 4 mL of the different concentrations of each tested
substance (3.125 and 50 mg/mL of LBAB and LSAB; 0.127 and 2.026 of tyrosol; 2.414
and 77.25 of iso-alpha humulone). To evaluate the antigenotoxicity potential, combined
treatments of genotoxin (0.12 M H2O2) and the same concentration of LBAB, LSAB, tyrosol
or iso-alpha humulone as that used in the genotoxicity assays were established. The
wings of transheterozygous emerged individuals (mwh flr+/mwh+flr3) were scored at 400×
magnification. According to the wing hair spots, mutations could be grouped into three
different categories: small single spots (mutation induced in one or two cells), large single
spots (with three or more cells showing mwh or flr3 phenotypes), or twin spots (showing
both mwh and flr3 phenotypes together). Somatic point mutations, chromosome aberrations
and somatic recombinations produced small and large single spots; meanwhile, twin spots
were exclusively produced by the somatic recombination of the centromere and the flr3.

A total of 361 and 358 wings were mounted and analysed for the genotoxicity and
antigenotoxicity treatments, respectively. Negative/positive/inconclusive results were
obtained by comparing the control and treatment mutational frequencies and applying
the Kastenbaum and Bowman binomial test [47,48]. The nonparametric Mann–Whitney
U test (α = β = 0.05) was used to analyse the inclusive and positive results. Finally, the
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inhibition percentages (IPs) for the combined treatments were calculated from the total
spots per wing using the following formula [49]:

IP = [(single genotoxin − combined treatment)/single genotoxin] × 100.

2.2.3. Lifespan Assays

Trials were performed at 25 ◦C following the Tasset-Cuevas et al. [45] methodol-
ogy. Cohorts of 25 female and male flies were placed into specials tubes containing
different concentrations of the compounds studied (3.125–50 mg/mL of LBAB and LSAB;
0.127–2.026 mM of tyrosol; 2.414–77.25 mM iso-alpha humulone). A total of four sets were
monitored during the complete life extension, renewing the media twice a week.

As a way to know the healthspan of the treated Drosophila, we analysed the upper 25%
of the lifespan survival curves, as the quality of life is characterised by low and more-or-less
constant age-specific mortality rate values [50].

The SPSS Statistics 17.0 software (SPSS software, Inc., Chicago, IL, USA) was used
to calculate the survival curves using the Kaplan–Meier method and the significance was
assessed using the log-rank test.

2.3. In Vitro Cytotoxicity Assays
2.3.1. Cell Culture

The human promyelocytic leukaemia cell line HL-60 was maintained in supplemented
RPMI-1640 medium (Sigma, R5886) and grown at 37 ◦C in a humidified atmosphere of 5%
CO2 [51]. Moreover, cultures were routinely plated at 2.5 × 104 cells/mL concentration in
10 mL culture bottles and replated three times a week to keep them in optimal conditions.

2.3.2. Cytotoxicity Assay

To carry out this assay, HL-60 cells were placed in 96-well culture plates (2 × 104 cells/mL)
and treated for 72 h with LBAB, LSAB, tyrosol and iso-alpha humulone at different con-
centrations (3.125–250 mg/mL for the beers; 0.127–2.026 mM for tyrosol; 1.207–38.62 mM
for iso-alpha humulone). The above concentration intervals were selected to evaluate the
cytotoxic dose ranges the in vivo lethality value or a 50% inhibitory concentration (IC50)
when possible. Cell viability was determined by the trypan blue dye exclusion assay using
a Neubauer chamber (Neubauer Double, Zuzi, Depth 0.100 mm, 0.0025 mm2) at 100×
magnification (AE30/31, Motic microscope, Cabrera de Mar, Barcelona, Spain). Survival
curves were plotted in a graph as a viability percentage of at least three independent assays
relative to the non-treated control growing for 72 h.

2.3.3. Determination of DNA Fragmentation

HL-60 cells (1 × 106 cells/mL) were incubated with different concentrations of
lyophilised beers, tyrosol or iso-alpha humulone (3.125–250 mg/mL; 0.127–2.026 mM;
0.603–154.5 mM, respectively) for 5 h. Then, the cells were collected via a centrifugation
process at 603.72× g for 5 min and DNA was isolated according to the methodology de-
scribed by Merinas-Amo et al. [52]. Summarily, lysis step, with SDS and proteinase K;
precipitation step, with NaCl and isopropanol; washing step, with ethanol; incubation
step with RNAse treatment; quantification and finally visualisation of 1200 ng/sample in
agarose/ethidium bromide gel.

