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Abstract: This paper proposes and analyzes a mathematical model for the production of bioethanol in
a continuous bioreactor with recycling. The kinetics correspond to the use of Saccharomyces bayanus
for the fermentation of sugars found in wastewater from soft drinks. The proposed model considers
product growth latency, which was experimentally found in batch studies of ethanol production. Fur-
thermore, the inhibition effect of ethanol is expressed by a modified version of the classical Andrew’s
model for substrate inhibition. The proposed model consists of only three ordinary differential equa-
tions containing a minimal number of operating parameters, which include the bioreactor residence
time, glucose feed concentration, recycle ratio and the fraction of biomass removed from the reactor
by the flow. The positivity and the boundedness of solutions of the model were confirmed under
reasonable restrictions of parameters. The stability analysis showed that there is a value of residence
time at which an exchange of stability occurs between the trivial washout and non-washout solutions.
This critical value depends only on the substrate feed concentration, biomass death rate, recycle ratio
and purge fraction. Dynamic simulations of the model were carried out for substrate concentration
in the range of 100–250 g/L, commonly used for the production of ethanol. An inverse response
due to the inhibition effects of ethanol was observed in the time evolution of substrate and biomass
concentrations. Parametric studies showed that ethanol concentration increases with the recycle ratio,
with the inverse of residence time and with the inverse of purge fraction. The effect of ethanol latency
has, on the other hand, a substantial effect on ethanol concentration. Despite its unstructured nature
and the fact that some parameters such as temperature and acidity were not taken into consideration,
the proposed model managed to provide useful results on the bioreactor-settler stability and the effect
of key parameters on its dynamic behavior, which could pave the way for future optimization studies.

Keywords: bioreactor; continuous; model; delay; Saccharomyces bayanus; ethanol; stability; perfor-
mance

1. Introduction

The growing demand for petrifaction and fossil fuels due to the swift revolution of
automotive industries and modern societies has been inspired the study of developing
alternative fuels for combustion engines for decades. Environmental pollution issues
are also pushing scientists and industrialists to search for alternatives to fossil fuels [1].
Sincere attention has been given to inventing/discovering a sustainable, clean and cheap
alternative to satisfy modern smart environmental needs [2,3].

Bioethanol is one of the best alternatives to oil-derived fossil fuels. Ethanol extracted
from suitable renewable sources is carbon friendly and an attractive green energy to control
environmental contamination and reduce dependence on petrifaction and fossilized carbon
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energy [4,5]. Ethanol is also one of the most efficient and attractive substitutes for fuels,
either when blended with gasoline or used as a fuel-ethanol. More recently, it has received
attention for its use as an oxygenate for the control of automotive tailpipe emissions.
Alcohols are also used successfully as substitutes of gasoline ether oxygenates [6].

Nowadays, a variety of agricultural products, such as sorghum, corn, sugar cane,
wheat, carrot and cassava [7–10], are used as main substrates for bioethanol production. In
this aspect, one important type of work reported in the literature is to extract the kinetics
of batch fermentation using the aforementioned raw materials. This task involves the
selection of suitable yeast strains, the extraction of the kinetic model and the determination
of media’s optimal operating conditions. However, another important challenge consists
of the design of large-scale ethanol continuous processes. This is an area where relatively
less work has been carried out compared to batch processes [11–13]. This field is also quite
challenging since it is known that the process of bioethanol production by continuous
fermentation is highly complex and nonlinear [14]. The nonlinearity manifests itself in the
occurrence of phenomena such as bistability [15] and stable limit cycles [11].

The development of mathematical models for continuous ethanol processes can be a
very useful tool, which can be applied to explore the complex phenomena that occur in
industrial ethanol continuous processes [11–16]. On another, equally important level, these
mathematical models can also be used for parametric studies and to offer insight into ways
to increase the productivity of the process.

The main purpose of this study is to propose a rigorous yet reasonably simple model
for ethanol production in a well-stirred continuous bioreactor with recycling. The model
will be used to analytically investigate the stability of the reactor–settler system and to carry
out numerical simulations to investigate the effects of the different system parameters on
ethanol concentration. In order to make the analysis a realistic one, the kinetic parameters
were extracted from batch studies carried out in [2,3] on the use of Saccharomyces bayanus for
the fermentation of sugars contained in industrial wastewater from soft drinks. In order to
describe the inhibition effect of ethanol on the growth rate, the authors tested a number of
growth rate expressions and found that an expression similar to Andrew’s expression [17],
commonly used to describe substrate inhibition, was most suitable for fitting their exper-
imental data. The authors developed a mathematical model for the batch process that
satisfactorily described sugar consumption, biomass growth, and bioethanol production.
The researchers in [3] also observed a latency of ethanol production in their experiments.

