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Abstract: Production of small-sized peptides is significant because of their health benefits. Ultrafiltra-
tion (UF) membrane provides an effective fractionation of small-sized peptides on a large scale. Thus,
the present study was aimed to evaluate the performance of multilayer UF membrane in fractionating
tilapia fish by-product (TB) protein hydrolysate by observing the permeate flux, peptide transmission,
and peptide distribution under different stirring speed, pH of feed solution, and salt concentration
(NaCl). The fractionation process was carried out using a dead-end UF membrane system that
consists of a stack of two membrane sheets with different (10/5 kDa) and similar (5/5 kDa) pore
sizes in one device. The highest permeate flux (10/5 kDa–39.5 to 47.3 L/m2.h; 5/5 kDa–15.8 to
20.3 L/m2.h) and peptide transmission (10/5 kDa–51.8 to 61.0%; 5/5 kDa–18.3 to 23.3%) for both mul-
tilayer membrane configurations were obtained at 3.0 bar, 600 rpm, pH 8, and without the addition
of salt. It was also found that the permeates were enriched with small-size peptides (<500 Da) with a
concentration of 0.58 g/L (10/5 kDa) and 0.65 g/L (5/5 kDa) as compared to large-sized peptides
(500–1500 Da) with concentration of 0.56 g/L (10/5 kDa) and 0.36 g/L (5/5 kDa). This might indicate
the enrichment of small-size peptides through the multilayer membrane which could potentially
enhance the biological activity of the protein hydrolysate fraction.

Keywords: tilapia by-product protein hydrolysate; dead-end ultrafiltration; multilayer membrane;
permeate flux; peptide transmission

1. Introduction

During fish processing, significant amounts of by-products comprised of frames,
bones, skins, and tails are generated. Fish by-products contain valuable substances that
can be used to generate a high-value product such as fish protein hydrolysate (FPH) that is
rich in essential nutrients and bioactive peptides, which is useful for various physiological
functions. Conversion of fish by-products to FPH is commonly achieved through enzymatic
hydrolysis. Nevertheless, FPH produced through an enzymatic process often comprises a
complex mixture of peptides with different amino acid sequences that require subsequent
fractionation to produce peptides with a specific size.

Small-size peptides (<10 kDa) recovered from FPH have been reported to exhibit
high biological activities and functionalities including antioxidant [1,2], Angiotensin I-
converting enzyme (ACE) inhibition [3,4], anti-microbial [5], and anti-allergic [6]. However,
it is a challenging process to enrich small-size peptides. Although such peptides size
could be obtained by manipulating the degree of hydrolysis (DH) during enzymatic
reaction, production of these specific peptides in a large scale remains a major problem.
It would be more challenging to achieve if selectivity becomes a priority in this stage.
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Good selectivity could be achieved through chromatographic processes, making them
the top choice for peptide fractionation. However, this method is always associated with
low productivity and high costs for industrialization. Therefore, the design of effective
fractionation approach is of fundamental importance for peptides separation, especially
when the process must be applied on an industrial scale.

Owing to its low cost, high throughput, scale-up ability, and flexibility, membrane
technology, particularly ultrafiltration (UF) membrane, seems to be well suited for peptides
fractionation [7]. Ultrafiltration (UF) membranes have been extensively used for separating
and obtaining peptides with specific sizes [8–10]. Ultrafiltration membranes usually operate
in a dead-end or cross-flow mode, which differ in the number of streams and the feed flow
direction. The dead-end mode has two streams where one stream is for the feed which
flows vertically toward the membrane surface while the other stream is for the permeate.
The cross-flow mode is designed with three streams for the feed, permeate and retentate.
In contrast to the dead-end mode, the feed flows tangentially to the membrane surface in
the cross-flow mode [11]. Nevertheless, membrane fouling continues as a main constraint
in the UF process, which results in a poor separation [12,13]. The membrane fouling would
be more severe in dead-end mode because of the high possibility of protein aggregation
that contributed to poor filtration efficiency and low peptide yield [14].

The success of peptides fractionation is not merely caused by the membrane pore size.
Other factors such as pH and salt concentration (ionic strength) could affect protein–protein
and protein–membrane interaction in the bulk solution that tends to cause aggregation
and accumulation on the membrane surface, and eventually caused membrane fouling
(Wan et al. 2005). Therefore, proper selection of operating conditions is crucial to achieving
effective separation [14–16].