2.3.4. Comet Assay

The alkaline comet assay (pH < 13), following the method previously described [53–55]
with some modifications, was used to determine the induction of DNA strand breaks. Cells
were treated with LBAB and LSAB (7.56, 31.25 and 62.5 mg/mL), tyrosol (0.127, 0.253 and
0.506 mM) and iso-alpha humulone (1.207, 4.828 and 19.31 mM) for 5 h. After carrying
out the washing steps in PBS, a concentration of 6.25 × 105 cells/mL were combined with
0.75% low-melting-point agarose (Sigma, A4018) and removed onto frost-ended slides.
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The cells underwent several lysis, alkaline electrophoresis, neutralisation and drying steps
according to Mateo-Fernández et al.’s [56] protocol. Finally, the DNA of 50–100 single cells
was visualised by treating the slides with 7 µL of a 10 µg/mL stock solution of propidium
iodide (Sigma, P4170). To analyse the comet images, we used a Leica DM 2500 fluorescence
microscope (at 400× magnification) with a green filter and an attached camera (JAI CV-
M4CL, Barcelona, Spain) and the DNA parameters were analysed with the OpenComet
plugin from ImageJ (NIH).

Statistical analysis was undertaken using the SPSS Statistics 17.0 software. The main
parameters of the comet imaging were the total DNA, percentage of DNA in the comet
and tail, tail length and tail moment (TM). The last parameter was the single-most relevant
index of DNA damage, which is calculated as the percent DNA in the tail multiplied by the
distance between the means of the head and tail distributions [53,54]. Moreover, the TM
is considered appropriate for regulatory or interlaboratory comparison studies [57]. The
significant effect of each compound on HL-60 cell DNA integrity was analysed by studying
the TM values obtained in a one-way ANOVA.

2.3.5. Methylation Status

To analyse the methylation status of the nucleotides, the DNA was obtained using
the same protocol for the DNA fragmentation section. Then, a bisulphite-modified DNA
step (EZ DNA Methylation-Gold Kit) involving the LBAB (15.625 and 250 mg/mL), LSAB
(15.625 and 250 mg/mL), tyrosol (0.127 and 2.025 mM) and iso-alpha humulone (9.65 and
38.725 mM) treatments was used as a template for fluorescence-based real-time quantitative
methylation-specific PCR (qMSP). Finally, a qMSP was performed in a MiniOpticon Real-
Time PCR System (MJ Mini Personal Thermal Cycler, Bio-Rad Laboratories Inc., Hercules,
CA, USA), following the protocol described by Merinas-Amo et al. [52], and the results
were analysed using Bio-Rad CFX Manager 3.1 software.

We selected repetitive elements to cover an extensive range of human genomic DNA
since Alu and LINE (Long Interspersed Nuclear Element) sequences are interspersed
throughout the genome and satellite DNA is confined to the centromere areas [58–61]. The
obtained relative results were normalised with the housekeeping sequence Alu C4 using
the Nikolaidis et al. [62] and Liloglou et al. [63] comparative Ct method. Assays were
analysed three times per sample. To evaluate the differences between the methylation levels
in the treated HL-60 cells at the selected repetitive elements, both one-way ANOVA and
post hoc Tukey’s tests were used. The selected repetitive sequences (Alu M1, LINE-1 and
Sat-α) were acquired from Isogen Life Science (see Table 1 for detailed information [64]).

Table 1. Primers information.

Reaction.
ID

GenBank
Number

Amplicon
Start End

Forward Primer
Sequence
5′ to 3′ (N)

Reverse Primer
Sequence
5′ to 3′ (N)

GC Content (%)
Forward Reverse

Alu C4 Consensus
Sequence 1 98

GGTTAGGTA
TAGTGGTTT
AT ATTTGTA

ATTTTAGTA (36)

ATTAACT AA
ACT AATCTT
AAACTCCTA
ACCTCA (33)

25 27.3

Alu M1 Y07755 5059 5164

ATTATGTTA
GTTAGGATG
GTTTCGATT

TT (29)

CAATCGACC
GAACGCGA

(17)
27.6 58.8

LINE-1 X52235 251 331
GGACGT ATT
TGGAAAATC

GGG (21)

AATCTCGCG
AT ACGCCGT

T (19)
47.6 52.6

Sat-α M38468 139 260

TGATGGAGT
ATTTTTAAA
AT ATACGTT
TTGTAGT (34)

