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Abstract: The application of white box models in digital twins is often hindered by missing knowl-
edge, uncertain information and computational difficulties. Our aim was to overview the difficulties
and challenges regarding the modelling aspects of digital twin applications and to explore the fields
where surrogate models can be utilised advantageously. In this sense, the paper discusses what
types of surrogate models are suitable for different practical problems as well as introduces the
appropriate techniques for building and using these models. A number of examples of digital twin
applications from both continuous processes and discrete manufacturing are presented to underline
the potentials of utilising surrogate models. The surrogate models and model-building methods are
categorised according to the area of applications. The importance of keeping these models up to date
through their whole model life cycle is also highlighted. An industrial case study is also presented to
demonstrate the applicability of the concept.

Keywords: digital twin; surrogate model; model life cycle; model maintenance

1. Introduction

Digital twins can play a key role in combining the related physical and virtual entities
into an efficient Cyber–Physical Production System (CPPS) [1]. More comprehensively,
they can be considered as virtual representations of physical entities as well as their
functions, data and capabilities provided that adequate synchronization from the physical
world is available [2]. Diverse applications of these concepts have led to a wide range of
interpretations, therefore, digital twins can be defined in many ways that are principally
based on the purpose of their application. Product-related virtual prototyping and the
digital twin of a physical entity were differentiated in [3]. The latter is explained as a
synchronized representation of relevant information, e.g., structure, function and behaviour
related to the physical entity. There are several commercially available engineering tools
that support CPPS technology and the construction of certain types of models for digital
twins mainly to mimic the operation of manufacturing systems [4] and their interactions
with human operators [5].

The most important benefits expected from the application of the digital twin concept
are the following [6]:

• Real-time monitoring and control could be extended in depth to large systems.
• Greater levels of efficiency and safety could be reached.
• Predictive maintenance scheduling supported by early fault detection.
• Scenarios and risk assessment as well as efficient and well-informed decision-making

offer further benefits.

Digital twins often use detailed mathematical models, which have high computa-
tional demands that hinder the implementation of effective solutions of optimisation [7],
including multi-objective particle swarm optimisation [8], and control and scheduling
tasks [9]. In the case of chemical engineering systems, the simulation tasks would be the
modelling of chemical manufacturing processes [10], scheduling scenarios [11] or complex
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thermodynamics [12]. Most of these simulations require high computational demand and
time to evaluate the different unknown model functions used in the simulator. The ap-
plication of finite difference methods is hindered in the case of models that are noisy or
discontinuous [13]. Therefore, the application of simulations with high computational
demands in performing domain exploration, optimisation or sensitivity analysis becomes
difficult because of the high number of the required function evaluations. An applicable
solution to the aforementioned problems is the use of surrogate models (also known as
metamodels, regression models or emulators), which are mathematically simple models
that map or regress the input–output relationships of a more complex, computationally
intensive model.

Surrogate models are used to substitute black-box of first-principle models that are
either computationally expensive to evaluate or do not supply gradients [14]. In these
situations, and when inaccuracies may occur due to the stochastic nature of the processes
or due to unknown model parameters, it is beneficial to approximate the objective function
and the corresponding gradients by surrogate models that lend themselves more easily to
optimisation algorithms [15]. From this viewpoint simple linearization of complex models
can also serve as surrogate models if the accuracy of the extracted linear model is adequate
for the intended use of the model. Unfortunately, in most of the cases, surrogate models
should describe more complex dependency of the variables and should approximate
gradients that are difficult to evaluate, e.g., due to the stochastic nature of the system. In case
of the simulators of discrete manufacturing systems, the discrete event and stochastic
models do not lend themselves for simple linearization either. These problems will be
presented in the case study of this work. Therefore, there is a need for surrogate models that

1. can be easily extracted from the complex simulators of digital twins,
2. handle the uncertainty and complex behaviour of the systems,
3. can be easily utilised in optimisation and control algorithms.

Another recently emerging solution for the high computational demand coming from
the complexity could be the application of parallel computing. Although, there are some
application areas, as well as optimisation problems with time expensive objective functions,
in which parallel computing could be not enough. In those cases, their cost should be
reduced using data-driven approximations or surrogates [16].

The main objective of this paper was to overview modelling methodologies for digital
twins and their application scope, in addition to assessing surrogate models and exploring
their application potentials. In this work we emphasize that the maintenance of the
models applied in digital twins is extremely important through the whole life cycle of the
model [17].

This review is based on the examination of the literature in Scopus by following
the PRISMA-P (Preferred Reporting Items for Systematic Review and Meta-Analysis
Protocols) [18]. The PRISMA-P workflow consists of a 17 tem checklist intended to facili-
tate the preparation and reporting of a robust protocol for a systematic review. The search
protocol was built over the following steps. A search query was constructed based on the
objectives of the research as listed in Table 1 (date of search: 13 October 2020). The fol-
lowing eligibility criteria were applied: (1) Date covered: the range of the search period
was unlimited; (2) Search fields: title, abstract or keywords of articles in the data sources;
(3) Document types: all types of documents were considered; (4) Language: only stud-
ies published in English were considered. The search strategy was defined, and after
that, the articles were identified, screened and assessed for eligibility to develop the most
relevant publications.
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Table 1. Results of publication search in the fields of engineering.

Search Strings/String Pairs Total Number of Publications

“surrogate model” 5702

“digital twin” 1577

“surrogate model” AND “optimisation” 3411

“surrogate model” AND “control” 754

“digital twin” AND “optimisation” 241

“digital twin” AND “control” 461

“surrogate model” AND “digital twin” 10

The collected bibliographic data were also applied to generate a network of keywords
found in the publications (see Figure 1) to highlight the thematic groups how surrogate
models are utilised in control or optimisation. Based on Figure 1, it can be concluded
that the most relevant keywords reflect the related applications in multiobjective optimi-
sation, structural design, computational fluid dynamics, shape optimisation and design
of experiments.

Figure 1. The network of keywords found in publications defines thematic groups connected to the
surrogate models and optimisation or control in engineering (between 2017 and 2020).

Surrogate models are successfully and efficiently used in a wide range of engineering
problems areas as it is presented in details in Table 2 summarising the main application
classes, the applied surrogate model or models and the types of problems. In this paper,
we tried to summarise the benefits and the drawbacks of the incorporation of surrogate
models into digital twins. Consequently, we suggest that surrogate models can serve as
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effective tools in the development of digital twins by replacing computationally prohibitive
physics-based models while almost preserving their high fidelity.

In our literature review, an attempt was made to explore the applications as widely
as possible in terms of operation optimisation, determination of optimal performance,
feasibility analysis, design of process variables as well as design and control of processes.
The use of surrogate models has many advantages including simplifying the object of study,
reducing the computational demand of optimisation, accelerating the parameter estimation
and analysis, simplifying sensitivity analysis to be performed, studying unknown black-box
processes, etc.