Another problem that commonly arises from the application of UF membranes in the
fractionation of proteins is low selectivity of the membrane. Poor selectivity in protein
fractionation is usually related to the imperfect pore size distribution of the available
commercial membranes, limiting the resolving power of the membranes significantly [17].
Multilayer UF membrane was developed to overcome the wide range of membrane pore
size distribution as well as to fractionate proteins that were close in size [18]. By stacking
membranes in one device with a ‘sandwich’ arrangement, the rejection of undesired protein
was intensified with the additional membrane and allowed protein with the desired size
to pass through the membrane. In this way, the membrane selectivity could be enhanced,
and proteins with relatively close molecular sizes could be separated more effectively than
a single layer membrane [17,19]. A multilayer UF membrane’s potential to completely
reject unwanted species has been demonstrated in the literature [17–21], but limited to the
fractionation of binary protein mixture.

Feins and Sirkar [19] have used a multilayer membrane system to fractionate haemoglobin
and bovine serum albumin (BSA), which were closer in molecular weight (64,677 Da
and 66,430 Da, respectively). The system consists of a stack of three different membrane
layers (1, 2, and 3 membrane layers) made from regenerated cellulose and polyethersulfone
membranes with a similar pore size (100 kDa). Complete rejection of BSA was achieved
using three layers of polyethersulfone membranes, one on top of the other. The results
clearly demonstrate that multi-membrane stacks can be used to fractionate proteins that
are relatively close in molecular weight [19]. Md. Yunos and Field [20] studied the effect
of multilayer membrane configurations on fractionation of lysozyme, myoglobin, and
BSA with a molecular weight between 10 and 70 kDa for single and binary mixtures. The
membranes with MWCO combination of 30, 50, and 100 kDa were stacked together in vari-
ous sandwich (multilayer) arrangements. They aimed to improve the selectivity from the
separation by attaining pure protein product in the permeate from binary protein mixture.

It was found that the transmission of proteins using multilayer membranes is compa-
rable to the transmission of a single membrane. Md. Yunos and Field [17] have also studied
the transmission and selectivity of lysozyme and myoglobin mixtures using single and
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multilayer configurations. The results demonstrated that multilayer configurations have
higher selectivity of proteins than single membranes with reduced membrane fouling.

While the effect of multilayer membrane configurations to improve the selectivity
and reduce the membrane fouling during protein fractionation has been reported in sev-
eral studies, the effect of process parameters on multilayer membrane performance for
peptides fractionation was rarely addressed. Therefore, in the present study, we explore
the application of multilayer membrane for separation of peptides from tilapia FPH. The
effect of process parameters, including stirring speed, pH, and salt concentration to the
peptide’s fractionation was investigated to better understand the peptide transmission
due to applying multilayer membrane. The best membrane configuration that could give
a higher amount (concentration) of small-size peptides was also examined. Since tilapia
(Oreochromis niloticus) is the second most cultured freshwater fish species after carp, the
protein hydrolysate from tilapia by-products was selected for this study [22].

2. Materials and Methods
2.1. Preparation of Tilapia By-Product Mince

Tilapia fish (Oreochromis niloticus) was supplied by a local fish farm in Rawang, Selan-
gor, Malaysia. The fish was kept in ice during transportation to the laboratory and directly
processed. The tilapia by-products (TB), including head, frames, and tail, obtained after
filleting, eviscerating, and hand filleting, were then minced using a high-speed grinder,
packed in polyethylene plastic bags, and stored at −20 ◦C until further use.

2.2. Preparation of Tilapia Protein Hydrolysate Using Alcalase

Protein hydrolysate was prepared from the TB mince by enzymatic hydrolysis fol-
lowing the method described by Roslan et al. [23] with a slight modification. Prior to
hydrolysis, TB mince was thawed overnight in a refrigerator (4 ± 1◦C). 15% w/v of TB
mince mixture was prepared by adding 50 mL of 50 mM phosphate buffer solution (pH 7.5)
to the pre-weighed TB mince. The mixture was incubated at 60 ◦C for 20 min followed
by the addition of 2.5% (w/w) alcalase enzyme (Novo Nordisk, Denmark) to start the
hydrolysis. After 60 min, the mixture was placed in a water bath at 90 ◦C for 15 min to stop
the enzymatic reaction. The mixture was then cooled on ice before subjected to high-speed
centrifugation at 10,000 rpm for 20 min. The supernatant (TB protein hydrolysate) was
collected and ready to use for further analysis. The chemical compositions analyses of TB
protein hydrolysate were conducted from our previous study [24]. The molecular weight
analysis found that TB protein hydrolysates have low molecular weight peptides ranging
between 3.5–26.6 kDa. This data would become the basis for the fractionation of TB protein
hydrolysate using ultrafiltration membrane.