AATTCTAAA
AAT ATTCCT
CTTCAATTA
CGTAAA (33)

23.5 21.2

Source: Weisenberger et al. [64].
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3. Results and Discussion
3.1. In Vivo
3.1.1. Toxicity and Antitoxicity

The relative percentage of adults after the larvae treatment with LBAB, LSAB, tyrosol
and iso-alpha humulone is shown in Figure 1A. The survival rates were statistically in-
significant and equal to the concurrent water controls, with the only exception being the
highest tested concentration of tyrosol (2.026 mM), which exhibited a toxic effect on the
Drosophila viability, with an 83% survival rate. The antitoxicity assays revealed the ability
of the LBAB, LSAB, tyrosol and iso-alpha humulone to protect adult individuals against
oxidative stress.
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Figure 1. (A) Toxicity and (B) antitoxicity levels of lyophilised blond ale beer (LBAB), lyophilised stout ale beer (LSAB),
tyrosol and iso-alpha humulone in D. melanogaster. Data are shown as the percentage of surviving adults relative to
300 untreated 72-h-old larvae from three independent assays fed with different concentrations of LBAB, LSAB, tyrosol and
iso-alpha humulone (A) and combined treatment with 0.12 M H2O2 (B). *: significant differences relative to the positive
control. The chi-squared value was higher than 3.84.
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The positive control consisted of H2O2 0.12 M treatments and a reduced survival rate of
up to 54% relative to the H2O control; this value fell into the previous ranges published for
toxicity in Drosophila melanogaster treated with this same toxicant [65]. Gorjanovic et al. [66]
used H2O2 to evaluate the antioxidative capacity of beer. In agreement with these previous
results, here we found that LBAB showed a significant protective effect at the two highest
assayed concentrations (25 and 50 mg/mL) and LSAB at all concentrations, except at
the highest one (50 mg/mL). The combined treatments of tyrosol and H2O2 showed a
significant protective effect only in the highest concentration assayed (2.026 mM). Finally,
iso-alpha humulone was the most protective substance, with significant protective effects
shown for all the assayed concentrations.

Unfortunately, not much information about the toxicity and antitoxicity of ale beer was
found. Up to date, there are no previous studies about the effects that ale beers cause on
the survival and protection of D. melanogaster. By comparing our results with other studies
on lager beer [52], the nontoxic activity of both types of beers was confirmed, although
lager beer shows a higher protective effect against H2O2 than ale beers. Tyrosol has been
linked to antimicrobial/toxic activity against several bacterial strains [67]. Furthermore,
the hop acids exhibit bacteriostatic activity due to their potential for inhibiting the growth
of Gram-positive bacteria. This remarkable bioactivity is of great importance for eliminat-
ing microorganisms during wort boiling, which eventually results in a naturally sterile
beer [68]. These antimicrobial activities of phenols are not related to the safe properties
that beers showed in our toxicity test in the Drosophila higher organism. Nevertheless,
these antimicrobial activities can be considered as an added value to beer properties. A
study with two types of hops (saazer and sladek) showed nontoxic effects in the Drosophila
model organism as the 50% lethal dose (LD50) was never reached at the assayed concen-
trations [29]. The present results of iso-alpha humulone showed, in part, that it is the
molecule responsible for the hops lack of toxicity. This differential behaviour of tyrosol as a
procaryotic with respect to toxicity confirmed the high potential of using Drosophila as a
higher model organism.

Oxidative stress and reactive oxygen species are associated with diverse diseases [69].
The chemical structure of flavonoids (number and position of double bonds, ortho-3,4-
dihydroxy moiety, hydroxyl groups) are important for their free radical scavenging and
antioxidant activities [70]. It has also been reported that tyrosol is a moderate but stable an-
tioxidant [71]. Nevertheless, studies in kidney cells showed that tyrosol (25–2500 µM) does
not exert any protective effect [72], which is a result that agrees with ours in HL-60 cells.
Another antioxidant contained in beer comes from the roasting of malt, where coloured
products (resulting from the Maillard reaction) are produced and whose peroxyl radical
scavenging potential is well known [73]. This fact could be responsible for the stronger
antitoxic potential of LSAB at lower concentrations compared to the LBAB. Therefore,
taking into account their polyphenol content, beer could be considered a good free radical
scavenger. Moreover, our results are in agreement with the already demonstrated antioxi-
dant ability of blond and stout ale beers [74,75]. For these reasons, it can be said that beer
is not toxic and safe in the Drosophila melanogaster animal model. In fact, it is antitoxic and
protects against the oxidative toxin H2O2 due to its polyphenol content. A previous study
by Merinas-Amo et al. [29] with two types of hops support the antioxidant power that this
beer’s raw materials have on Drosophila when they are combined with a toxic agent.