Table 2. The applied surrogate model types for different application problems.

Problem Type Surrogate Model Type Ref.

Direct and Global Optimization

Operation optimisation of a Cryogenics
Natural Gas Liquids recovery unit

Neural Network [19]

Optimization of catalytic reforming and
light naphtha isomerization

Polynomial Function [20]

Global optimisation of
membrane processes

Neural Network [21]

Determine the optimal structure and
operating parameters for a process to

minimize the sum of operating and capital costs

Kriging and Neural Network [22]

Determine the optimal performance of a
process at a natural-gas liquefaction plant

based on a single mixed refrigerant

Radial Basis Function [23]

Prediction and optimisation of the reaction
and separation performance of a

chemical process plant

Support Vector Machines, Kriging
and Neural Network

[7]

Optimize operating conditions of a
hydrocracking process

Kriging [24]

Optimization of pumping rates in a
coastal aquifer

Radial Basis Function and Kriging [25]

Feasibility determination via
Machine Learning

Support Vector Machine [26]

Global optimisation of distillation columns Kriging [27]

Multi-objective Optimization

A multi-objective optimisation of
guide vanes

Support Vector Machine [28]

An energy market design problem for a
commercial building

Polynomial Function [29]

Maximise the percentage of a scaffold filled
with neotissue

Kriging [30]

Multi-objective optimisation of management
options for agricultural landscapes

Neural Network [31]

Optimization of a sour water stripping plant Kriging [32]
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Table 2. Cont.

Problem Type Surrogate Model Type Ref.

Synthesis and Design

Design of a reusable launch vehicle for
multi-mission Kriging [33]

Optimise the process conditions of
hydroformylation process Neural Network [34]

Optimisation of vinyl chloride monomer
production process Kriging [35]

Design of microfluidic concentration
gradient generators Kriging [36]

Scheduling and Planning

Integrated optimisation of scheduling and
dynamic optimisation problems for a

sequential batch process
Piecewise Linear Regression [37]

Integration of planning, scheduling and
control; Optimisation of an enterprise of

air separation plants

Linear Regression and
Neural Network [38]

Reliability analysis of unidirectional
fibre-reinforced plastic composites Polynomial Function [39]

Design and Control

Simultaneous design and control of the
Tennessee Eastman (TE) process Power Series Expansion [40]

Integration of design and control
under uncertainty is developed for multiple

steady-state processes
Fuzzy Model [41]

Integration of process design, control and
scheduling illustrated by two example
problems, a system of two continuous

stirred tank reactors and a small residential
combined heat and power (CHP) network

State Space Model [9]

The main application fields of successfully applied surrogate models in engineering
practices are optimisation, namely direct, global and multi-objective optimisation; synthesis
and design; scheduling and planning; as well as design and control. Therefore, it can
definitely be assumed that the surrogate models can be used successfully in digital twins.

Despite the fact that the application fields are very similar for both the digital twin
and surrogate model, only a few publications were found where the surrogate model was
applied in the digital twin.

Therefore, the aim of our work was to explore the applicability of surrogate models in
digital twins. By analysing surrogate model applications, it can be stated that neither the
type of application nor the studied system determines the suitable type of surrogate model
clearly. Hence, the paper also tried to present the details of the applicable model types.

According to this aim, the main contributions of this work are as follow:

• In Section 2 we provide a detailed analysis of the modelling approaches that can be
used to build models used in digital twins.

• We provide an overview of the major steps of the identification of surrogate models
in Section 3.

• In Section 4, the existing applications of surrogate models in digital twins are overviewed.
• The applicability of surrogate models is demonstrated by an industrial case study

in Section 5.
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• In Section 6, the proposed guideline for the incorporation of surrogate models in
digital twins is discussed.

2. Model Building for Digital Twins

The new simulation paradigm for Industry 4.0 is best described by the digital twin
concept [42]. The model of an existing or planned system can greatly help to understand or
predict the behaviour of a production system or process. It can help reduce different costs,
shorter periods of development, improve product quality as well as facilitate knowledge
management. The integration of modelling solutions throughout the product life cycle
management requires the use of the virtual factory concept. The digital twin is supposed to
provide modelling solutions in all phases of the life cycle that support product development
and testing in a virtual environment, as well as in the following phases while also gathering
and using information from the previous phases. The digital twin contains a digital
shadow representing a structured collection of operational, conditional and process data
as well as a digital master, i.e., a universal model of the assets and their relations allowing
the accumulation of knowledge through the product life cycle [42]. A digital twin of
a Cyber–Physical Production System (CPPS) necessarily contains a digital twin of the
business process to provide a detailed digital representation of the manufacturing plant
that supports decision tools [43]. A possible application framework for digital twins is
depicted in Figure 2.

Figure 2. Application framework for digital twins (based on [44]).

It is clear that digital twins have the potential to be applied in almost every domain of
our world providing that suitable methods are available to build such digital representa-
tions [45]. By definition, digital twins should ultimately be indistinguishable from physical
bodies. This requirement sets huge challenges, e.g., dependability, sustainability, reliability
and predictability. As depicted in Figure 3, three main approaches for building digital twins
were considered: physics-based, data-driven and big data-based hybrid modelling [6].

Physics-based modelling is based on observing the behaviour of the physical en-
tity and developing a partial understanding, which is then expressed in mathematical
equations that are finally solved. Since the understanding is only partial and several as-
sumptions are made in the process, a significant proportion of the real physical phenomena
is ignored [6,46].



Processes 2021, 9, 476 7 of 29

Data-driven modelling in digital twins is becoming more and more popular due to the
increasing amount of process data, relatively low- high-performance computing solutions
and efficient training methods [47]. Process data not only represents known physics but
unknown parts too. Therefore, based on these data, the full physics can be mapped. Physics-
based modelling is usually less biased than data-driven methods due to the fact that they
use natural laws, which can be easily interpreted and generalized. However the expert
building the model can still be a source of bias. The main disadvantages of this approach
are possible numerical instability, sometimes still too high computational demand and
the likelihood of uncertainties in the models. Nevertheless, high-fidelity simulations can
support the development of Reduced Order Models (ROMs), also referred to as surrogate
or metamodels, well, which are much better suited for digital twin applications. ROMs are
supposed to provide a balance between the level of accuracy and the computational power
necessary [48]. This might contribute to our surrogate modelling approach too and can
justify our proposal to use existing simulations to develop suitable surrogate models.