2.3. Membrane Type and Module

A dead-end UF membrane system Amicon model 8200 stirred ultrafiltration cell
(Amicon Corp., Danvers, MA, USA) was used to filter the TB protein hydrolysate. The
stirred UF cell is equipped with an external compressed gas source (oxygen), a 4.9 cm bar
impeller that was magnetically driven by a stirring hot plate, positioned about 1.5 mm
above the membrane, as shown schematically in Figure 1. Phototachometer was used to
monitor the stirring speed. Flat-sheet hydrophilic regenerated cellulose (RC) membranes
with molecular weight cut-off (MWCO) of 10 kDa (Millipore, PLGC 06210) and 5 kDa
(Millipore, PLCC 06210) were used as membrane [23] with 28.7 cm2 filtration active mem-
brane area, and filter diameter of 63.5 mm. The membranes were placed on the membrane
holder, which connected with filtrate tubing to collect the permeate. Multilayer membrane
technique was employed with two membrane configurations with the skin side on the top
for both membranes; 10/5 (top: 10 kDa, bottom: 5 kDa) and 5/5 (5 kDa for both top and
bottom membrane).
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Figure 1. Schematic diagram of membrane system for fractionation of tilapia by-products (TB) 
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which during the cleaning process was used as a reference. The DI water was then re-
placed by the TB protein hydrolysate, and membrane performance was evaluated. Used 
RC membrane was cleaned according to the manufacturer recommendations. Firstly, the 
membrane was placed in a beaker and rinsed with deionized water. DI water was then 
replaced by 0.1% of NaOH solution and sonicated in an ultrasonic bath for 15 min. The 
membrane was transferred again into a beaker with deionized water followed by soni-
cation for 15 min. Afterwards, the membrane was rinsed with deionized water until 
reached a neutral pH, and the water flux was measured. The same cleaning procedure 
was repeated if the water flux obtained did not reach the initial value. The cleaned mem-
brane was kept in a chiller at 4 °C until further use. 
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flux value for each of the fractions collected was analyzed separately. The supporting in-
formation to understand the evolution of the permeate flux over 70 min is described from 
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then pooled and further used for the peptide transmission analysis. All experiments were 
conducted in duplicate. 

  

Figure 1. Schematic diagram of membrane system for fractionation of tilapia by-products (TB) hydrolysate using multi-
layer membranes.

2.4. Preparation of Membranes and Procedure for Cleaning

Regenerated cellulose (RC) membranes were prepared according to the following pro-
cedure. The membrane was soaked overnight in deionized water (DI) and later subjected
to membrane compaction at a pressure of 3.5 bar [14]. Then, DI water was filtered using
the clean membrane, and water flux was measured at a pressure of 1, 1.5, and 2 bar, which
during the cleaning process was used as a reference. The DI water was then replaced by the
TB protein hydrolysate, and membrane performance was evaluated. Used RC membrane
was cleaned according to the manufacturer recommendations. Firstly, the membrane was
placed in a beaker and rinsed with deionized water. DI water was then replaced by 0.1%
of NaOH solution and sonicated in an ultrasonic bath for 15 min. The membrane was
transferred again into a beaker with deionized water followed by sonication for 15 min.
Afterwards, the membrane was rinsed with deionized water until reached a neutral pH,
and the water flux was measured. The same cleaning procedure was repeated if the water
flux obtained did not reach the initial value. The cleaned membrane was kept in a chiller at
4 ◦C until further use.

2.5. Experiments of Membrane Filtration

TB protein hydrolysate (200 mL) was used for each experiment. Three different
parameters namely stirring speed (0, 300, and 600 rpm), solution pH (3.0, 5.0, 7.0, 8.0, and
9.0), and salt concentration (NaCl; 0, 0.2, 0.4, and 0.6 M) were selected for the fractionation
of TB protein hydrolysate which were studied under different pressure (2.0, 2.5, and
3.0 bars). The permeate was collected at every 10 min interval for a total of 70 min, and
the flux value for each of the fractions collected was analyzed separately. The supporting
information to understand the evolution of the permeate flux over 70 min is described
from the Supplementary Materials provided (Figures S1 and S2). The permeates collected
were then pooled and further used for the peptide transmission analysis. All experiments
were conducted in duplicate.
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2.5.1. Permeate Flux

Permeate flux is used as a measure of productivity of the membrane separation process,
which represents the rate of mass transport across the membrane [11]. The permeate flux
can be expressed according to the following equation [25]:

Permeate f lux =
Total amount passed through membrane

membrane area × time
(1)

2.5.2. Peptide Transmission

Peptide transmission can be measured based on the ratio of peptide concentration in
the permeate (Cp) to that in the feed (Cf), which can be expressed as below [17]:

Tr (%) =
Cp

C f
× 100 (2)

where, Cp represent the peptide concentration in the permeate and C f represent the con-
centration of peptide in feed solution.