3.1.2. Genotoxicity and Antigenotoxicity

Table 2 exhibits the results of the genotoxicity and antigenotoxicity assays in the
SMART test. The negative control showed a frequency of mutations per wing (0.157) that
fell into the historical range for the wing spot test [76].
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Table 2. Genotoxicity and antigenotoxicity of lyophilised blond ale beer (LBAB), lyophilised stout ale beer (LSAB), iso-alpha
humulone and tyrosol in the Drosophila wing spot test.

Clones per Wing (No. of Spots) (1)

Compound Number
of Wings

Small Single
Clones

(1–2 Cells)
m = 2

Large
Simple
Clones

(>2 Cells)
m = 5

Twin
Clones
m = 5

Total Clones
m = 2

Mann
–Whitney
U test (2)

Inhibition
Percentage

(%) (3)

H2O 38 0.157 (6) 0 0 0.157 (6)
H2O2 36 0.305 (11) 0.083 (3) 0 0.388 (14) +

SIMPLE TREATMENT
LBAB (mg/mL)

3.125 39 0.154 (6) 0 0 0.154 (6) i ∆
50 38 0.263 (10) 0.026 (1) 0 0.289 (11) i ∆
LSAB (mg/mL)

3.125 42 0.190 (8) 0.047 (2) 0 0.238 (10) i ∆
50 44 0.159 (7) 0.091 (4) 0.022 (1) 0.273 (12) i ∆
Tyrosol (mM)

0.127 40 0.263 (10) 0.105 (4) 0.026 (1) 0.395 (15) i ∆
2.026 40 0.175 (7) 0 0 0.175 (7) i ∆

Iso-alpha humulone
(mM)

2.414 40 0.150 (6) 0 0 0.150 (6) i ∆
77.25 40 0.125 (5) 0.125 (5) 0 0.250 (10) i ∆

COMBINED TREATMENT WITH H2O2 (0.12 M)
LBAB (mg/mL)

3.125 40 0.275 (11) 0 0.025 (1) 0.300 (12) γ 22.68
50 42 0.095 (4) 0.071 (3) 0 0.166 (7) γ 57.21
LSAB (mg/mL)

3.125 40 0.175 (7) 0.025 (1) 0 0.200 (8) γ 48.45
50 44 0.159 (7) 0 0 0.159 (7) γ 59.02
Tyrosol (mM)

0.127 40 0.325 (13) 0.075 (3) 0 0.400 (16) λ ∆ −3.09
2.026 40 0.325 (13) 0.100 (4) 0 0.425 (17) λ ∆ −9.53

Iso-alpha humulone
(mM)

2.414 38 0.342 (13) 0 0 0.342 (13) γ 11.85
77.25 38 0.289 (11) 0 0 0.289 (11) γ 25.51

(1) Statistical diagnosis as stated by Frei and Wurgler [47]. + (positive) and i (inconclusive) against negative control; γ (significantly different)
and λ (inconclusive) in contrast with the positive control. m: multiplication factor. Kastenbaum–Bowman test without a Bonferroni
correction with probability levels of α = β = 0.05. (2) Inconclusive results were resolved using the Mann–Whitney U test. The delta marker
(∆) means no differences between the treatment and the concurrent control. (3) The inhibition percentages for the combined treatments
were calculated using the total spots per wing based on Abraham [49].

The concentration of H2O2 used (0.12 M) was demonstrated to be an inductor of
somatic mutations and mitotic recombinations in Drosophila [65]. Our trials showed a total
mutation rate of 0.388 spots/wing, which was double the water control.

LBAB, LSAB, tyrosol and iso-alpha humulone did not induce mutagenic activity at
the tested concentrations. The total mutation rates at the lowest and highest concentrations
of LBAB, LSAB, tyrosol and iso-alpha humulone (0.238 and 0.273 spots/wing, 0.154 and
0.289 spots/wing, 0.395 and 0.175 spots/wing, 0.150 and 0.250 spots/wing, respectively)
were not significantly higher than the negative/water control (0.157 spots/wing). Moreover,
LBAB, LSAB and iso-alpha humulone inhibited the genotoxic activity of H2O2 to medium–
high extents of 48.45–59.02%, 22.68–57.21% and 11.85–25.51%, respectively, at the lowest
and highest tested concentrations. On the other hand, tyrosol did not exhibit significant
antigenotoxic effects.