Besides incorporating the kinetics associated with decay, maintenance and growth
delay based on the aforementioned work of [3], the proposed model in this study incor-
porates key operating parameters that can influence the performance of the bioreactor,
namely the residence time, the recycle ratio and the purge fraction.

The rest of the article is organised as follows. In Section 2, we propose our non-
linear model with a delay. A set of important properties of the model is discussed in
Section 3. The steady states and the stability properties of such steady states are studied in
Sections 4 and 5. A numerical illustration and conclusion are drawn in Section 6.

2. Mathematical Model

In this section, we present the model equations that describe the dynamics of a well-
stirred continuous bioreactor with cell recycling shown schematically in the diagram of
Figure 1. The mass balances of substrate (S), biomass (X) and ethanol (E) yield the following
ordinary differential equations

V
dS
dt

= F(S0 − S)− µmax

Yx/s
·M(S, E) · X ·V, (1)

V
dX
dt

= −Fβ1X + µmax ·M(S, E) · X ·V + RF(C− 1)X− bHVX, (2)

V
dE
dt

= −Fβ2E + Ye/x µmax ·M(S, E)e−(pS)q · X ·V + VγX, (3)
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V is the rector volume, F the volumetric flow rate, S f the concentration of the substrate
feed, µmax the maximum specific growth rate, Yx/s the biomass yield coefficient, Ye/x the
ethanol/biomass yield coefficient, bH the biomass death rate coefficient and γ is the kinetic
constant of ethanol production by maintenance. The specific growth rate is denoted by
M(S, E) and is a function of both substrate and ethanol concentrations, since it is known
that the growth rate is inhibited by ethanol concentration [2,3]. A number of growth
rate models were proposed in the literature, but here, we adopt the following expression
proposed by [3]

M(S, E) =
S

Ks + S + KeE2 , (4)

where Ks is the saturation constant and Ke the inhibition constant by ethanol. The form
of Equation (4) is inspired by the expression used in the case of pure substrate inhibition

S
Ks+S+KeS2 , which is known as Andrew’s growth model [17]. As was mentioned in the

introduction, the choice of the expression in Equation (4) was guided by the experimental
work carried out in [3] on the growth of Saccharomyces bayanus on wastewater from soft
drinks. Moreover, to account for latency in ethanol production, a term dependent only
on sugar concentration [3] was included in the ethanol mass balance (Equation (3)). The
reactor residence time is defined by

τ =
V
F

(5)

In Equation (2), the term CX represents the biomass concentration in the flow leaving
the separating unit. The value of the concentrating factor (C) depends upon the design
and operation of the settling unit. It is also highly dependent on recycle properties such
as settling, and compressibility behavior. The term β1, on the other hand, represents the
fraction of the biomass that leaves the reactor (purge fraction). A mass balance around the
settling unit shows that the maximum value of the concentrating factor is given by

Cmax = 1 +
1
R

(6)

Thus, the maximum value of the product R(C− 1) is

|R(C− 1)|max = 1 (7)

The coefficient β2 in Equation (3) represents, on the other hand, the fraction of ethanol
in the feed. For practical reasons, this fraction is negligeable or nonexistent, and therefore a
zero value is assumed for β2. The model is supplemented with an initial profile satisfying

S(0) = S0 ≥ 0, X(0) ≥ 0, E(0) ≥ 0 (8)

It can be seen that, for particular laboratory environmental conditions, the kinetic
parameters Ke, Ks, Yx/s, Ye/x, bH , γ, p,q and µmax are all fixed. The operating parameters
that one may vary are S0, R, β1 and τ.

The values of the kinetic parameters are shown in Table 1.
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Table 1. Dimensional parameters values.

Parameters Values Unit Reference

µmax 0.606 h−1 [3]
bH 0.00916 h−1 [18]
p 1.188 × 10−6 gethanol/gbiomass [3]
q 3.038 g / L [3]

S0 100 g / L [3]
Yx/s 0.066 gbiomass/gsubstrate [3]
Ye/x 9.227 gethanol/gbiomass [3]
Ke 0.029 L gsubstrate/g2

ethanal [3]
Ks 65.535 gsubstrate/L [3]
γ 0.001 gethanol/gbiomass/h [3]

Figure 1. Schematic diagram of the bioreactor-settler system.