Hybrid modelling combines physics-based modelling and data-driven modelling
with big data approaches and allows the inclusion of more physics by increasing model
complexity. On the other hand, the big data approach can provide better estimates of the
related quantities. Approaches that extract data-driven surrogate models from physics-
based models by simulations (i.e. model-based surrogates) can be located at the intersection
of physics-based modelling and big data solutions, these are known as physics-driven
surrogate models [6].

Figure 3. Combination of physics-based and data-driven modelling [6].

The advantages and disadvantages of physics-based modelling, data-driven modelling
as well as physics-based surrogate models are summarized in Table 3. Most of the discussed
properties are inherited from the modelling approaches independent of digital twins and
surrogate models. However, these properties are important to discuss as they determine
the applicability of the modelling approaches. Physics-based surrogate models have many
inherent advantageous properties of physics-based and data-driven solutions. The main
gains originate from the fact that they can describe system behaviour that is closely related
to the model they were extracted from and consequently are stable. At the same time,
errors and uncertainties can also be related to the original model. The surrogate model
uncertainty depends on the type of surrogate model and the number of simulations that are
used to train it [49]. Two surrogate techniques, Kriging and polynomial chaos expansion,
were employed for modelling wind turbines in [50]. In this work, the general-purpose
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uncertainty quantification framework UQLab was applied for the implemented surrogate
models. The recommended Eurocode standard approach was utilized to calculate model
uncertainty of both surrogate techniques, including all sensors. The application of the
surrogate model uncertainty in reliability analysis based on the equivalent reliability index
(ERI) and a new smooth sensitivity analysis approach to support the surrogate-based
design process were presented in [51]. It was illustrated by three different case studies that
the ERI approach could be utilized for surrogate model-based design problems with a low
number of training data.

Table 3. Comparison of physics-based modelling, data-driven modelling and physics-based surrogate models (based on [6]).

Physics-Based Models Data-Driven Models Physics-Based Surrogate Models

Benefits

Solid foundation based on
physics and reasoning

Once the model has been trained,
it is very stable for making
predictionsinferences

Once the model has been
trained, it is stable for making
predictionsinferences

Errorsuncertainties can be
bounded and estimated

Takes into account long-term
historical data and experiences

Errorsuncertainties can be
bounded and estimated

Less susceptible to bias Less susceptible to bias

Generalizable to problems
with similar physics

Although blackbox-type,
it reflects some of the physics

Drawbacks

Difficult to assimilate very
long-term historical data

So far, most of the advanced
algorithms function like
black boxes

Difficult to assimilate very
long-term historical data

Sensitive and susceptible to
numerical instability

Not possible to bound errors/
uncertainties

Limited generalization of unfore-
seen problems

Bias in data is reflected in the
model prediction

Poor generalization of unfore-
seen problems

The aim of our work was to identify models that are easy to implement and evaluate
as well as sufficiently flexible. Such models are, for example, linear regression, neural
networks, Kriging and radial basis functions. A detailed discussion of these models can
be found in [52,53]. Many engineering problems involve complex computer simulations,
which allow more accurate as well as high-fidelity information about complex, multi scale,
multi-phase and/or distributed computing systems to be obtained. However, these often
contain proprietary codes, if–then operators or numerical integrators in order to describe
phenomena that cannot be explicitly described by physics-based algebraic equations.
Consequently, the algebraic model of the system and its derivatives are either absent or
too complicated to obtain [54]. Surrogate models have the potential to speed up complex
modelling without sacrificing accuracy or detail. Also known as metamodels, reduced-
order models, model emulators, proxy models, lower fidelity models and response surface
metamodels, surrogate models are computationally cheaper and designed to approximate
the dominant features of a complex model [55].

The performance of surrogate models relies heavily on the quality and amount of
samples. Therefore, it is critical what type of sampling methods are used to obtain samples
from the detailed model. Such methods are, for examples, Monte Carlo simulations, genetic
algorithms and Gaussian random samplers ([52,56]).

It is vital to decide what purpose these models are used for. One of the most im-
portant applications of surrogate modelling is optimisation, particularly robust design
optimisation [57] or multi-objective optimisation [58]. Furthermore, surrogates are used
for the online control of dynamic processes, as well as in feasibility evaluation, parameter
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identification, sensitivity studies and scheduling [53]. From these applications, it can be
seen that it is crucial to know the limitations of surrogate models, i.e., to know under what
conditions they can be used. These issues are demonstrated in more detail in [52,55,56].

One of the most important tasks in surrogate modelling is to assess the reliability of
surrogate models, since a less adequate surrogate model can lead to the loss of resources
and have a negative influence on optimisation, prediction or feasibility evaluation. The vali-
dation of surrogate model is the process of assessing its reliability. Therefore, the validation
of the model is an inherently important task [52].

However, the aforementioned studies exclusively focused either on optimisation or
given modelling problems such as the availability of water resources ([55,56]). Therefore,
it is important to examine which models, types of sampling methods and validation
techniques are suitable for the given modelling problem. In the literature, unambiguous or
straight guidelines cannot be found for the selection of surrogate models.

This fact also supports the aim of our work, that is, to explore what types of surrogate
models and sampling methods are suitable in digital twins.

Typical tasks that may occur in model-based process operations and development,
the so-called Computer-Aided Process Engineering (CAPE) activities, e.g., optimisation,
synthesis and design, scheduling and planning as well as control, are illustrated in Figure 4:

Figure 4. Surrogate-based Computer-Aided Process Engineering (CAPE) activities [59] (A: approach
without model, B: approach with detailed model, C: approach with surrogate model, D: multi-fidelity
approach, E: surrogate model is used to accelerate the detailed model.

In Figure 4, dotted lines denote the data flow, which is applied for model building.
Solid lines represent the optimisation loop. Case A represents an optimisation loop without
any models. In Case B, a detailed model is used to speed up the evaluation of the complex
real-world function. In Case C, a surrogate model is applied to speed up this evaluation.
Case D represents a multi-fidelity approach in which a detailed model of a surrogate model
is additionally used. Models can be stacked as shown in Case E, where a surrogate model
is used to accelerate the detailed model as well as the detailed simulation.

In a recent review paper [44], several references for using surrogate models in digital
twins were included. The physics-driven surrogate models are defined as the intersection
of big data and physics-based high fidelity simulations in Figure 3. The combination
of principal component analysis (PCA) with Kriging was used to identify accurate low-
order models for the development of digital twins of reacting flow applications in [60].
Furthermore, a surrogate model-based method for individualised spot welding sequence
optimisation with regard to geometrical quality was introduced in [61].

In spite of the tremendous number of papers dealing with digital twins or surrogate
modelling, no detailed and systematic analysis of applying surrogate modelling methods
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in digital twins can be found, nor any reproducible case studies that could be the basis of
the detailed analysis of the field.