The polyphenol activity has been related to biological activities, such as antigeno-
toxicity [35]. Arimoto-Kobayashi et al. [77] indicated the antigenotoxic potential of beer
components against heterocyclic amines (HCAs) using in vivo systems. Studies with ty-
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rosol in the SMART test showed that it was nongenotoxic and exhibited antigenotoxic
activity against H2O2-induced damage at 140 µM [35]. This finding was only comparable
to our lower concentration. There are no data available on the in vivo antigenotoxic activity
of iso-alpha humulone. Although similar previous studies carried out with two types of
hops in Drosophila showed both no genotoxic or antigenotoxic activities against the H2O2
effects in the SMART test [29], our work showed the in vivo ability to protect DNA from
oxidative damage of toxins for the first time. As we mentioned above, the antigenotoxic
activity of hops could be due to the scavenging activity shown by this single molecule.

3.1.3. Lifespan

Longevity is a parameter that can be influenced by a wide variety of factors, including
lifestyle, gender, diet, environmental influences, genetic variation, cultural influences and
access to health care. Drosophila is an excellent system to study the longevity-promoting
properties of nutraceutical extracts and compounds as adults have many of the cell senes-
cence features of mammals [78–80].

Figure 2 shows the lifespan curves for LBAL, LSAB, tyrosol and iso-alpha humulone
at different concentrations. LBAL produced a significant increase in Drosophila lifespan at
the three lowest concentrations (3.125, 6.25 and 12.5 mg/mL), with an average longevity
increase of 6 days compared to their concurrent control. Tyrosol did not significantly affect
the longevity of Drosophila (longevity ranging between 56.2–63.046 days for the different
concentrations) relative to the control (60.333 days on average) (Table 3).
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Table 3. Means and significances of the lifespan and healthspan curves.

Compound Concentration Mean Lifespan (1) Mean Healthspan (1)

(Days) (Days)

LBAB

Control 60.104 33.229
3.125 mg/mL 66.176 * 42.500 **
6.25 mg/mL 66.149 * 36.378 ns
12.5 mg/mL 66.688 * 31.750 ns
25 mg/mL 59.474 ns 34.634 ns
50 mg/mL 58.600 ns 31.756 ns

Control 47.242 19.769
3.125 mg/mL 47.636 ns 34.728 ***

LSAB 6.25 mg/mL 34.323 *** 16.348 **
25 mg/mL 35.918 *** 17.313 ns
50 mg/mL 35.607 *** 24.671 **

Tyrosol

Control 60.333 33.154
0.127 mM 58.664 ns 20.000 **
0.253 mM 63.046 ns 47.923 ***
0.506 mM 62.018 ns 43.857 ***
1.013 mM 56.273 ns 38.364 ns
2.026 mM 58.588 ns 38.083 ns

Iso-alpha
humulone

Control 79.853 50.156
2.414 mM 66.779 *** 40.510 **
9.65 mM 67.702 *** 43.529 **

19.312 mM 77.522 ns 54.035 ns
38.625 mM 64.205 *** 41.017 **
77.25 mM 49.824 *** 30.323 ***

Means were calculated using the Kaplan–Meier method and the significances of the curves were determined
using the log-rank method (Mantel–Cox test). (1) ns: non-significant (p > 0.05), *: p < 0.05, **: p < 0.01, ***: p < 0.001.

On the other hand, LSAB significantly decreased the lifespan by over 13 days relative
to their concurrent control, with the lowest concentration not affecting the lifespan. Iso-
alpha humulone was the substance that showed the strongest decrease in lifespan, with
a significant range of between 12 and 30 days of lifespan reduction relative to its control
assay (Table 3). A relationship between the characteristic phenol of beers and the activity of
the full drink was also observed in the ageing trials. LBAB either makes equal or improved
the effect of tyrosol, LSAB and iso-alpha humulone in the longevity treatments.

Cañuelo et al. [21] reported that the inclusion of 250 µM tyrosol increased the stress
resistance and lifespan in the nematode Caenorhabditis elegans. This finding agreed with
our results, which confirmed the extension of Drosophila longevity at 0.253 and 0.506 mM
concentrations. Our results of iso-alpha humulone supported the stout beer results and
let us hypothesise that iso-alpha humulone could be, in part, responsible for the results
obtained for stout beer. Consequently, these types of ale beer should not be included in
the group of nutraceutical substances. Similar studies with two types of hops showed a
life expansion on Drosophila at lower assayed concentrations [29]. However, no previous
research was found for ale beer and iso-alpha humulone lifespans. For this reason, it is
important to take the present results with caution and carry out additional research using
other organisms and biological process targets.

