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Abstract: Clustering analysis, a key step for many data mining problems, can be applied to various
fields. However, no matter what kind of clustering method, noise points have always been an
important factor affecting the clustering effect. In addition, in spectral clustering, the construction of
affinity matrix affects the formation of new samples, which in turn affects the final clustering results.
Therefore, this study proposes a noise cutting and natural neighbors spectral clustering method based
on coupling P system (NCNNSC-CP) to solve the above problems. The whole algorithm process is
carried out in the coupled P system. We propose a natural neighbors searching method without pa-
rameters, which can quickly determine the natural neighbors and natural characteristic value of data
points. Then, based on it, the critical density and reverse density are obtained, and noise identification
and cutting are performed. The affinity matrix constructed using core natural neighbors greatly
improve the similarity between data points. Experimental results on nine synthetic data sets and six
UCI datasets demonstrate that the proposed algorithm is better than other comparison algorithms.

Keywords: natural neighbors; noises; spectral clustering; P system

1. Introduction

With the rapid development of information technology, many fields have accumulated
massive data. How to mine significant information and useful knowledge is a huge
challenge. Clustering analysis, a key step for many data mining problems, can be applied
to a variety of data types. The purpose of clustering is to divide a set of unlabeled data
into different clusters based on the similarity between the data [1]. Therefore, the data with
the most similar characteristics will be in the same cluster, while the data with the most
dissimilar characteristics will be in different clusters [2]. Predecessors have proposed many
clustering methods, such as partitioning methods [3], hierarchical methods [4], density
methods [5,6], grid methods [7], and prototype-based methods [8]. Over the past few
decades, clustering analysis has been effectively applied in image segmentation [9], text
clustering [10], community division [11], pattern recognition [12], etc.

In recent years, spectral clustering, an effective clustering algorithm based on graph
theory, has attracted the attention in academia because of its high performance and simple
implementation [13]. Spectral clustering can identify samples with arbitrary shapes while
converging to the global optimal solution. Its main idea is to treat all data as nodes in
space, and these nodes can be connected by edges. The weight of the edge between two
nodes is determined by their distance. The distance that is closer shows that the higher the
similarity, so it has higher weight, and vice versa. Then, according to the graph partition
method, the graph is divided into several disconnected sub-graphs. The weight sum of
edges between different sub-graphs is as small as possible, and the weight sum of edges
within a sub-graph is as high as possible. The set of nodes contained in the sub-graph is
the final clustering result [14]. Spectral clustering can be understood as mapping data in
high-dimensional space to low-dimensional, and then clustering in low-dimensional space
using other clustering algorithms (such as K-means).
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In the spectral clustering algorithm, an important problem is constructing the affinity
matrix. Yessica and Miin-Shen [2] merged the power parameter into the Gaussian kernel
similarity function for the construction of affinity matrix. This power parameter can sep-
arate the points actually located on different clusters, but the distance is small. Then, it
uses the maximum of all the minimum distances between the data nodes to obtain better
clustering results. The maximum value between the estimated power parameter and the
minimum distance can effectively improve the effect of spectral clustering. Huang et al. [15]
proposed two novel algorithms—ultra-scalable spectral clustering (U-SPEC) and ultra-
scalable ensemble clustering (U-SENC)—based on ultra-large-scale data under limited
resources. In U-SPEC, first, in order to construct a sparse affinity sub-matrix, a hybrid
representative selection strategy and a fast approximation method of k-nearest representa-
tive are proposed. Then, it interprets the sparse sub-matrix as a bipartite graph. Finally,
using transfer cutting partitions the graph effectively and achieves the clustering result. In
U-SENC, by integrating multiple U-SPEC clusters, a new bipartite graph is constructed
between the nodes and the base clusters, and then the effective division is performed to
obtain consistent clustering results. Bian et al. [16] combined spectral clustering structure
and data fuzzy similarity matrix learning method (FSCM) to enhance the clustering per-
formance. FCSM adopts the dual-index fuzzy c-means clustering algorithm to determine
the fuzzy similarity between any pair of data points. Meanwhile, it generates the fuzzy
similarity matrix of the data by adaptively assigning the fuzzy neighborhood of the data
points. In this way, the spectral clustering structure of the data is found and the clustering
stability of the FSCM algorithm is ensured. Lin and Guo [17] put forward a new affinity
matrix generation method based on the principle of neighbor relationship propagation and
gave a neighbor relationship propagation algorithm. The generated affinity matrix can
effectively promote the similarity of point pairs in the same cluster and can better identify
the structure of the data. Aiming at the similarity measurement of complex data, Xiucai and
Tetsuya [18] proposed a novel spectral clustering method, which is based on the similarity
measurement of data points in the kernel space adaptive neighborhood. In the kernel
space, adaptive and optimal neighbors are assigned to each data point according to the
local structure, and the sparse matrix is learned as a similarity matrix for spectral clustering.
Wu et al. [19] present a scalable spectral clustering method based on Random Binning
features (RB), which can accelerate the construction and feature decomposition of similar
graphs at the same time. In detail, it constructs the inner product implicit approximation
graph similarity (kernel) matrix of a large sparse feature matrix through RB.