The Dimensionless Model

The model is rendered dimensionless using the following variables: [S∗ = S/Ks],
[X∗ = X/Yx/sKs], [E∗ = E/Ks] and [t∗ = µmaxt]. The system of ODE (1)–(3) can be written
in a dimensionless form by

dS∗

dt∗
=

S∗0 − S∗

τ∗
− X∗S∗

1 + S∗ + γ1E∗2 , (9)

dX∗

dt∗
=
−β1X∗

τ∗
+

X∗S∗

1 + S∗ + γ1E∗2 − b∗H X∗ +
R∗1 X∗

τ∗
, (10)

dE∗

dt∗
=
−β2E∗

τ∗
+ γ2X∗ + γ3

[
X∗S∗

1 + S∗ + γ1E∗2

]
e−(p∗S∗)q

. (11)

All the dimensionless parameters here are non-negative. A short tabular description
of the model parameters is given in Nomenclature section. Looking at the dimensionless
parameter R∗ = R(C− 1) that represents the effective recycle ratio, it can be seen that the
maximum value of R∗ is 1. On the other hand, the choice of β1 = 1 gives a continuous
flow reactor with recycle. Therefore, the cases R∗ = 1 and 0 < R∗ < 1 with β1 = 1
define a flow reactor with ideal and non-ideal recycle respectively. The values of the model
dimensionless parameters (computed using the dimensional values of Table 1) are given in
Table 2. Besides the fixed kinetic parameters, the nominal values of operating parameters
are also shown in the table. Specifically, the glucose feed concentration S0 has a nominal
value of 100 g/L, which corresponds to S∗0 = 1.53. It should be noted that the range of
sugar concentrations commonly used for the production of ethanol is about 100–250 g/L.
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Table 2. Dimensionless parameters values.

Parameters Values
β1 1
β2 0
γ1 1.9
γ2 6.6 × 10−5

γ3 0.609
τ∗ 12
b∗H 0.0151
p∗ 7.786 × 10−5

R∗ 1.0

3. Mathematical Analysis

Uniqueness, uniform boundedness and invariance of solutions play an important role
in mathematical modeling, since these stated properties reflect the physically meaningful
features of the problem. To that end, we begin here by studying the uniqueness properties
of solutions followed by the boundedness and invariance of model solutions over the
following physically meaningful domain

Ω =
{
(Z1, Z2, Z3) ∈ R3|Z1 ≥ 0, Z2 ≥ 0, Z3 ≥ 0

}
, and J = [0, T], T >> 0.

To facilitate our study a variable Z ∈ R3 is defined by

Z = (Z1, Z2, Z3) := (S∗, X∗, E∗).

Using the new set of redefined variables, the model (9)–(11) is written as

d
dt

Z = F(Z), with a given initial condition Z(0) = Z0 ≥ 0, (12)

where F : R3 → R3, and Fi : R3 → R, i = 1, 2, 3 are given by

F(Z) = [F1(Z), F2(Z), F3(Z)],

with

F1(Z) =
S∗0 − Z1

τ∗
−M(Z)Z2,

F2(Z) =
−β1Z2

τ∗
+M(Z)Z2 − b∗H Z2 +

R∗Z2

τ∗
,

F3(Z) =
−β2Z3

τ∗
+ γ2Z2 + γ3M(Z)Z2e−(p∗Z2)

q
.

Here, the modified function
M : R3 → R

is given by

M(Z) =
Z1

1 + Z1 + γ1Z2
3

. (13)

It is obvious that 0 ≤M(Z) ≤ 1, ∀ Z ∈ Ω. The time evolution of the growth rate of
biomass (Z1), consumption of substrate (Z2), and ethanol production (Z3) are described
by (12). Now, it is our aim to investigate if the solutions of (12) are positive. This step is
necessary to see if the model is physically meaningful. To facilitate the analysis, we enforce
a few physically reasonable restrictions

H1 : Parameters used here belong to R+.

H2 : β1 + τ∗b∗H ≤ R∗ + τ.
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H3 : β2 ≤ (γ2 + γ3)τ.

H4 : 0 ≤ R∗ < 1.

The assumptions H1, H2, H3 and H4 represent physically meaningful restrictions on
the model parameters.