3.1.4. Healthspan

The mean survival healthspans for each substance and concentration are shown in
Table 3. LBAB did not produce significant healthspan changes, except at the lowest concen-
tration, where is significantly increased the quality of life by over 9 days compared to the
water control. LSAB induced a significant improvement in healthspan in Drosophila relative
to the control at the lowest and highest assayed concentrations (3.125 and 50 mg/mL),
with an increase of 15 and 5 days, respectively, whereas the second-to-lowest concentration
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(6.25 mg/mL) produced a slight significant decrease in healthspan in this model organism.
Tyrosol showed a significant improvement in healthspan at 0.253 and 0.506 mM, with
increases of 14 and 10 days, respectively, whereas the lowest concentration (0.127 mM)
produced a significant decrease in healthspan in Drosophila. Iso-alpha humulone was
the compound that exhibited the worst results, as seen by the significant decrease in
healthspan in Drosophila at all the assayed concentrations, except at the medium concen-
tration (19.312 mM), whose result was similar to the control one. The reductions ranged
between 7–20 days.

This was the first time that a study of healthspan was carried out using a food
supplementation with LBAB, LSAB, tyrosol and iso-alpha humulone. Not all substances
should necessarily increase the lifespan of Drosophila. Assays with borage oil were carried
out to evaluate its health effects and showed positive effects. In contrast, gamma-linolenic
acid, which is one of the most important borage oil bioactive components, did not show
these effects [45]. This pattern is similar to that displayed in the LSAB and iso-alpha
humulone assays: the beverage/food/complex mixture exhibited positive effects, whereas
a distinctive single compound did not show the same healthy effect in the Drosophila.

3.2. In Vitro
3.2.1. Cytotoxicity

Figure 3 shows the cytotoxicity activities when the HL-60 tumour cells were treated
with LBAB, LSAB and tyrosol. These compounds showed a dose-dependent response,
with the IC50’s being lower than 62.5 mg/mL, 15.625 mg/mL and 0.127 mM, respectively.
The cytotoxicity curve of iso-alpha humulone showed a strong dose-dependent increase
of inhibition until 4.828 mM, although an increase of the cell growth at 19.3125 mM
was observed.
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Figure 3. Effects on the cell viability of promyelocytic human leukaemia cells (HL-60) treated with different concentrations
of lyophilised blond ale beer (LBAL) (A), lyophilised stout ale beer (LSAL) (B), tyrosol (C) and iso-alpha humulone (D) for
72 h. Each point of the graph represents the growing percentage relative to the control. Data are expressed as mean ± SE
from three independent assays.

The interrelation between cancer risk and beer consumption is controversial. Riboli et al. [81]
reported that colon cancer is not associated with beer consumption; however, Kato et al. [82]
indicated an increased risk of colorectal cancer in beer drinkers. Swanson et al. [83] found
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an inverse relationship between endometrial cancer and moderate beer consumption.
Potter et al. [84] reported a connection between lung cancer and beer consumption. In vitro
studies demonstrated the antiproliferative activity of components of lager beer with antiox-
idant properties in HL-60 promyelocytic cancer cells and prostate cancer cells, exhibiting
a strong association between antiproliferative activity, antioxidant potency and polyphe-
nol content [52,85]. The present cytotoxic results of both types of ale beers support the
epidemiological data on safety and the in vitro results of lager beer.

In relation to the phenolic compounds, studies of tyrosol in HL-60 cells, salivary
glands and Caco-2 cells indicated that tyrosol was either not cytotoxic or exhibited a low
level of cytotoxicity [35,86]. These results do not agree with ours, probably due to the
different and extreme concentrations tested by the researchers (lower than 140 µM and
10 mM).

Iso-alpha humulone exhibits significant biological activity against human lung and
breast cancer cells in vitro [87]. According to Honma et al. [88], humulone inhibits bone
resorption. Due to this property, the combination of vitamin D and humulone may be an
interesting tool in the differentiation therapy of myelomonocytic leukaemia. According to
Gerhauser [12] and Merinas-Amo et al. [29], the chemopreventive activities of hop-derived
beer constituents, such as bitter acids, were reported to be significant at inhibiting the
initiation, promotion and progression phases of carcinogenesis. These facts support our
findings regarding the iso-alpha humulone cytotoxic assays.