Membrane computing [20] (also known as P system) is a system with the charac-
teristics of distributed parallel computing proposed by Professor Păun. Its purpose is
to learn from and simulate the way cells, tissues, organs, or other biological structures
process chemical substances and establish a distributed parallel computing model with
outstanding computing performance [21]. P system is a novel branch of natural computing,
which provides an abundant computing framework for bimolecular computing. P system
has been proved to have the calculation ability equivalent to Turing machine, and can
effectively solve the difficult problem of calculation [22]. Nowadays, the P system is mainly
divided into cell-like P system, tissue-like P system, and neural-like P system [23]. In
recent years, the research content of the P system mainly includes theoretical research and
application research. In terms of theoretical research, some new variants of the P system
have been proposed to solve the problem, which can improve the computing power with
the min cells or spikes [24,25]. For application research, the P system can solve practical
problems [26] and can be used to implement clustering processes [27,28].

Although the above algorithm can achieve better clustering performance, to a certain
extent, noise points also have a great influence on the clustering effect. At the same
time, the determination of the parameters of natural neighbors is also an important issue
when constructing the affinity matrix. To address above problems and based on the above
analysis, we propose a spectral clustering method with noises cutting and natural neighbors
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based on the coupling P system (NCNNSC-CP) and verify clustering performance. The
main contributions of this paper are as follows:

(1) A new coupling P system is proposed, which integrates natural neighbors and
spectral clustering into the coupling membrane system to perform clustering tasks.

(2) Aiming at the noise points in the data set, we utilize the characteristics of the
natural neighbors to identify and cut the noise points.

(3) In the stage of spectral clustering, we propose a search of natural neighbors
without parameters, which can quickly determine the natural eigenvalues, thereby further
constructing an affinity matrix with high similarity within the cluster.

(4) Nine classical synthetic data sets and six UCI data sets are used to simulate and
verify the clustering performances of NCNNSC-CP.

The rest of the paper is organized as follows. Section 2 introduces the related concepts
of P system and natural neighbors, and the basic algorithm of spectral clustering. In
Section 3, a spectral clustering method with noises cutting and natural neighbors based
on the coupling P system is proposed. Section 4 shows the performance of the algo-
rithm through experimental analysis. Conclusions and future research work are given
in Section 5.

2. Related Work
2.1. Spectral Clustering

The spectral clustering algorithm is based on graph theory. Compared with traditional
clustering algorithms, it can cluster data points with arbitrary shapes and converge to
the global optimal solution efficiently. First, it constructs an undirected weighted graph
G(V, E) based on similarity. Each vi of the graphs corresponds to a data point, and the
weight wij is the similarity of the edges formed by the data points. Generally, there are
three ways to construct an affinity matrix:

(1) ε-neighborhood graph. Set the distance threshold ε, Euclidean distance sij =
∣∣∣∣xi − xj

∣∣|22 .
wij = ε, if sij < ε; otherwise, wij = 0.