In the next section, the most commonly used models are explained along with brief
descriptions of their mathematical formulations as well as applicability limits. Furthermore,
some sampling strategies, validation techniques and the main applications of surrogate
modelling are presented.

3. Methodology of Surrogate Modelling

Building surrogate models in general requires a step wise development strategy as
discussed in the following. Then, a short overview of surrogate model applications clearly
suggests their promising capabilities in terms of digital twins.

The scientific challenge of surrogate modelling is the development of a surrogate that
is as accurate as possible, using as few simulation evaluations as possible. The process
is comprised of three major steps which may be interleaved iteratively (these steps are
depicted in Figure 5).

1. Design of experiments and sampling for surrogate modelling (Section 3.1).
2. Model selection and fitting the model parameters based on simulation results using a

detailed model (Section 3.2).
3. Surrogate model validation (Section 3.3).

Figure 5. The major steps of building surrogate models.

In the next subsections, the major steps of surrogate model development are described
in detail.

3.1. Design of Experiments and Sampling for Surrogate Modelling

The quality of surrogate models are significantly affected by the quality and the
sufficiency of sample data [53].

Sampling is the step of generating data points that can be used in surrogate model
building. Basically, two types of sampling strategies are differentiated that can be applied
to surrogate design, namely adaptive sampling and stationary sampling. Figure 6 rep-
resents the comparison of the main steps of stationary and adaptive sampling processes.
Stationary sampling methods rely on geometry or patterns. Frequently applied stationary
sampling methods are Latin Hypercube Sampling (LHS) as well as the Sobol and Halton
sequences [52]. LHS is a statistical method for generating a near-random sample of pa-
rameter values from a multidimensional distribution. Sobol and Halton sequences are
quasi-random approaches. In these methods, Sobol and Halton low-discrepancy sequences
are used to draw the samples. In the case of adaptive methods, new sample locations are
determined serially. To start with, a lower number of samples are generated usually using
stationary methods. The aim of the adaptive sampling strategy is to decrease sampling
requirements by obtaining more samples that improve the quality of the surrogate. Differ-
ent sampling methods are described in detail in [52]. In Table 4, publications from the last
three years were collected. It appears that both stationary and adaptive methods are in use
in engineering practices.
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Table 4. The applied sampling methods and surrogate model types for different application problems.

Sampling Method Problem Type Surrogate Model Type Ref.

Stationary sampling methods

Latin Hypercube
Design optimisation of a reversible

axial-flow pump based on
an ordinary one-way pump

Neural Network [62]

Multi-objective optimisation
to obtain the optimal design

of a cold plate structure
Polynomial Function [63]

Multi-objective optimisation and
conjugate heat transfer calculation

to obtain optimal cooling layouts on
a transonic high pressure guide vane

Kriging [64]

Application of a surrogate model
in the vibration analysis

of graphene sheets
Kriging [65]

Halton

Study of surrogate approaches
to the nonlinear and multi-scale

problem of turbulence and
fire-spotting in wildland fire modelling

Radial Basis Function [66]

Design optimisation of
a Pelton turbine runner Radial Basis Function [67]

Monte Carlo,
Halton-based

quasi-Monte Carlo
Natural gas pipeline design Radial Basis Function [68]

Adaptive sampling methods

Adaptive Predict the transitional flow
past rough flat plates Radial Basis Function [69]

Process optimisation of hydrofor-
mylation of the 1-dodecene process

Support Vector Machine
and Kriging [70]

Mixed-integer nonlinear benchmark
problems and a chemical process

synthesis case study

Kriging and
Neural Network [22]

Design of microfluidic
concentration gradient generators Kriging [36]

Feasibility analysis of the continuous
manufacturing of pharmaceutical tablets

Kriging and
Radial Basis Function [71]
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Figure 6. Comparison of the main steps of stationary and adaptive sampling processes based on [53].

3.2. Model Selection and Surrogate Model Structures

The most commonly used surrogate model types are the polynomials, Kriging models
or nonlinear regression models of machine learning, like radial basis functions, artificial
neural networks and support vector machines as seen in Figure 7. Some examples are
presented in Tables 4 and 5.

Figure 7. The most often applied surrogate model types in the field of chemical engineering (based
on a Scopus search, number of articles: 720).

Linear Regression is the simplest surrogate model. Thanks to its simplicity, its compu-
tational requirements are small; therefore, it is often employed in engineering practices. It is
well applicable for surrogate-based optimisation, where the number of calls to the function
can be very large. In this approach, the surrogate is represented as a linear combination of
the input variables as described by Equation (1) [52]:
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y(x) = w0 +
d

∑
i=1

wixi (1)

where x denotes a vector of size d; d stands for the number of variables and w represents a
vector of length d + 1.

Polynomial Functions are one of the most often used surrogate models in engineer-
ing practices. For regression purposes, computationally, these are the simplest models.
Furthermore, they should be used in case of less complex underlying models. They are
usually taken into consideration only main effects and first-order interactions, an example
of this is shown in Equation (2). Higher-order interactions often lack significance and
require more data to fit the additional parameters [53].

y(x) = w0 +
d

∑
i=1

wixi +
d

∑
i=1

wi ix2
i +

d

∑
i=1

d

∑
j≤i

wi jxixj (2)

It follows from the above description that polynomials work well for low-dimensional
problems. However, in engineering practices the high dimensional and highly non-linear
systems to which they are not applicable are very common [53].

Kriging, also known as Gaussian process modelling [22], is one of the most commonly
used surrogate models in the literature. Its mathematical basis is a Gaussian process model;
therefore, it does not require a large number of fitted parameters, and at the same time, it is
really flexible to describe many different functions and interpolate the data.

A Kriging surrogate model can be formulated as:

y(x) =
m

∑
i=1

wiyi(x) + ε(x) (3)

where yi(x) denotes m known independent basis functions that define the trend of mean
prediction at location x; wi stands for unknown parameters and ε(x) represents a random
error at location x that is normally distributed with a mean of zero. Kriging is well
applicable for problems where the dimensionality is lower than 20, the variables are
continuous and the underlying function is smooth. If there are variables, which are
discontinuous, the assumption of co-variance stationary of the correlation is not fulfilled
and this will lead to low performance [53].

Radial basis functions are a weighted linear combination of local univariate functions
applying selected measures of the distance from a point to an origin or a specified centre
(Figure 8).

Given n distinct sampling points, radial basis function surrogates can be represented
as in Equation (4):

y(x) =
n

∑
i=1

λiφ(‖ x− xi ‖2) + p(x) (4)

where λi, ..., λn ∈ R denote the weights to be determined; ‖ . ‖ stands for the Euclidean
norm and φ(.) represents the basis function.