3.2.2. DNA Fragmentation

Figure 4A shows the results of the genomic integrity of HL-60 cells treated with LBAB,
LSAB, tyrosol and iso-alpha humulone visualised under UV light after an electrophore-
sis process. Fragmentation was identified in the three lowest concentrations of LBAB
(15.625, 31.25 and 62.5 mg/mL) and the two lowest concentrations of LSAB (15.625 and
31.25 mg/mL). In addition, the highest concentrations of iso-alpha humulone (19.312 and
38.725 mM) were those that showed DNA fragmentation. On the other hand, tyrosol did
not induce internucleosomal fragmentation at any of the assayed concentrations.

To our knowledge, none studies with LBAB and LSAB have been carried out in order
to analyse the DNA fragmentation pattern induced by ale beers in cancer cells. Studies
with lager beers showed a strong clastogenic/fragmentation effect of blond lager beer
at the 15.625 and 31.25 mg/L concentrations and moderate effects in the intermediate
concentration (62.5 mg/mL) [52]. Our results were similar to the previous results found
for lager beers. Studies with tyrosol revealed its capacity to prevent apoptotic human
keratin oxytic cell death against UVB radiation, pointing to its possible application in skin
protection against sunlight [89]. Furthermore, Anter et al. [35] studied the effect of tyrosol
on the integrity of the DNA of HL-60 cells. They showed that this phenol (8.75–140 µM)
did not induce proapoptotic DNA damage. Although we assayed higher concentrations,
we obtained the same pattern of tyrosol, as it did not activate apoptosis in the treated
HL-60 tumour cells. In relation to the humulone effects in HL-60 cells, a study supported
the claim that the potent antioxidative activity might cause apoptosis [90]. These results
are in agreement with ours, which showed specific DNA fragmentation that was caused by
iso-alpha humulone acting as an inductor of internucleosomal proapoptotic laddering.
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Figure 4. DNA-induced damage in promyelocytic HL-60 cells treated with different concentrations of lyophilised blond
ale beer (LBAL), lyophilised stout ale beer (LSAB), tyrosol and iso-alpha humulone for 5 h. (A) Internucleosomal DNA
fragmentation. M indicates the DNA size marker, C indicates the control treatment. (B) Alkaline comet assay (pH > 13) of
the treated HL-60 cells. DNA migration is reported as the mean TM. Data are expressed as the mean ± SE. The different
letters in each treatment mean differences relative to the negative control (ANOVA followed by a post hoc Tukey’s test).

3.2.3. Comet Assay

Figure 4B shows the tail moment of the HL-60 cells treated with different concentra-
tions of LBAB, LSAB, tyrosol and iso-alpha humulone. A positive dose-dependent response
was observed for the LBAB and LSAB treatments with significant double and/or the single-
strand breaks at the 31.2 and 62.5 mg/mL concentrations. In the tyrosol treatments, the
0.127 and 0.506 mM concentrations showed significant TM relative to the control.

Furthermore, iso-alpha humulone exhibited a negative dose-dependent effect in the
comet assay, showing significant strand breaks at the lowest concentrations (1.207 and
4.828 mM). However, similar studies with different hops showed no DNA damage at
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any level [29], which could be related to the biological interactions of the different beers’
constituents in the plant matrix.

The comet assay allowed us to easily identify apoptotic nuclei based on the typical
morphological cell changes attributable to DNA damage at the unicellular level with
empirical data [91]. Fabiani et al. [92] proposed five classes according to the TM values.
Based on this division, all concurrent control values should fall into class 0 (TM < 1);
LBAB 31.25 and 62.25 mg/mL showed TM values of 18 and 37, which means that they
respectively induced high and complete clastogenic damage in HL-60 cells; LSAB induced
damage at all the tested concentrations with a TM value of 10.6 for the lowest one, 96 for
the medium concentration and 272 for the highest concentration tested; tyrosol induced
TM values between 0.24 and 0.7 (class 0), meaning no significant damage to the cells was
caused; iso-alpha humulone caused a high amount of damage at 1.207 mM (TM value
of 10.84) and a medium amount of damage at 4.828 mM (TM value of 5.8); finally, the
remaining concentrations fell into class 0.