(2) K-nearest neighbor graph. Using the KNN algorithm obtains the k neighbors of each

data point, only when xj is one of the k neighbors of xiwij > 0, and wij = exp(−||xi−xj||22
2σ2 ).

(3) Fully connected graph. In general spectral clustering, it is the most commonly
used method of constructing affinity matrix. Different kernel functions can be selected to
define the weight between edges. When using Gaussian kernel function, the similarity

matrix and the affinity matrix are the same, wij = sij = exp(−||xi−xj||22
2σ2 ).

Then, according to the affinity matrix, we construct the degree matrix D. For any point
xi in the graph, its degree di is defined as the sum of the weights of all edges connected to
it di = ∑n

j=1 wij. The most important process in spectral clustering is the construction of
Laplacian matrix L:

(1) The denormalized Laplacian matrix L = D−W.
(2) Normalized Laplacian matrix based on Random Walk L = I − D−1WD−1.
(3) Symmetric normalized Laplacian matrix L = I − D−1/2WD−1/2.
Next, the eigenvector u1, u2, · · · uk corresponding to the first k eigenvalues of the L

can be calculated and set: U = {u1, u2, · · · uk}, U ∈ Rn∗k. In addition, U is normalized by
row to generate Y = {y1, y2, · · · yn}, and each row of Y represents a sample. At last, the
clustering algorithm (such as k-means) is applied to cluster the new samples into clusters
C1, C2, · · ·Ck.

The basic spectral clustering algorithm (NJW) [29] is shown in Algorithm 1.
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Algorithm 1 Spectral clustering (NJW)

Input: The dataset D
Output: C (the clustering results)
1: Construct the affinity matrix W.
2: Degree matrix D, di = ∑n

j=1 wij.
3: Laplacian matrix L = I − D−1/2WD−1/2.
4: Construct the feature matrix U = {u1, u2, · · · uk}, U ∈ Rn∗k

5: Form the matrix Y from U, Yij = Uij/(∑j U2
ij)

1/2

6: C = K-means(Y)

2.2. Natural Neighbors

Zhu [30] systematically expounded the concept of natural neighbors through induction
and summary based on previous studies, which is a reflection of the friendship between
people in human society. Compared with the traditional nearest neighbor method, the
natural neighbor method is scale-free. The relevant definitions of natural neighbors are
as follows.

Definition 1: (The Natural Neighbor Stable Structure). The natural neighbor stable structure
is, generally speaking, that A is a Natural Neighbor of B if A regards B as a neighbor and B regards
A as a neighbor at the same time.

(∀xi)(∃xj)(k ∈ N) ∧ (i 6= j)→ (xi ∈ NNk(xj)) ∧ (xj ∈ NNk(xi)) (1)

where NNk(xi) is the kth nearest neighbor of point xi.

Definition 2: (k-Nearest Neighbors). Given a data set D, for any point xi, its k nearest neighbors
refer to a set of points in D with d(xi, x) ≤ d(xi, o), which is

NNk(xi) =
{

xj ∈ D
∣∣d(xi, xj) ≤ d(xi, kn)

}
(2)

where d(xi, kn) is the distance of the kth nearest neighbor of xi.

Definition 3: (Reverse Neighbors). The reverse neighbor of xi is considered to be a set of data
points x in D that take xi as its k nearest neighbor, which is

RNN(xi) = {x ∈ D|xi ∈ NNk(x)} (3)

Definition 4: (The Natural Characteristic Value Sup [31]). Sup is the search range in the
natural neighbor method.