Generally, radial basis functions are suitable to situations where Kriging surrogates
can be used; however, they are not used as often as in the chemical engineering literature
as Kriging. This may be the main reason why the parametrised basis function of Kriging
(which may be considered to be a special form of a radial basis function) has higher
accuracy, flexibility and ability to make predictions of model variance [53].

Neural networks follow the information processing scheme of biological neural net-
works, e.g., the brain (Figure 9).
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Figure 8. Architecture of a radial basis function network.

Figure 9. Architecture of a multi-layer neural network.

These surrogates are suitable for fitting a wide variety of systems and have presented
excellent results for many different tasks. The global characteristics of the design space
for high-dimensional nonlinear systems can be described adequately by neural networks.
The design of an appropriate network architecture, of which an infinite number of possibil-
ities are possible, is the disadvantage of neural network modelling. Often a tremendous
amount of data are required to fit the generally large number of parameters without over-
fitting. Therefore, artificial neural networks are recommended when a large amount of
data are available or can be easily generated. Their use in computationally demanding
simulations is not recommended, where the lots of function calls would become impractical,
except if small networks of only a few neurons are applied. However, when these problems
are insignificant or avoidable, neural networks are some of the most efficient surrogate
models available [53].

When it is desirable to replace a complex, computational simulation with a surrogate
model, then the following question arises: what type of surrogate model should be chosen?
We found no consensus or clear-cut guidelines in the literature regarding the selection
of surrogate models . A detailed review about the types of surrogate models and types
of sampling algorithms can be found in [56]. In other papers, a rule-based method for
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an automatic surrogate model selection called AutoSM [72] and a new selection criterion
called the penalized predictive score [73] have been suggested. One of the key issues in the
applicability of surrogate models is to determine their reliability, because if the surrogate
model is not accurate enough, it has a negative effect on optimization, prediction or
feasibility analysis. Some principles for selecting and building surrogate models have been
identified, these were described in the presentation of the model types above. However,
further research is still needed for exploring the appropriate approaches and methods.

3.3. Surrogate Model Validation and Maintenance

In general, model validation is the task of confirming that the outputs of a model
have such fidelity to the outputs of the data-generating process that the objectives of
the investigation can be achieved. Beyond assessing accuracy, validation techniques
can be applied to select a surrogate model from the possible models and to fine-tune
model parameters.

The validation procedure of data-driven models is independent of the model structure,
so generally, the same method is applied in case of linear models or complex models
generated by machine learning techniques. The data that were used to build the surrogate
model should not be used to validate the model; therefore, during the building of the model,
only a part of the available data should be used. The dataset used during the building of
a model is called a training set and this set is used to validate the model referred to as a
test set. The validation metrics can quantify the error of test set. Validation metrics that are
commonly used to quantify this error using the re-sampling strategies are the explained
variance score, the mean absolute error, the mean squared error, the median absolute error,
the R2 score, the relative absolute error and the relative maximum absolute error. These
classical validation metrics are discussed in detail in [52]. It can be seen in Table 5 that the
most often applied calculated type of error is the root mean square error, but often many
types of metrics are calculated to determine the applicable surrogate model.

It must be emphasized that modelling should not be finished at this point. According
to Table 3, one of the disadvantages of surrogate models is that their generalisation capabil-
ity in systems that contain unforeseen problems can be limited. Besides, most processes do
not operate around a true steady state due to changes in equipment, feedstock, sensors and
operational strategy. These are the main reasons why it is extremely important to note that
surrogate models require continuous maintenance during the whole life cycle of the model.

This requirement can be considered as generally valid for all models applied in in-
dustrial systems, namely models in advanced process control (APC), soft sensors, etc.
For example, if an APC is left unsupervised, its performance will deteriorate over time. De-
terioration is inevitable since a number of factors can change and affect the operation of the
process. Maintenance of the APC system is essential to ensure continued performance [74].
In another study, guidelines are suggested for estimating the optimum maintenance cycles
for APC projects [75]. Model maintenance is also crucial in the case of soft sensors. Several
papers deal with maintenance approaches for soft sensors [76,77]. In both papers, different
online soft sensor maintenance solutions are presented, e.g., semi-supervised [76] and
Kalman filter-based [77] maintenance strategies. From the examples presented above, it can
be seen that the maintenance of models is an inherently important task in digital twins too.

In [78], three main reasons are presented for a model to become impaired, namely
non-stationary data distribution, degradation of hardware and system updates. This means
that should the application environment or systems e.g., operating parameters, states,
be changed, then it may become necessary to change the model parameters or even its
structure and after that the model must be validated again. In order to assure or improve
the quality of the model, a maintenance approach consisting of two sequential tasks
(monitoring and updating) is proposed [78]. Another paper [17] draws attention to the
need for the continuous maintenance of digital twins. They advise combining automated
low-level adaptations for local updates with expert-driven revisions on higher levels.
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Table 5. The applied calculated error types and surrogate model types for different application problems (Absolute Error
(AE); Relative Mean Error (RME); Root Mean Square Error (RMSE)).

Problem Type Surrogate Model Type Calculated Error Type Ref.

1D, 2D and 10D mathematical test
functions; engineering problem:
Prediction of the thrust on the

whole rotor of a small unmanned
aerial vehicle (UAV)

Polynomial Function;
Radial Basis Function;

Kriging
R2 [79]

Multi-objective reliability-based
design optimization of

cementless hip prosthesis
Polynomial Function; Kriging

Maximum AE;
RME;
RMSE

[80]

Prediction of the load-bearing
capacity of concrete-filled steel
square hollow section members

Neural Network
RMSE;

Mean AE; R2 [81]

Mathematical and engineering
test problems, e.g., Laval nozzle

Radial Basis Function;
Kriging;

Polynomial Function
RMSE [82]

Evaluate gas-liquid flow in a
horizontal pipe

Neural Network RMSE; R2 [83]

Mathematical test functions Kriging RMSE [84]

Optimization of a horizontal
axis tidal stream turbine blade

Radial Basis Function; Kriging;
Polynomial Function

RMSE [85]

Predict the microstructure of
the final rod product

Polynomial Function; Kriging;
Radial Basis Function

RMSE [86]

Single-objective global
optimization applied within an

efficient global optimization framework
Kriging RMSE [87]

4. Potential Applications of Surrogate Models in Digital Twins

The application of digital twins is becoming more accepted in many industrial sectors
from discrete manufacturing to process industries and even the utilities sector [88]. As an
illustrative example, the digital twin of a water utility system can support the manage-
ment with a complete, up-to-date view of the water system, can alert in the case of any
anomalies and can provide accurate estimates about the operation of the system by inte-
grating operational and business information flows. It can be considered as a model of
the physical system that gets more and more accurate as fresh data or advanced machine
learning solutions become available [89]. The scope of application ranges from manage-
ment to control solutions, from operation through safety to optimality aspects, and can
cover different parts of production facilities from the equipment to the enterprise levels.
In the following subsections some illustrative examples and solutions representing recent
application-related developments in process industries, control solutions and discrete
manufacturing are discussed.