2.6. Peptides Content Measurement

All peptides content in the feed solution, permeate, and retentate were analyzed fol-
lowing to the procedure of Church et al. [26] and Nielsen et al. [27], with some adjustments
using the O-phthaldialdehyde (OPA) reagent.

2.7. Determination of Peptides Distribution

The highest peptide transmission obtained through fractionation using 10/5 and
5/5 multilayer membranes were selected for further purification using a gel permeation
chromatography on a Pharmacia Superdex Peptide® GL 10/300 column using AKTA Fast
Pressure Liquid Chromatography (FPLC) system (AKTA FPLC System, GE Healthcare,
USA). Peptide samples (20 µL) were injected and eluted at 25 ◦C and a constant flow rate
of 0.4 mL.min−1. 0.05 M sodium phosphate buffer (pH 7) containing 0.1% of NaCl was
used as the mobile phase. Peptides of with molar mass of cytochrome C (12,384 g.mol−1),
neurotensin (1678.9 g.mol−1), and leucine enkaphaline (686.8 g mol−1) (Sigma Aldrich,
St. Louis, MO, USA) were selected as standards. The peptide concentration was calculated
based on the peak area of peptide standard at the wavelength 280 nm.

2.8. Statistical Analysis

Data were analyzed using the Statistical Analysis System (SAS) [28] with ANOVA
and Duncan’s multiple range test were used for multiple comparison. By using the same
software, the standard deviations were also calculated.

3. Results and Discussion

In this study, a multilayer membrane technique was implemented by employing
two different membrane pore sizes (regenerated cellulose membrane, 10 kDa and 5 kDa).
Two types of membrane configurations were used: (1) The first arrangement was with
the top 10 kDa and bottom 5 kDa, and (2) the second arrangement was using 5 kDa for
both top and bottom membrane, while the skin layer of membrane was always on the
top (skin layer-backing—skin layer-backing). The selection of the 5 kDa membrane at the
bottom of the multilayer membrane arrangement was based on the high ACE-inhibition
activity obtained from the previous study [29], aiming for more peptide with sizes less than
1000 kDa to be obtained. The fractionation of TB hydrolysate using a multilayer membrane
(10/5 and 5/5 kDa) was performed under three different pressures (2.0, 2.5, and 3.0 bar).
The multilayer membrane’s performance was assessed by evaluating the effects of stirring
speed, pH of the feed solution, and salt concentration (NaCl) on permeate flux and peptide
transmission. In our previous study [30], the effect of membrane pore size (10 kDa and
5 kDa) and operating parameters on the fractionation of TB protein hydrolysate using a
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single membrane were investigated. The best operating parameters for both membranes
were obtained at pressure, stirring speed, and pH of 2.5 bar, 600 rpm, pH 8, respectively,
and without the addition of salt (NaCl). A comparison in permeate flux reveals that 10 kDa
membrane has 49% higher permeate flux (53 L/m2.h) than 5 kDa membrane (27 L/m2.h).
As for the peptide transmission, the percentage of peptide in the permeate for 10 kDa and
5 kDa membranes were 87.33% and 36.11%, respectively.

3.1. Effects of Stirring Speed on Fractionation of TB Protein Hydrolysate Using
Multilayer Membranes

The UF membrane system was equipped with an impeller, positioned just above the
membrane surface [31]. This impeller served a function to control membrane fouling by
inducing a shear force through a rotation to avoid solute accumulation on the membrane
surface, thus reducing concentration polarization [32]. The effects of stirring speed on
the flux of TB hydrolysate using 10/5 and 5/5 kDa multilayer membranes were shown
in Figure 2. It was found that increasing the stirring speed and pressure will increase the
permeation flux for both multilayer membranes. The highest permeate flux was observed
at 600 rpm for both configurations with the value in the range of 35.9–39.8 L/m2.h for
10/5 membrane and 12.8–19.4 L/m2.h for 5/5 kDa membrane. Permeate flux decreased as
the stirring speed decreased to 300 rpm for both multilayer membranes with the values
ranging from 31.5–33.5 L/m2.h (10/5 kDa) and 12.1–18.5 L/m2.h (5/5 kDa), respectively.
In an unstirred condition (0 rpm), lowest permeate flux was obtained regardless of the
membrane configuration.
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Figure 2. Permeate flux of TB protein hydrolysate using multilayer ultrafiltration (UF) membranes at different stirring speed.