Theorem 1. Assume that H1–H4 hold, then there exists a bounded unique solution to the initial
value problem (12) over J.

Proof. Here, the gradient of F(Z) exists for all Z ∈ Ω. We can see that |M(Z)| < 1 for all
Z ∈ Ω. Applying H1–H4 leads to

|F1(Z)| ≤
S∗0
τ∗

+
1

τ∗
‖Z‖,

|F2(Z)| <
(

1 +
R∗ − B∗Hτ − β1

τ∗

)
‖Z‖

and

|F3(Z)| <
(
− β2

τ∗
+ γ2 + γ3

)
‖Z‖.

Thus,
‖F‖∞ < C1‖Z‖+ C2,

where

C1 = max
{

1
τ∗

,
(

1 +
R∗ − B∗Hτ − β1

τ∗

)
,
(
− β2

τ∗
+ γ2 + γ3

)}
and

C2 =
S∗0
τ∗

.

Thus, Equation (12) has a unique solution which is also bounded [19,20].

Theorem 2. Assume that along with H1,

H5 : β1 + bHτ ≥ R + τ(γ2 + αγ3) for some 0 < α << 1.

holds. Then, the integral Z(t) of (12) is a uniformly bounded solution over Ω̄ if z0 ∈ Ω
satisfies |z0| < ∞.

Proof. Let us define
U = Z1 + Z2 + Z3.

Then, using the fact that

M(Z)e−(p∗Z1)
q ≤ 1, ∀ Z ∈ Ω

we obtain

dU
dt

= −C1U + C2,

where
0 < C1 ≤ min{A, B, C}

with

A =
1
τ

, B =
β1

τ
+ bH −

R
τ
− γ2 − αγ3, C =

β2

τ
and C2 =

S∗0
τ

,

where α = |M(Z)e−(p∗Z2)
q | << 1 which completes the proof.

Now, we focus on showing the invariance of integral Z(t) of (12) in Ω.
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Theorem 3. Ω is a positively invariant set for the integral Z if H1 holds.

Proof. Consider the domains

Set 1 : Z1 = 0, Z2 > 0, and Z3 ≥ 0,

Set 2 : Z2 = 0, Z1 ≥ 0, and Z3 > 0,

Set 3 : Z3 = 0, Z1 > 0, and Z2 ≥ 0,

Set 4 : Z1 ≥ 0, Z2 = 0, and Z3 = 0,

on the boundary and the edges of Ω. Then

dZ1

dt
=

S∗0
τ∗

> 0,

for the Set 1. Thus, Z1 is inside Ω. For Set 2, we have

dZ2

dt
= 0,

and this guarantees that Z2 resides inside the domain Ω. Now, for Set 3, we have

dZ3

dt
= γ2Z2 + γ3M(Z)Z2e−(p∗Z2)

q
,

which also shows that Z3 ∈ Ω. We can show that

dZ1

dt
=

S∗0 − Z1

τ∗
,

dZ2

dt
= 0,

dZ3

dt
= 0

for Set 4. Thus, all the cases confirm that Z ∈ Ω. Hence, the solution domain Ω is
invariant [21].

Now, we analyze the parameter dependence of the solution trajectories of the dimen-
sionless model (9)–(11). Let

S 1 : {S∗,10 , τ∗,1, p∗,1, q1, β∗,11 , β∗,12 , γ1
1, γ1

2, γ1
3, R∗,1} be the parameter Set 1 for (9)–(11)

with integrals Y(t) ∈ R3
+.

S 2 : {S∗,20 , τ∗,2, p∗,2, q2, β∗,21 , β∗,22 , γ2
1, γ2

2, γ2
3, R∗,2} be the parameter Set 2 for (9)–(11)

with integrals Z(t) ∈ R3
+.

Now, let recall that∣∣∣∣∣ 1
1 + Y1 + γ1Y2

3

∣∣∣∣∣ ≤ 1 and 0 ≤M(Y) ≤ 1, if Y = [y1, y2, y3]
′ ∈ R3

+.

We need the following lemma to analyze parameter estimation.

Lemma 1. Let Z(t) be the trajectory of the model with initial value Z0, and γ, C ≥ 0 be the
constants such that the following linear growth condition holds [22]

‖Ż(t)‖ ≤ γ‖Z(t)‖+ C, ∀ t ≥ 0,

then the inequality

‖Z(t)− Z0‖ ≤ ‖Z0‖(eγt − 1) +
C
γ

eγt, ∀ t ≥ 0, holds.