4.1. Potential Applications in Process Industries

In process industries (e.g., the oil refining and petrochemical industries), process systems
engineering and related digital twin solutions play a key role in processing towards a
smart operation [90]. Precursors of digital twinsdigital siblings have been used in large
continuous plants for decades. They have been widely applied, for example, as operator
training simulators. The core dynamic simulator of these solutions can provide an excellent
foundation for digital twin applications [91]. A good example is the introduction of
Honeywell in 2002, known as the Shadow Plant solution mimicking the process operation.
In [92] the authors discuss that, when digital platforms are integrated within the concept
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of Industry 4.0, transaction costs can be reduced, combining strengths of enterprises
and realizing economies of scale as well as economies of scope.

The most relevant framework in which surrogate models are utilised in digital twins
is depicted in Figure 10. Select process models describing the system’s characteristics with
sufficient accuracy are used in the forthcoming optimization and control steps. In this
application, most of the calculations are conducted in commercial process flow-sheet
simulators and process models were used as data generators to develop surrogate models.
As the surrogate models map the input and output variables, the models can facilitate their
integration with optimisation procedures and reduce the computational effort. The concept
has been applied already in the petroleum industry, where artificial neural network is
chosen as type of surrogate model with an adaptive sampling strategy, and the selected
optimization procedure is genetic algorithm [93].

Figure 10. Operational digital twin framework supported by Artificial Intelligence (AI).

The main advances of the following areas are smart instrumentation, real-time optimi-
sation, big data analytics (optimization, monitoring and management), advanced control
and management platforms, predictive modelling techniques which allow a wide range
of problems related to operational ability to be solved, abnormal situation management,
planning and scheduling for oil refineries that data-driven modelling can take over when
the application of complex first-principle models becomes prohibitive [90]. The possible
main components of smart processing in the oil industry are summarised in Figure 11.

Energy efficiency is another key factor in process industries. Multi-stage compressors
used in parallel arrangements, for instance, are often responsible for a considerable propor-
tion of energy used in the chemical industries. A suitable real-time optimization framework
combining short-term and long-term optimization for such systems offers an advantageous
solution [94]. Since reliability and flexibility are ensured by using standby compressors,
it is important to keep the compressor models up to date, while it is almost impossible
that different compressors have identical characteristics and efficiencies. Hence, the use
of data-driven modelling like surrogate models based on real-time process data is almost
inevitable. The application of an integrated framework is demonstrated in an industrial
case study and shows that it has a great potential to reduce the power consumption of
compressor trains.
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Figure 11. Components of smart processing in the oil industries [90].

4.2. Potential Applications in Control, Safety and Risk Management

Combining data-driven and physics-based models can help to describe the difference
between physics-based mapping and experimental data. This approach allows for the
performance of the model to be gradually improved as new data becomes available. The hy-
brid model approach for digital twins can be considered, e.g., it can be utilised in control
applications and several types of surrogates [95]. Regarding control-related applications
of digital twins, e.g., process analysis, optimisation, control design, commissioning and
operator training, both static and dynamic models should be included. Since detailed
physics-based models might be too complex and computationally intensive for optimiza-
tion and control applications, one can refer to the surrogate models, which are simplified
models that provide fast solutions and can be obtained based on more complex models.

Complex production processes involve several decision layers in a hierarchical struc-
ture, consequently, ensuring an optimal operation across the enterprise is a difficult task.
Solving problems at different levels in an isolated manner frequently results in sub-optimal
or inconsistent solutions. Therefore, compared to traditional solution strategies, an inte-
grated approach that treats the different decision levels in an integrated framework offers
solutions over a wider domain [96]. Although digital twins are not explicitly referred to,
the methodology clearly relies on adequate and suitable up-to-date models of the pro-
duction process; therefore, these models match the features of digital twins discussed
earlier. Contrary to monolithic models that require centralised optimisation methods,
the application of distributed optimisation is strongly based on surrogate modelling.

In terms of process industries, the complexity of the combined process and control
systems as well as the severe and often extreme operating conditions can involve high risks
to one’s health, the environment, process safety and operational security. An important
potential of digital twins is its ability to handle and lessen these risks by detecting faults and
allowing operators to monitor the process and test deviations. A cooperative framework
that integrates monitoring, diagnosis and optimised control can reduce process fluctua-
tions as well as guarantee robust and safe process control [97]. This approach applies the
subspace identification method to build discrete-time multivariable state-space models
of the blocks of the relevant decomposed process. The framework consists of modelling,
residual computing and evaluation, monitoring, diagnosis and fault detection, as well
as tolerant control and optimisation. Sensor and actuator faults, process disturbances
and cases involving multiple faults are all handled. The applicability and advantages
of the proposed methodology are demonstrated in the Tennessee Eastman benchmark
process [98], which is often utilised in operation-related research. Describing the process
behaviour of digital twins adequately can help to assess the process risks and to prevent
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possible losses. Well established commercial process simulators, such as Aspen HYSYS,
serving as a steady-state simulation module, can be extended by a suitable process haz-
ard analysis module and then can be applied for automated hazard analysis of chemical
processes as it was demonstrated on a complete ammonia production plant [99]. Process
safety analysis usually involves Hazard and Operability Studies (HAZOP). Using ade-
quate dynamic simulation models, dynamic HAZOP analysis can be performed to explore
hazard events like controller failures [100]. Validation of the functional model should rely
on process knowledge and quantitative process simulation that is important in HAZOP
studies [101,102]. A digital twin centred framework applying a reference model offers a
more general solution for risk prediction and prevention. The proposed reference model
covers all layers of the process plant: physical space of the process, communication system,
digital twin and user space. The outlined digital twin system involves tools for simulation,
control and execution, anomaly detection and prediction, as well as a cloud server platform
supporting real-time data handling [103].

As assets of manufacturing facilities are becoming the focus of process management,
asset management plays an important role throughout the process life cycle. Advanced
simulation solutions can predict stochastic processes that take place in the physical assets.
In this sense, a digital twin means a virtual representation of a physical system that employs
field signals and is especially well-suited for asset-related decision-making, for example,
risk management approaches [2]. In this way, asset-related decisions can be linked to any
of the asset control levels (strategic, tactical or operational). Besides asset configuration,
reconfiguration, planning and commissioning, digital twins facilitate effective asset diag-
nosis that helps asset condition monitoring as well as health assessment and consequently
provide an asset-centric approach to safety problems. Features necessary for asset health
diagnostics can be extracted from process data through the functionalities of digital twins.