The results demonstrated that high stirring speed reduced the concentration polar-
ization significantly (p < 0.05). This might be due to high turbulence developed by the
stirrer inside the UF system that could sweep away a solute on the membrane’s surface,
thus reducing the concentration polarization effect [31,33,34]. Under the unstirred condi-
tion, there will be more chances for protein to aggregate and deposit on the membrane
surface, promoting membrane fouling and leading to a reduction in the permeate flux.
Sarkar et al. [31,34], and Datta et al. [33] also reported that the higher the stirring speed
applied, the higher permeate flux could be achieved.

Figure 3 shows the peptide transmission using 10/5 and 5/5 kDa multilayer mem-
branes at different stirring speeds. As expected, the lowest peptide transmission was
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obtained at 0 rpm with the values of 18.0–20.9% (10/5 kDa) and 8.6–11.5% (kDa). A sig-
nificant increase (p < 0.05) in peptide transmission could be observed at stirring speeds
of 300 rpm and 600 rpm for 10/5 kDa multilayer membrane, with values ranging from
37.3–46.8% and 49.0–55.7%, respectively. For the 5/5 kDa membrane, there was no signifi-
cant difference (p < 0.05) in peptide transmission observed between stirring speeds of 300
and 600 rpm, although the peptide transmission value increased as pressure increased (2.0
to 3.0 bar).
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Figure 3. Peptide transmission of TB protein hydrolysate through multilayer UF membranes at different stirring speeds.

The accumulation of large solute molecules on the membrane’s surface was prominent
at unstirred condition or lower stirring speed. This situation will lead to the formation
of a solute layer on the membrane surface that eventually contributes to lower peptide
transmission. Increasing the stirring speed could overcome this problem by allowing more
peptide molecules to permit through the membrane and increase the peptide transmission.

For the 10/5 kDa configuration, the turbulence created at high stirring speed may
have blocked the accumulation of solute by sweeping the solute away from the membrane
surface, which minimized diffusion in the boundary layer, thus reducing the concentration
polarization [33]. As for the 5/5 kDa configuration, the effect of stirring speed on peptide
transmission was less pronounced, which could be due to severe membrane fouling caused
by protein adsorption [32]. Even at high stirring speed used (600 rpm), it could not
increase the permeate flux. The findings of this study suggest that the stirring speed
and membrane configuration have a significant effect on the fractionation of TB protein
hydrolysate using UF and it is possible to reduce the concentration polarization and the
mass transfer coefficient of the peptides [29]. Based on the highest permeate flux and
peptide transmission for both multilayer membrane configurations (10/5 and 5/5 kDa),
the stirring speed at 600 rpm was chosen for the following experiments.

3.2. Effects of Solution pH on the Fractionation of TB Protein Hydrolysate Using
Multilayer Membranes

To understand the role of peptide charge on mass transfer during fractionations of TB
protein hydrolysate through multilayer membranes (at pressure 2.0, 2.5, and 3.0 bar), differ-
ent values of pH (3, 5, 7, 8, and 9) were tested which represent acidic, neutral, and alkaline
conditions. As the isoelectric point (pI) of TB protein hydrolysate is unknown, evaluating
the flux and peptide transmission at different pH conditions is crucial. Changes in pH will
likely affect the electrostatic interactions between peptide–peptide and peptide–membrane,
thus affecting the mass transfer coefficient of peptides through the membrane [15]. This is
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due to the fact that peptides have both positive and negative charges at N-terminal and
C-terminal residues of their amino acids side chains [29].

Figure 4 shows the permeate flux obtained from the fractionation of TB protein hy-
drolysate using multilayer membrane at different pH. For 10/5 kDa membrane, the highest
permeate flux was obtained at pH 8 with the values of 37.5–46.1 L/m2.h, followed by pH
7 (36.3–44.1 L/m2.h) and pH 9 (35.8–43.1 L/m2.h). A significant decreased (p < 0.05) in
permeate flux was observed when fractionation was conducted in acidic (pH 3 and 5) con-
dition, with the values ranging from 34.6–41.2 L/m2.h and 34.7–40.7 L/m2.h, respectively.
However, there was no significant difference in permeate fluxes (p > 0.05) between pH 3
and pH 5. In comparison with 5/5 kDa membrane, the highest permeate flux was found at
pH 3 (16.7–24.3 L/m2.h) followed by pH 5 (16.0–20.7 L/m2.h). The permeate flux values
declined significantly (p < 0.05) when fractionation was conducted in neutral and alkaline
conditions (pH 7, 8, and 9). It was clearly shown that there is a difference in fractionation
behavior between the 10/5 kDa and 5/5 kDa membrane at different pH. Permeability
of hydrolysate solution through the 10/5 kDa membranes was favorable at more basic
conditions, while the 5/5 kDa membrane was at an acidic condition.
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Figure 4. Permeate flux of TB protein hydrolysate using multilayer UF membranes at different pH of feed solutions.