Sup = min{k|
n

∑
i=1

f (Nbk(xi)) = 0 or
n

∑
i=1

f (Nbk(xi)) =
n

∑
i=1

f (Nbk−1(xi))} (4)

where the initial value of k is 1, and Nbk(xi) is the number of reverse neighbors of xi in the kth

iteration. In addition, f (x) =
{

0, otherwise
1, i f x == 0

.

Definition 5: (The Natural Neighbors). For each object x in dataset D, its natural neighbors
are k nearest neighbors, denoted as NaN (x).
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2.3. Cell-Like and Tissue-Like P System
2.3.1. Cell-Like P System

The cell-like P system is the first proposed P system, and its membrane structure is
shown in Figure 1. The outermost membrane 1 is the skin membrane. The skin membrane
separates the entire P system from the external environment. If a membrane does not con-
tain a submembrane inside, the membrane is a basic membrane (such as membrane s2, 3, 5,
8, 9, and 7). Otherwise, it is called a non-basic membrane (such as membranes 1, 4, and 6).
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Figure 1. The basic membrane structure of the cell-like P system.

The formal definition of the cell-like P system is

∏ = (O, H, µ, ω1, · · · , ωm, R, i0)

where

1. O is the alphabet, where the elements represent objects;
2. H is a collection of membrane labels;
3. µ represents the membrane structure;
4. ωi(1 ≤ i ≤ m) refers to the multiple set of objects contained in region i in the

membrane structure;
5. R contains all the rules;
6. i0 ∈ H ∪ {e} represents the input/output area of the system, where e is a reserved

character not included in H.

Given a P system, that is, given the membrane structure, the simplified objects of each
membrane area and the corresponding rules. Each process of the P system is an execution
rule of non-determinism and maximum parallelism. After each time step, the system enters
a new pattern.

2.3.2. Tissue-Like P System

The tissue-like P system regards cells as the vertices of the graph in the system. The
cells in the P system have different states, and the rules can be executed only when the
required states are met. The basic membrane structure of the tissue-like P system is shown
in Figure 2. Cell 0 is the input cell, which contains the initial object. The initial object uses
rules and communication mechanisms to communicate in cell 1 to cell n. Cell n + 1 is the
output cell, used to store the obtained results.

The formal definition of the traditional tissue-like P system is

∏ = (O, σ1, · · · , σn, syn, iout)
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where

1. O is the alphabet, which contains all objects in the system;
2. syn ⊆ {1, 2, · · · , n} × {1, 2, · · · , n} are synapses that connects cells;
3. iout ∈ {1, 2, . . . , n} indicates the output cells of the system;
4. σ1, · · · , σn represents n cells in the system, the detail definition are as follows:
5. σi = (Qi, si,0, wi,0, Pi), 1 ≤ i ≤ m

where

(1) Qi shows the collection of all states;
(2) si,0 ∈ Qi refers to the initial state;
(3) wi,0 ∈ O∗ indicates the initial multiset of the object, when wi,0 = λ, there is no object

in cell i;
(4) Pi stands for the rules of the entire system.
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3. Noises Cutting and Natural Neighbors Spectral Clustering Based on Coupling
P System

In this section, the spectral clustering method with noises cutting and the natural
neighbors based on coupling P system is proposed. First, we explain the general frame-
work of the coupling P system. Then, the different evolution rules and operations in the
subsystems such as searching the natural neighbors, noises cutting, constructing affinity
matrix, and clustering are introduced, respectively. Meanwhile, the communication rules
between different membranes are elaborated. The flow chart of the proposed NCNNSC-CP
algorithm is shown in Figure 3.
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3.1. The General Framework of the Coupling P System

The proposed coupled P system (NCNNSC-CP) is the coupling of the cell-like P system
and the tissue-like P system. According to the related concepts introduced in Section 2.3,
the basic structure of the coupled P system is shown in Figure 4.
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The formal definition of the coupled P system is

∏ = (O, η, µ, syn, σ0, · · · , σm, R, in, out)

where

1. O =
{

x1, x2, · · · , xn, dij, NaN(x), Nb(x), Sup, Noises, c, wij, Dii, L, σ
}

. xi represents
each data point. dij represents the distance between arbitrary two points. The natural
neighbors of x denoted as NaN (x). Nb(x) refers to the number of reverse neighbors
of x. Sup is the natural characteristic value. Noises stand for the noisy points in the
dataset. c is the number of clusters. The similarity between data points xi and xj
represented by wij. Dii indicates the degree of data point xi. L represents the Laplace
matrix. σ is the tuning parameters parameter.