Processes 2021, 9, 461 8 of 18

Theorem 4. Let Y(t) and Z(t) be two integrals of the system of differential Equations (9)–(11)
with parameter sets S1 and S2, R∗ ≥ B∗2 and initial profiles Y0 and Z0, respectively; then

‖Y− Z‖ ≤ ‖Y0 − Z0‖eC∗t + C1eC∗t, t ≥ 0,

holds where C∗ ≥ 0 and C1 ≥ 0 are constants.

Proof. Let Y(t) and Z(t) be two integrals for the system (9)–(11), then

‖Ẏ− Ż‖ = ‖ f (Y)− f (Z)‖ =
3

∑
i=1
| fi(Y)− fi(Z)|.

Now

|F1(Y)− F1(Z)| =
∣∣∣∣∣S∗,10 −Y1

τ∗,1
−

S∗,20 − Z1

τ∗,2

∣∣∣∣∣+ |M(Y)Y2 −M(Z)Z2|

and thus
|F1(Y)− F1(Z)| ≤ C1 + C2‖Y− Z‖

where C1 and C2 depend on the parameters. Similarly, using the fact that 0 ≤M(Z) ≤ 1
for all Z ∈ Ω yields

|F2(Y)− F2(Z)| ≤ C3‖Y− Z‖

where C3 depends on the parameters. Additionally,

|F3(Y)− F3(Z)| ≤
∣∣∣∣∣
(
−

β1
2

τ∗,1
+

R∗,1

τ∗,1

)
Y3 −

(
−

β2
2

τ∗,2

)
Z3

∣∣∣∣∣
+
∣∣∣(γ1

2 + γ1
3)Y2 − (γ1

2 + γ1
3)Z2

∣∣∣
≤ C4|Y2 − Z2|+ C5|Y3 − Z3| ≤ C6‖Y− Z‖

where C6 = max{C4, C5},

C4 = max

{
−

β1
2

τ∗,1
+

R∗,1

τ∗,1
,−

β2
2

τ∗,2

}
,

and
C5 = max

{
γ1

2 + γ1
3, γ1

2 + γ1
3

}
since

0 ≤M(Z)e−(p∗S∗)q ≤ 1 for all Z ∈ Ω.

A combination of all the above inequalities yields

‖Ẏ− Ż‖ ≤ C1 + C∗‖Y− Z‖

where C∗ = max{C2, C3, C6}. Thus applying Lemma 1 yields

‖Y− Z‖ ≤ ‖Y0 − Z0‖eC∗t + C1eC∗t, t ≥ 0,

which completes the proof.
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4. Equilibria

The objective in this section is to find steady-state solutions of the nonlinear system

F(Z) = 0 where F(Z) =

 F1(Z)
F2(Z)
F3(Z)

,

with

F1(Z) =
S∗0 − S∗

τ∗
−M(Z)X∗,

F2(Z) =
(
−β1

τ∗
+M(Z)− b∗H +

R∗

τ∗

)
X∗,

F3(Z) =
−β2E∗

τ∗
+ γ2X∗ + γ3M(Z)E∗e−(p∗S∗)q

.

It can be noted that Z∗0 = (S∗0 , 0, 0) is always a washout solution of the nonlinear
system F(Z) = 0 in Ω. This solution is not desirable since it indicates that no biological
process has occurred. We now look for a non-trivial solution (non-washout) to the nonlinear
system of equations F(z) = 0 in Ω, considering some physically meaningful restrictions on
parameter values. Let

F2(Z) = 0 gives M(Z) = a1,

where
a1 = (β1 − R∗1) + b∗h τ∗ > 0. (14)

Now, adding F1(Z) = 0 and F2(Z) = 0 yields

X∗ =
S0 − S∗

a1τ∗
. (15)

Substituting the value of X∗ (Equation (15)) in F1(Z) = 0 yields

E∗ =
√

a1γ1(S∗[1− a1]− a1)

a1γ1
. (16)

From equation (F1(Z) = 0), we have

X∗S∗

1 + S∗ + γ1E∗2 =
S0 − S∗

τ∗
. (17)

Thus, substituting Equation (15) in Equation (17) results in

E∗
2
=

(S∗[1− a1]− a1)

a1γ1
. (18)