Basically, protein in the solution showed a net electrostatic charge depending on the
solution pH. The change in solution pH can alter the electrical charge on both the protein
and the membrane due to the ionization or deionization of various acidic/basic groups
on the protein and the membrane surface, which can cause either attractive or repulsive
interactions [35]. At pH that is below the isoelectric point (pI), the protein molecules are
predominantly positively charged, and vice versa. If the membrane carried a charge with
respect to the protein’s charge, there would be an electrostatic repulsion effect. In the
case where the membrane had an opposite charge, a surface layer was formed due to
the adsorption of the protein molecules [25]. RC membrane used in this study possessed
a negatively charged surface. As the solution pH was increased to 7 and 8, the peptide
would become negatively charged and increase the electrostatic repulsion effect between
the like-charged membrane and peptides. Consequently, accumulation of peptide on the
membrane surface was minimized, leading to a better flux performance. This could explain
the higher permeate flux at pH 8 for the 10/5 kDa multilayer membrane. Saidi et al. [15]
also found that the membrane permeability was more prominent at alkaline condition
for the fractionation of tuna dark muscle hydrolysate. While at pH 3 and 5 for 10/5 kDa
membrane, lower permeate flux values were obtained. This condition might be due to
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the interaction between oppositely charged peptides and the membrane that promoted
peptide buildup on the membrane surface [31]. On the contrary, higher permeate flux was
obtained at pH 3 for the 5/5 kDa multilayer membrane.

Generally, the protein carries a positive charge at a lower pH, and the membrane
itself carries a negative charge. It could be expected that electrostatic repulsion would be
minimal at this condition and reduces permeate flux. Surprisingly, an opposite observation
was obtained. This might be attributed to the high content of acidic side chain (negatively
charged) in their peptide’s profiles such as glutamic and aspartic acids [24]. The presence of
more negative charge in the feed solution, which was a similar charge with the membrane
could result in a great electrostatic repulsion effect. Permeability of feed solution would be
favorable at this condition, thus lowering the accumulation of peptides on the membrane
surface. Ghosh and Cui [36] reported a similar finding in which a slightly higher flux value
was obtained at lower pH due to the greater electrostatic repulsion effect between proteins
and membrane which carry the same charge.

Figure 5 shows the peptide transmission during the fractionation of TB hydrolysate
using multilayer membranes at various range of pH solution. For the 10/5 kDa membrane,
the peptide transmission showed similar behavior with the permeate flux, where at pH
8, the highest peptide transmission was found with the values ranging from 52.01–61.48,
followed by pH 7 (49.09–60.52) and pH 9 (42.35–60.38). Low peptide transmission was
obtained at pH 3 and pH 5 (p > 0.05). At pH 8 and 7 (basic condition), higher peptide
transmission was obtained. This could be due to the increase of negative charges in peptide
molecules which limit the membrane fouling (low peptide accumulation on the membrane
surface) as a result of electrostatic repulsion between peptide and the membrane surface,
thus allowing the peptide to pass through the membrane [15]. At lower pH, slightly lower
peptide transmission might be due to high tendency of interaction between the hydrophobic
peptides that carry positive charge and the hydrophilic surface of the negatively charged
membrane as explained previously, which hindered the peptides to pass through the
membrane [14,29].
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Figure 5. Peptide transmission of TB protein hydrolysate through multilayer UF membranes at different pH of feed solution.

Peptide transmission behavior for the 5/5 kDa membrane has a slight difference
compared to the 10/5 kDa membrane. There was no significant difference (p > 0.05) in
peptide transmission at pH 3, 5, and 8, although the highest permeate flux was found at pH
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3 (16.7–24.3 L/m2.h). This could be related to the peptide rejection, owing to the peptide–
membrane interaction, which is electrostatically favorable due to the identical charge
between solute and membrane [35], thus lowering the peptide transmission. Contrary to
the flux, it became more evenly distributed as membrane fouling proceeded [37]. Several
researchers [14,34,38,39] have reported that the different values of peptide transmission
with different pH could be linked to (i) the effect of pH on protein–membrane repulsion, (ii)
the effect of pH on the electrostatic double layer, and (iii) the pH-dependent conformation of
the protein. Based on the results obtained, pH 8 was the best pH condition for fractionation
of TB hydrolysate using multilayer membrane.

3.3. Effects of Salt Concentration (NaCl) on the Fractionation of TB Protein Hydrolysate Using
Multilayer Membranes

Another important factor that should be investigated in the fractionation of peptides
is the salt concentration (ionic strength). The presence of salt in the solution would give an
electrostatic double layer effect known as the Debye layer and change the protein–protein
and protein–membrane interactions [38], affecting the flux protein transmission. Based
on the previous findings [16,32,40], the selectivity of certain proteins can be improved by
adding salt into feed solution. Salt could strengthen the ionic interactions between the
membrane and the peptides, leading to better transmission of peptides [40].