Digital twins, as continually updated dynamic virtual instances of a physical sys-
tem, adequately reflect the performance and health status of the physical system and
can be applied everywhere in the system life cycle as model-based systems engineering
tools [104]. Among other characteristics, they enable malfunctioning equipment to be
troubleshooted by combining operation and maintenance data. The authors distinguish
between four levels of digital twins. Pre-digital twins are built without physical twins
and support, for example, risk assessment. Digital twins in general are such virtual mod-
els that incorporate performance, health and maintenance information of physical twins.
Adaptive digital twins include an adaptive user/operator-sensitive interface that supports
real-time decision-making. Intelligent digital twins employ machine learning to provide
more granular information and have a high degree of autonomy.

4.3. Potential Applications in Discrete Manufacturing

Regarding discrete manufacturing processes, digital twins can embrace the complete
product life-cycle. Digital twins of the product and the manufacturing process representing
the designer’s ideas and physical constraints can support an iterative process to reach
optimal construction. In smart factory schemes, digital twins of the production line and
the manufacturing process can be utilised to develop manufacturing plans and strategies,
as well as real-time process monitoring and supervision. The digital twin of the product
can be used for analysing the product state and the environmental effects, as well as
predicting the lifespan of the product, diagnosing faults and consequently applying smart
maintenance, repair and operations (MRO) strategies [105].

Particularly considering Industry 4.0 initiatives, smart manufacturing and progress in
cyber–physical systems within discrete manufacturing can hardly be digitalised without the
strong involvement of digital twins. The ISA-95 hierarchy model of manufacturing systems
clearly expresses the need to integrate the different levels of manufacturing processes
from enterprise resource planning through manufacturing execution management into
the control of the production process. In discrete manufacturing, digital twin solutions
most often rely on simulation modelling or discrete-event simulation and efforts aim to
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automate model building. Recent advances in the field mainly focus on efficient model
building strategies for digital twins. Comprehensive methodologies even allow special
engineering and operational tasks to be solved, e.g., damage-tolerant planning based
on damage diagnosis and prognosis supporting design, production and maintenance
actions [106]. The scheme and the main components of the proposed solution are depicted
in Figure 12.

Figure 12. Components of a digital twin for damage-tolerant planning [106].

A novel methodology for the high-level model building of digital twins relies on sta-
tistical, discrete-event simulation and optimisation as well as automates many of the steps
of model construction [107]. The method focuses on the bridging abstraction metamodel,
which captures all discrete-event considerations in terms of manufacturing, supply chains,
warehousing and distribution as well as transportation and logistics. The system model is
then transformed into a metamodel by applying a universal modelling framework.

An automated discrete-event simulation model construction approach can also be
developed by relying on information obtained from the production system [108]. Based on
customer order data and the manufacturing process database, the method automatically
constructs ad hoc models to solve different optimization tasks, e.g., modification of the
factory layout to reduce the travel distance of products. The method is based on a com-
mercial simulation tool and the ad hoc models were constructed by modifying standard
XML files representing the model. A promising method can automatically create virtual
factory models based on production configuration data given in generic XML format [109].
A virtual factory represents a high-fidelity, multilevel simulation involving a wide range
of heterogeneous models. Another solution generates an complete flow shop model by
automatically locating, linking and parametrising predefined objects [110]. The necessary
information is extracted from the enterprise information system and manufacturing exe-
cution system. This later provides data on production sequences as well as current and
planned progress of production regarding workstations and manufacturing orders.

5. Application Example

To demonstrate the applicability of the developed framework, we present the main
results of the cycle time control of a production line of a wire-harness assembly line,
where the control model was extracted from the digital twin of the process.

The studied assembly line consists of w = 1, . . . , Nw workstations where operators
perform different sets of activities related to the production of different types of modular
products (see Figure 13). We developed a digital twin that automatically updates the
technology simulator based on the information extracted from the manufacturing execution
system (MES) and a real-time location system (RTLS), where the RTLS was used to provide
information about the material flows and the assembly times [111]. The scheduling, control
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and the monitoring of the production are challenging due to multiple types of product
being produced in the conveyor. The sequence of the Np types of products is represented
as π(k) ∈ {1, . . . , Np} according to which type of product is being produced at the first
workstation in the k = 1, . . . , N-th cycle. The product types are defined based on their
m = 1 . . . Nm modules according to the binary vectors pp, the product definition of which
can be considered as the bill of materials (BOM).

The proposed adaptive digital twin identifies the changes on the shop floor to make
the process simulation adaptive and online (see Figure 14). The model is based on the
estimated activity times of the operators that is identified based on the RTLS-measured
duration of the product spent in each zone/cell [112].

Figure 13. The scheme of the the open-station conveyor that is used to for wire-harness production.

Figure 14. The developed framework of the real-time digital twin concept. The two main inputs of
the simulation are the material flow (process model) and the real-time location system (RTLS)-based
parameters of the model.

The key element of the digital twin is the simulator of the production line that has
been developed in Siemens Plant Simulation Software. The discrete event simulator is
generated by a program code taking into account the real-time information coming from
the production line and the hierarchy of the process.

The optimisation and control of the production face challenges due to the complexity
of production and the unpredictable nature of human activities. The cycle time of the
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conveyor should be controlled as every operator can be delayed or work ahead and the
conveyor should be stopped when the delay reaches a certain limit.

The main problem is that the complex simulation model cannot be applied in a real-
time control scheme, so a control-relevant model should be extracted from the digital
twin. As shown in Figure 15, we developed a model-based predictive controller (MPC)
algorithm that utilises the distribution functions of the activity times and converts the
problem into a simple linear model-based predictive controller [113]. The extracted model
can be considered a surrogate model of the digital twin used in real-time optimisation.

The developed model predictive controller minimises the cycle time (represented as
u(k) at the k-th time instant) in a Hp prediction horizon, by determining a control sequence
of length Hc u∗(k) = [u(k), u(k + 1), . . . , u(k + Hc)] where Hc denotes the control horizon
was formulated.

The cost function is formalized to minimise the cycle time which in turn minimizes
any delay to the expected finishing times in Equation (5), which also optimizes the utilities
of the operators and attempts to ensure a well-balanced workload.

min
u∗(k)

u∗(k)T Ru∗(k) (5)

The optimisation problem of the model predictive controller is constrained to en-
sure that the control sequence seeks to avoid stoppages of the conveyor belt due to the
accumulation of a delay.

As u(k) denotes the cycle time set at the beginning of the kth cycle, the kth cycle starts
at tc(k) and finishes at tc(k + 1) = tc(k) + u(k). According to this the end of cycle time in
the prediction horizon can be calculated as tc(k) + ∑

Hp
j=1 u(k + j− 1).