Note that the right side of Equation (18) must be positive since the left side is E∗2.
Thus, the expression inside the square root in Equation (16) is positive. Now, substituting
Equations (15), (17) and (18) in F3(Z) = 0 yields

b1 y2 + b2 y + b3 = 0, (19)

where

y =e−(p∗S∗)q
, b1 = (a1γ3τ∗(S∗ − S∗0))

2, b2 = 2a1γ2 γ3τ∗2(S∗ − S∗0)
2,

b3 =(γ2τ(S∗ − S∗0))
2 − [β2 a1]

2
(

1 + S∗

γ1
2 +

S∗ τ∗

a1 γ1

)
.
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5. Stability of the Equilibria

Stability analysis is at the heart of dynamical analysis. Only stable solutions can be
noticed experimentally. Thus, it is very important to analyze the stability of an ODE system.
Mostly researchers rely on the eigenvalues of the Jacobian matrix relevant to the nonlinear
dynamical system. The Jacobian of the system of ODE (9)–(11) can be presented by

J(S∗, X∗, E∗) =


−[ 1

τ + A4] −A2 A3

A4 A5 −A3

A7 A8 −A9

,

where

A1 =
1

τ∗
+ A4 A2 =

S∗

1 + S∗ + γ1E∗2 ,

A3 =
2γ1X∗S∗e∗(

1 + S∗ + γ1E∗2
)2 , A4 =

X∗
(

1 + γ1E∗
2
)

(
1 + S∗ + γ1E∗2

)∗2 ,

A5 =

[
(R∗ − β1)− τ∗b∗H

τ∗

]
+

S∗

1 + S∗ + γ1E∗2 ,

A6 = −A3, A7 = − q(p∗S∗)q[e−(p∗S∗)q
]fl3 X∗(

1 + S∗ + γ1E∗2
) +

[e−(p∗S∗)q
]fl3 X∗

(
1 + γ1E∗

2
)

(
1 + S∗ + γ1e∗2

)2 ,

A8 = γ2 +
γ3S∗[e−(p∗S∗)q

]

1 + S∗ + γ1e∗2 , A9 =
(β2)

τ∗
+

2γ3γ1X∗S∗e∗[e−(p∗S∗)q
](

1 + S∗ + γ1E∗2
)2 .

The eigenvalues of J(S∗, X∗, E∗) evaluated at the washout steady-state can be pre-
sented by

λ1 =− 1
τ∗

< 0,

λ2 =−
[

β2

τ∗

]
< 0,

λ3 =
R∗ − β1

τ∗
+

S∗0 − b∗H(1 + S∗0)
1 + S∗0

. (20)

Therefore, it follows from the sign of eigenvalues that the washout branch is always
stable if the following restriction holds

b∗H ≥
S∗0

1 + S∗0
. (21)

Performing similar results as shown in [23], we can see that the washout solution is
globally stable when the following restriction of parameters holds b∗H ≥

S∗0
1+S∗0

. If b∗H <
S∗0

1+S∗0
we conclude from Equation (20) that the washout steady-state is always stable provided that

τ∗ < τ∗cr =

(
1 + S∗0

)
(β1 − R∗)

S∗0 − b∗H(1 + S∗0)
. (22)

It can be noted that the washout solution is never stable when R∗ = β1. Therefore, we
end up with the following result.
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Lemma 2. The washout solutions X∗0 = (S∗0 , 0, 0) are locally asymptotically stable provided the
condition (22) is satisfied.

The Jacobian matrix relevant to the non-washout solution branch can be presented by

J(S∗, X∗, E∗) =


−[ 1

τ∗ + A4] −A2 A3

A4 0 −A3

A7 A8 −A9

,

The term J(2, 2) was evaluated using the following relation[
R∗ − 1− b∗Hτ∗

τ∗

]
= − S∗

(1 + S∗ + γ1E∗2)
.

Here the solutions are physically meaningful if Ai > 0, i = 1, ..., 9, i 6= 6, 7. Thus the
characteristic polynomial of J(S∗, X∗, E∗) is given by,

z(λ) = λ3 + c1λ2 + c2λ + c3, (23)

c1 =
1

τ∗
+ A9 + A1,

c2 =
A9
τ∗

+ A4 A2 −A7 A3 + A8 A3 + A4 A9,

c3 =
A8 A3

τ∗
−A2 A3 A7 + A9 A4 A2.

Thus, it is sufficient (using the well-known Routh–Hurwitz criteria [24]) to establish
that c1 > 0, c3 > 0 and c1c2 − c3 > 0, to confirm that all the roots of z(λ) have negative
real parts.