The comet assay TM measurements correlate with the cytotoxicity ones [93]. The
results of DNA fragmentation fit well with those observed in the comet assay as TM
values > 30 mean that apoptosis mechanisms have been induced [94]. Only the highest
concentration of LBAB and the two highest ones of LSAB showed TM > 30, supporting
the hypothesis of leukaemia cell death by apoptosis. The rest of the compounds and
concentrations tested induced cell death, although via a necrosis mechanism.

3.2.4. Methylation Status

Figure 5 shows the relative normalised expressions of the Sat-α, LINE-1 and Alu
M1 repetitive sequences studied in the HL-60 cells treated with different concentrations
of LBAB, LSAB, tyrosol and iso-alpha humulone. LBAB induced a significant hyperme-
thylated status only at the lowest concentration tested (15.625 mg/mL) on the LINE-1
repetitive sequence. LSAB induced significant hypermethylation in the 15.625 mg/mL
treatments on all repetitive sequences and also at the highest concentration (250 mg/mL)
for the Sat-α sequence relative to their controls. Tyrosol showed a general tendency to
methylate leukaemia cells with significant hypermethylation at 0.127 mM for Alu M1
and Sat-α sequences and 2.050 mM for the LINE-1 sequence relative to their controls. In
addition, iso-alpha humulone displayed a demethylation induction on the concentrations
relative to their concurrent controls.

No previous studies about methylation status with ale beers, tyrosol and iso-alpha
humulone were found. Only a similar study with two types of hops showed controversial
results due to both raw materials inducing methylation in LINE-1, Sat-α and Alu M1
sequences when they were treated at the lowest concentrations [29]. These results may be
related to the biological interactions of the different beers’ constituents in the plant cell
matrix. At present, it is thought that the mechanisms controlling the epigenetic methylation
DNA modification are multifactorial [95]. Methylation is an effective mechanism to avoid
the jumping of repetitive sequences [96]. Due to the effects that methylation induces in
the repetitive sequences of the genome, we could say that ale beers and tyrosol prevented
epigenetic DNA damage, as the methylaltion of repetitive sequences is understood to be
a genomic protective method [64,97]. These effects were not exhibited when HL-60 cells
were treated with iso-alpha humulone. Our results showed that the LINE and SINE (Alu)
sequences were prone to be methylated in HL-60 cells due to their genomic context or
characteristics. Centromeric areas (Sat) seemed to be more protected and inaccessible. Our
results in leukaemia cells showed an increase in global methylation. Besides this and taking
into account the idea of tumour cells downregulating methylation, this would indicate that
beer and its compounds act to avoid the repetitive sequences of tumour cells, and therefore,
would be preventive agents [97].
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4. Conclusions

Several approaches at the individual, cellular and DNA levels were used to study the
biological activities of two ale beers (LBAB and LSAB) and their most abundant biophenols
(tyrosol and iso-alpha humulone).

All the assays carried out indicated a high potency of lyophilised blond and stout ale
beers to modulate degenerative processes. The safety (non toxic and non genotoxic proper-
ties), the protection against the oxidative genotoxine H2O2 (antitoxic and antigenotoxic
activities), the extension of lifespan in D. melanogaster (only for LBAB), the induction of
clastogenic proapoptotic DNA damage in individual tumour cells and DNA fragmentation
and the modulation of methylation status were established. The phenolic alcohol included
in beer exhibited most of the activities of the blond ale beer as a complex mixture: it showed
antitoxic effects at higher concentrations, the curve of cells growing was similar to the
beers’ curves and it induced a hypermethylation status in tumour cells. The hop acid
showed similar activities to the stout ale beer as a complex mixture: it showed antitoxic
effects at lower concentrations, reduced the lifespan of the animal model and induced a
100% inhibition of tumour cell growth. On the other hand, some interesting peculiarities
have to be noted: tyrosol showed maintenance of the lifespan effect in Drosophila and
did not induce proapoptotic DNA fragmentation or DNA strand breaks and iso-alpha
humulone induced single-strand breaks at lower concentrations, whereas the DNA damage
was induced by beers was at higher concentrations; different patterns in the methylation
status was observed for the compounds relative to beers. For these reasons, the biological
activities assigned to beer consumption cannot be linked to one particular constituent due
to the high variability and complexity in the polyphenolic profile; furthermore, brewing is
influenced by many factors, such as the raw materials, yeast strains, wort composition and
fermentation conditions. To sum up, the results put forward showed that daily moderate
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ingestion of beer may be conducive to good health because of the attributes that the full
drink shows.
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