The constrains represent the requirement that the t f (k + j|k) predicted finishing times
should not exceed the cycle time over the ccrit time in the prediction horizon:

t f (k + j|k) < tc(k) +
j

∑
i=1

u(k + i− 1) + ccrit . (6)

The resultant sets of equations can be represented in matrix form to define the
quadratic optimisation problem along with the Equation (5).

ARu∗(k) < bR (7)

where AR is a lower triangular matrix with size HpxHc that sums up the u control signal
over the prediction horizon and bR = [−t f (k + 1|k) . . . ,−t f (k + Hp|k)]T + tc(k) + ccrit
according to the rearranged form of the constraints

−
j

∑
i=i

u(k + i− 1) < tc(k) + ccrit − t f (k + j|k) . (8)

The concept has been validated in a reproducible simulation study in which the
digital twin is used to check the performance of the controller. As the performance of the
controller is illustrated in Figure 16. The performance of controller have been analysed
and presented in detail in [113], in this paper we discuss the results from viewpoint of the
model development.

The example illustrated the following benefits of surrogate modelling:

• Surrogate models should be applied when the discrete event simulator of digital twins
cannot be utilised directly in control and optimisation.

• When the model is not linearisable, surrogate models can be extracted from the
simulators by Monte Carlo simulation. In this case study, the distributions of the
activity times were evaluated and approximated by fuzzy models.
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• The resulted models can be further simplified to support problem-specific utilization.
In this paper, a simple linear model was extracted from the fuzzy model that represents
the activity times in a given confidence.

The example also highlights the possible problems of the utilization of surrogate models:

• The modeller should validate not only the accuracy of the extracted model on a train-
ing and validation dataset, but also the performance of the application should be
carefully analysed as most of the control and optimisation algorithms need extrapola-
tion from the models.

• The surrogate models should not be oversimplified. Finding the optimal model
complexity needs details analysis of the system and the application tasks. In this
situation, the principle of Occam’s Razors should be adapted; one should select the
solution with the least complexity that makes predictions suitable for the given task.

Figure 15. The scheme of the proposed surrogate model-based predictive controller (MPC).
The model of the MPC is updated based on the information extracted from the digital twin.

50 100 150 200 250 300 350 400 450

Cycle step

20

40

60

P
ro

d
u

c
t 

ty
p

e

0 50 100 150 200 250 300 350 400 450

Cycle step

500

1000

1500

c
(k

) 
[s

e
c
]

0 50 100 150 200 250 300 350 400 450

Cycle step

-500

0

500

t d
(k

) 
[s

e
c
]

Figure 16. Production of N = 500 products in batches by applying model predictive control with
regard to the cycle time of the wire-harness production line, Hp = 5, Hc = 3, α = 0.1. Control of
the cycle time maximizes productivity, so performance is enhanced by 20% in this complex problem
compared when the cycle time was constant. The bottom plot shows the time delay (td(k)) at every
workstation where the colours represent the operators.
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6. Conclusions

In this paper, arguments supporting the suitability of surrogate models in digital
twins are presented. In Figure 3 it was demonstrated how surrogate models link together
physics-based modelling, data-driven modelling and hybrid solutions that lead to the
combination of physics-based modelling and data-driven modelling with big data ap-
proaches. A comparison showing the advantages and disadvantages of each model type
is presented in Table 3. Based on these characteristics, it can be stated that the use of
surrogate models has many advantages, e.g., although of black-box-type, they still reflect
some of the physics; once the models have been trained, they become stable for making
predictionsinferences; errorsuncertainties can be bounded and estimated; they are less
susceptible to bias. The main argument for applying surrogates in digital twins is that
their ultimate computational demand could be significantly smaller than that of a detailed
process simulation and even a Computational Fluid Dynamics (CFD)-based simulation.

Basically, two difficulties with the application of surrogate models can be identified,
one of them is the huge amount of data needed for model building and the other is that they
need continuous maintenance over the whole life cycle of the model. These are explained
in detail in the following:

• Data requirement: As shown in Section 3, collecting data of adequate quantity and
quality is the key component of suitable surrogate model building. These data may
come directly from physical reality (measurements) or even from an adequate simula-
tion of the system (process simulator, CFD-based simulator, etc.).

• Maintenance requirements: Since the generalisation capability of surrogate models
can be limited, moreover, processes cannot really operate exactly in a true steady
state, the continuous maintenance of surrogate models is considered a decisive task.
Application-oriented validation should fit into the whole life cycle of the model as
was discussed in Section 3.3.

In Section 3, the steps of surrogate model building and the commonly used surrogate
models were presented in detail. The application limits and advantages of all types of
models were described. Based on that section and the application areas introduced in the
introduction and Section 4, it is obvious that surrogate models could be effectively applied
in digital twins. The fundamental question is what type of surrogate models would be
appropriate in particular cases. By examining the types of surrogate models used in each
application, it can be concluded that the type of surrogate model used does not basically
depend on the application task, rather on the kind of system modelled. In Section 3.2,
two papers were cited in which different algorithms were presented to automate the
selection of applicable surrogate model types for the current task and system.

Based on the discussed considerations, it is recommended to keep in mind the follow-
ing steps when applying surrogate models in digital twins:

1. Definition of the physical process (manufacturing system) to be modelled.
2. Determination of the application task (optimization, control, scheduling, etc.).
3. Selection of the suitable modelling approach (physics-based, data-driven or hybrid)

based on the knowledge of and information available on the underlying system.
4. Collection of appropriate quantity and quality data (depending on the modelling approach).
5. Model building (selection of the model type and determination of the model parame-

ters) and model validation.
6. Regular supervision of the application environment and model quality.
7. Maintenance of the model (modification of the model parameters or structure if nec-

essary).

We hope that this paper will serve as a guideline for the development of digital twins
that utilise surrogate models.

In the paper we not only highlighted the benefits of surrogate models, but we also
discussed that the utilisation of simplified models may have multiple disadvantages,
e.g., it is not straightforward what accuracy should surrogate model have to be considered
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suitable, in which regions of the operation will be the model utilised and what is the
extrapolation and generalisation power of the extracted models.

To mitigate the highlighted drawbacks of the utilisation of surrogate models, we
defined the following research topics for the future:

• Development of surrogate models for process safety: fusion of measured and simu-
lated data for the modelling of process behaviour far from standard process conditions
(e.g., runaway state, malfunction).

• Development of automated testing and validation tools that consider the application-
specific preferences of the surrogate models.

• Development of automated tools that identify surrogate models based on process data
and simulation models and determine the optimal model complexity.

• Study how semi-mechanistic models can be identified and utilized in the framework
of digital twins.
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