Clearly c1 > 0. To prove that c3 > 0, we have

c3 =
A8 A3

τ∗
−A2 A3 A7 + A9 A4 A2 =

A8 A3
τ∗

+ A2[A4d1 + A3d2] > 0.

d1 =
(β2 − R∗2)

τ∗
, d2 =

q(p∗S∗)q[e−(p∗S∗)q
]fl3 X∗(

1 + S∗ + γ1e∗2
) .

For positive solutions, we have Ai > 0, i = 1, ..., 9, i 6= 6, 7, Hence, c3 > 0.
We now examine the expression c1c2 − c3. After some manipulations, we find that

c1c2 − c3 =
(

A3 A7 + A4
2
)

A2 + (A4 + A9)(+A3 A8 + A4 A9 −A3 A7)

+
A4 A2 −A7 A3 + 2 A4 A9 + A9

2

τ
+

A9

τ2 ,

=
(

A3 A7 + A4
2
)

A2 + (A4 + A9)(A3[A8 + d2] + A4d1)

+
A4 [d1 + A2 + A9] + A3d2 + A9

2

τ
+

A9

τ2 > 0,

Thus, we conclude, using Routh–Hurwitz criteria, that all the roots of the characteristic
polynomial z(λ) have negative real parts. Therefore, we have the following result:

Lemma 3. Whenever the no-washout branch X∗ = (S∗, X∗, E∗) is positive, it is locally asymptot-
ically stable.
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6. Numerical Discussion

In this section, we move on to study the time evolution of the model solutions of
Equations (9)–(11). The initial value problem was integrated using the Runge–Kutta based
ODE45 solver of MATLAB. We start by showing the bioreactor dynamics for the case of
β1 = 1 and different values of the recycle ratio (R∗ = 0, 0.5 and 1). This corresponds to a
continuous flow with no recycle (R∗ = 0), with a non-ideal recycle (R∗ = 0.5) and with
an ideal recycle (R∗ = 1). The rest of the model’s dimensionless parameters are shown in
Table 2. The simulations are shown in Figure 2 for startup conditions
S = 100 g/L, X = 4.32 g/L and E = 0. This corresponds to (S∗ = 1.53, X∗ = 1, E∗ = 0).
The figures show a similar trend for all values of R∗. The substrate concentration decreases
quickly for a short time, reaches a minimum and then increases to reach a constant value.
This is a typical example of an inverse response. This behavior is also shown in the biomass
profile as the biomass concentration reaches a maximum and then decreases due to the
inhibition effects of ethanol. The profile of ethanol concentration shows, on the other hand,
a steady increase until an asymptotic value is reached.

The effect of recycle ratio is shown in the diagram. It can be seen that bioethanol
concentration substantially increases as the recycling ratio is increased. In fact the increase
in bioethanol concentration is around 43% when the bioreactor is operated with no recycle
(R∗ = 0) compared to R∗ = 0.5.

The effect of latency of ethanol production is investigated by numerically varying the
parameter p∗ for the same residence time τ = 12 and start-up conditions as Figure 2 but
with an ideal recycle R∗ = 1, since it yields the highest ethanol concentration. Although
p∗ is not an operating parameter, it is important to study its effect on the performance
of the process. Figure 3 shows the effect of different values of p∗ (p∗ = 0, 0.5, 1 and 10).
First, it can be seen that the inverse response, which is the feature of the inhibition effect of
ethanol, is also maintained in this figure; however, it is attenuated as the delay is increased.
As expected, the ethanol concentration decreases as the delay is pronounced. For example,
the decrease in ethanol concentration is around 23.8% when the delay is increased from
p∗ = 0 to p∗ = 1.

Figure 2. Cont.
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Figure 2. Time evolutions by varying recycle ratio R∗ with a fixed initial profile (S∗ = 1.53, X∗ =
1, E∗ = 0) and the rest of parameters of Table 2.

The effect of varying the bioreactor residence time τ∗ is shown in Figure 4. τ∗ was
varied from 1, 6, 12, to 20. A large ethanol concentration is obtained for small residence
times (i.e., larger dilution rates). The increase in the residence time rate almost linearly
affects the decrease in ethanol concentration. An increase in residence time from τ∗ = 1 to
τ∗ = 6 decreases the asymptotic value of ethanol concentration by 10.5%.

Figure 3. Cont.
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Figure 3. Time evolutions by varying p∗ with a fixed initial profile (S∗ = 1.53, X∗ = 1, E∗ = 0),
R∗ = 1 and the rest of parameters of Table 2.