The effect of different salt concentration (0 M, 0.2 M, 0.4 M, and 0.6 M of NaCl)
on the fractionation of TB protein hydrolysate using multilayer membranes (10/5 and
5/5 kDa) were investigated using NaCl (sodium chloride) at conditions of 600 rpm of
rotation speed, pH 8 for feed solution and different pressure (2.0, 2.5 and 3.0 bar). As
shown in Figure 6, the highest flux values for 10/5 kDa membranes were obtained at 0 M
of NaCl (39.5–47.3 L/m2.h). There is a clear trend of decreasing in permeate flux values
when salt is added at concentration from 0.2 M to 0.6 M with values of 39.3–46.4 L/m2.h,
36.9–45.2 L/m2.h, 34.0–44.7 L/m2.h, respectively. However, for 5/5 kDa membrane, the
permeate flux was not significantly affected by the addition of salt. This result is in
accordance with Prata-Vidal et al. [16], who observed a reduction in permeate flux when
salt was added to caseinomacropeptide hydrolysate due to the reduction of electrostatic
repulsive force brought about by the electrostatic double layer effect of the counterions
present in the salt, thus promoting the occurrence of fouling and consequently reducing
the flux [41,42].

The results of peptide transmission of TB protein hydrolysate obtained through UF
multilayer membranes at different salt (NaCl) concentration are presented in Figure 7.
Without addition of salt (0 M NaCl), the highest transmission was achieved, and this was
followed by 0.2 M, 0.4 M, and 0.6 M with the values ranging of 51.8–61.9%, 48.2–60.7%,
47.3–54.3%, and 47.2–52.5%, respectively. There was a significant reduction (p < 0.05) in
peptide transmission when salt is added into the solution, which indicates that the addition
of salt (NaCl) would give an adverse effect. The 5/5 kDa membrane configuration also
shows a similar trend where the highest peptide transmission (18.3–23.3%) was obtained at
0 M of salt and reduced significantly (p < 0.05) as salt is added.

Comparing to our earlier study using a single membrane [30], it was demonstrated
that adding one layer of membrane led to the decline in the permeate flux (11–25%)
as well as peptide transmission (30–35%), possibly due to additional mass transfer re-
sistance, which reduces transportation of peptides through the membrane and means
rejection would be more favorable. It had been expected that the permeate flux and peptide
transmission for multilayer membranes would be slightly lower than those of the single
membrane configuration.
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Figure 7. Peptide transmission of TB protein hydrolysate through multilayer UF membranes at different salt concentration (NaCl).

Although these results differ from some published studies [43,44], they are in agree-
ment with recent studies reported by Prata-Vidal et al. [16] and Wang and Tang [37].
Prata-Vidal et al. [41] who found that the retention of small peptides is more evident with
salt’s addition at 0.4 M concentration. Wang and Tang [37] observed that BSA fouling
was promoted by the addition of NaCl from 1–100 mM. It appears that the electrostatic
repulsion and protein–membrane interactions were minimized in the presence of salt. A
compact layer may have formed on the membrane surface as the fouling becomes severe,
which causes low protein transmission [38,44]. It was not feasible to fractionate TB protein
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hydrolysate using UF membrane in the presence of salt (NaCl). Based on the findings of
fractionation of TB hydrolysate using multilayer membrane, the best conditions selected
for determining peptides distributions were at stirring speed of 600 rpm, pH 8, without
salt, and a pressure of 3 bar for both 10/5 and 5/5 kDa membranes.