Figure 4. Time evolutions by varying residence time τ∗ with a fixed initial profile (S∗ = 1.53, X∗ =
1, E∗ = 0), R∗ = 1 and the other parameters of Table 2.
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Finally, we examine the effect of the purge fraction β1. In order to avoid a washout
solution, as predicted by Equation (22) for R∗ = β1, and to allow for the study of variations
of β1, the effective recycle ratio R∗ was fixed at 0.5 and β1 was allowed to vary from 0.5,
0.75 to 1. It can be seen from Figure 5 that the highest ethanol concentration occurs at the
smallest values of the purge fraction. However, a careful choice of values of β1 and R∗

should be made to avoid washout conditions.

Figure 5. Time evolutions by varying purge fraction β1 with a fixed initial profile (S∗ = 1.53, X∗ =
1, E∗ = 0), R∗ = 0.5 and the rest of parameters of Table 2.
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7. Conclusions

In this study, a mathematical reactor model with Andrew’s growth rate and latency
of ethanol production was developed to study the dynamical behaviour of continuous
fermentation in reactor with recycle using parameter values from batch experimental
data [3–18]. The positivity and the boundedness of model solutions were confirmed under
reasonable restrictions on parameters. The stability analysis of the steady state solutions
yielded an analytical expression for the critical residence time at which a stability exchange
between washout and non-trivial solution occurs. We observed that this critical value of
residence time is dependent on the feed substrate concentration, purge fraction and the
recycle ratio. Therefore, a careful choice of these operating parameters can avoid washout
conditions. Numerical simulations provided useful qualitative trends of the dynamics of
the process. An inverse response was observed in the profile of substrate and biomass
concentrations. This dynamic behavior has practical implications when feedback control
is desired to maintain the process at certain set points [12], since such systems are more
difficult to control. It was found that the maximum ethanol concentration is obtained
at the maximum allowable recycle ratio, the smallest purge fraction and largest dilution
rate. However, care should be taken to optimize the selection of such parameters to avoid
washout conditions. A final note should be made about the proposed model’s strengths
and limitations. Since the model kinetics were extracted from a validated batch experiment,
and since the operating parameters were numerically varied around realistic values, this
provided the obtained results with a fair degree of credibility. However, the proposed
model could be improved by taking some important parameters that affect the fermentation
process into consideration, such as medium temperature and acidity. The analysis carried
out in the paper was limited to steady state behavior, but could be used in the future to
address the complex phenomena associated with the occurrence of oscillatory behavior in
continuous ethanol fermentation as result of dynamic bifurcations [11].
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Nomenclature
Symbol Units Description
F L h−1 Flow rate through the reactor
bH h−1 Death coefficient
b∗H Dimensionless death rate [b∗H = bH/µmax]
Ks gsL−1 Saturation constant
S g L−1 Substrate concentration within the reactor
S∗ - Dimensionless substrate concentration within the reactor [S∗ = S/Ks]
S0 g L−1 Concentration of substrate flowing into the reactor
S∗0 - Dimensionless substrate concentration in the feed [S∗0 = S0/Ks]
V L Volume of the reactor
X g L−1 Biomass concentration within the reactor
X∗ - Dimensionless biomass concentration within the reactor [X∗ = X/Yx/sKs]
E g L−1 Ethanol concentration within the reactor
E∗ - Dimensionless ethanol concentration within the reactor [E∗ = E/Ks]
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Symbol Units Description
t h Time
t∗ - Dimensionless time [t∗ = µmaxt]
Yx/s gbg−1

s Biomass yield coefficient
Ye/x geg−1

b Ethanol/biomass yield coefficient
γ geg−1

b h−1 Kinetic constant of ethanol production by maintenance
Ke L gs(g

2
e)
−1 Inhibition constant by ethanol

γ1 - Dimensionless inhibition constant by ethanol [γ1 = KeKs]
M2(S, e) h−1 Specific growth rate model
µmax h−1 Maximum specific growth rate
τ h Residence time
τ∗ - Dimensionless residence time [τ∗ = Vµmax/F]
Ri - Recycle ratio based on volumetric flow rates
R∗i - Effective recycle parameter [R∗i = (C − 1)Ri]
γ2 - [γ2 = γYx/s]
γ3 - [γ3 = Yx/s Ye/x]
p∗ - [p∗ = pKs]
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