3.4. Peptides Concentration

The permeate fractions obtained through multilayer membranes (10/5 and 5/5) at
3.0 bar, 600 rpm, and pH 8 were analyzed for their peptide’s concentration. The FPLC chro-
matography profile of permeate fractions from both multilayer membrane’s configuration
is shown in Figure 8, and the peptide concentration is presented in Table 1. Based on the
profile in Figure 8, all the peptides in the permeates were lower than 1500 Da. This means
only small-size peptides could pass through the membrane and proved that the multilayer
configuration effectively blocked the peptides with larger size (>1500 Da). This situation
could be due to polarization and fouling that could form a dynamic layer on the membrane
surface [33] and allowed small-sized peptides to pass through the membrane.
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Fractionation through 10/5 kDa membrane managed to obtain an almost similar
concentration between large-size peptides (>500 Da) with values of 0.56 g/L and small-size
peptides (<500 Da) with values of 0.58 g/L. Only one peak (peak 2—895 Da) of peptide
with less than 1500 Da was detected for 10/5 kDa membrane. For the 5/5 kDa membrane,
two peaks of peptides with less than 1500 Da (peak 1 for 1088 with 0.14 g/L and peak 2
for 895 Da with 0.22 g/L); with a total concentration of 0.36 g/L; were detected. These
peptides have shown a reduction in amount (0.36 g/L) as compared to 10/5 kDa membrane.
Surprisingly, the total concentration of small-size peptides (<500 Da) was higher for the
5/5 kDa membrane (0.65 g/L) as compared to 10/5 kDa membrane (0.58 g/L). The smaller
pore size of the 5/5 kDa membrane might allow peptides with a smaller size to pass
through the membrane. Saidi et al. [15] stated that the membrane selectivity is related to
the pore size, shape, and solute charge. When a comparison is made on each peptide’s
composition derived from both membranes (10/5 vs. 5/5), there is some enrichment
detected in peptide composition. It was discovered that from a peptide fraction of less
than 500 Da, fractionation using 5/5 kDa managed to increase the peptide concentration at
peak 4, 6, and 7 with an increment of 700%, 33.3%, and 42.9%, respectively, but a reduction
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in peptide concentration at peak 3 and 5 with percentage values of 15.2% and 12.5%,
respectively. The definite reason for these findings is uncertain. However, it might be
related to the complete rejection of large size peptides on the retentate side as a result of
membrane stacking and allowing smaller peptides to pass through the membrane. This
finding is consistent with those reported by Feins and Sirkar [18], who conducted protein
fractionation of β-lactoglobulin (35.5 kDa) and myoglobin (17.6 kDa) using multilayer
membrane. They found out that with the addition of each additional membrane, the
concentration of β-lactoglobulin in the permeate stream was reduced, ultimately resulting
in a pure myoglobin product. Another possible reason for the higher concentration of
small-size peptides in the permeate could be related to the different composition of peptides
profiles and considering solute–solute and membrane–solute interactions that are highly
affected by environmental factors such as pH and ionic strength. Although ultrafiltration
membrane is considered a size-based separation technique, there is significant evidence
that protein retention and transmission are also determined by solution pH, ionic strength,
and membrane charge [15].

Table 1. Peptide concentration.

Membrane Configuration (kDa) Peptide Concentration (g/L)

10/5 5/5

Peptide fraction (<1500 Da)
Peak 1 (1088 Da) ND 0.14 ± 0.04
Peak 2 (895 Da) 0.56 ± 0.06 0.22 ± 0.08

Total Concentration (<1500 Da) 0.56 0.36

Peptide fraction (<500 Da)
Peak 3 0.33 ± 0.03 0.28 ± 0.08
Peak 4 0.01 ± 0.02 0.08 ± 0.03
Peak 5 0.08 ± 0.01 0.07 ± 0.01
Peak 6 0.09 ± 0.01 0.12 ± 0.03
Peak 7 0.07 ± 0.01 0.10 ± 0.02

Total concentration (<500 Da) 0.58 0.65
All data expressed as mean ± standard deviation (n = 3); ND = not detected.

4. Conclusions

The multilayer membranes’ performance in fractionating TB protein hydrolysate
was greatly influenced by membrane pore size, multilayer configuration, and operating
parameters (pressure, stirring speed, pH of feed solution, and salt concentration). It was
found that for both 10/5 kDa and 5/5 kDa multilayer membranes, the best fractionation
conditions were achieved at a pressure of 3.0 bar, stirring speed of 600 rpm, pH 8 of feed
solution, and with no addition of salt (NaCl). A significant reduction in permeate flux
and peptide transmission were observed for the fractionation of TB protein hydrolysate
using multilayer membrane, which indicates that rejection characteristics can be enhanced
by stacking membranes together. In addition, better control of operating parameters may
result in selective peptide migration in the permeate solution, where the concentration of
peptides with size < 500 Da was found to be higher (0.58 g/L for 10/5 kDa and 0.65 g/L
for 5/5 kDa) as compared to peptides with size > 500 Da (0.56 g/L for 10/5 kDa and
0.36 g/L for 5/5 kDa). A high quantity of small-sized peptides in the permeate solution
is highly desirable due to their significant health benefits and potential application in
pharmaceuticals, nutraceuticals, and food industries.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-971
7/9/3/446/s1, Figure S1: Effect of stirring speed on fractionation of TB protein hydrolysate using
10/5 kDa multilayer membranes, Figure S2: Effect of stirring speed on fractionation of TB protein
hydrolysate using 5/5 kDa multilayer membranes.
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