2. η = {x1, x2, · · · , xn, σ, c} ∈ O represents the initial objects in the system.
3. µ stands for the structure of the membrane.
4. Syn = {{0,1},{0,2},{1,2}{1,3},{2,1},{3,4},{4,5}} means the synapses between cells. Its main

function is to link cells so that they can communicate with each other.
5. in is cell 0, the input membrane. out is cell 5, the output membrane.
6. σ0, · · · , σm refers to cells in the system. The m is determined according to the number

of clusters and the number of data points.
7. R is the collection of rules, including communication rules and evolution rules.

Evolution rules are used to modify objects in the cluster, and communication rules are
used to transfer objects from one cell to another.

3.2. The Evolution Rules

The rule R0 for inputting cell is to transfer the raw dataset and the parameters to
cell 1 for subsequent clustering algorithm operations. At the same time, the original data
are transmitted to the cell 2 to perform noise cutting on the original data after the noises
recognition. The specific R0 rules can be described as

R01 =
{

x1, · · · , xn, c, σ→ x1, · · · , xn, c, σ,go[]1

}
R02 =

{
x1, · · · , xn → x1, · · · , xn,go[]2

}
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In terms of output cell 5, it is mainly used to store clustering results R5 6= ∅.

3.2.1. The Evolution Rules of Searching the Natural Neighbors in Cell 1

The construction of affinity matrix can directly affect the clustering results of spectral
clustering. In traditional algorithms, most of the parameters are determined based on
artificial experience and manually input. According to the related concepts of natural
neighbors and membrane system in Section 2, this paper uses the rules of searching
natural neighbors without parameters in the membrane system to determine the natural
characteristic value Sup and natural neighbors NaN(x).

In summary, the details rules of the evolution rules of The Natural Neighbors Searching
(NaN-searching) in cell 1 are shown in rules R1.

• R11 (Sorting rule): Create a KD-tree T from the dataset D, which calculates the Eu-
clidean distance of all points in the dataset D, and then sorts them in ascending order.

• R12 (Searching rule): For each point xi in D, we use a KD-tree T to find its rth neigh-
bor xj. Then, Nb(xj) = Nb(xi) + 1, NaNk(xi) == NaNk−1(xi) ∪ xj; RNNk(xj) ==
NaNk−1(xj) ∪ xi according to Definition 2, Definition 3, and Equations (2) and (3) in
cell 1. Finally, the natural neighbors of each point NaN(x) are transmitted to cell 2.

• R13 (Iteration stop rule): When the number of xi’s reverse neighbors Nb(xi) no longer
changes or is always equal to 0, evolution stops.

• R14 (Determining the natural characteristic value Sup rule): the natural characteristic
value Sup is calculated by Equation (4) in the cell 1. Then, transmitted the Sup to cell 2.

Apparently, the search of natural neighbors is different from the traditional k-nearest
method. The k nearest neighbors of each point xi can be found without any parameters in
the whole algorithm process in cell 1.

3.2.2. The Evolution Rules of Noises Recognition and Cutting in Cell 2

In cell 2, we execute the evolutionary rules of noises recognition and cutting.
Noise points refer to data with errors or anomalies (deviations from expected values)

in the data, which are neither core points nor boundary points in the data set. At the same
time, these noises cause great interference to the data analysis and preprocessing, especially
for clustering, which is extremely sensitive to them based on empirical data. Therefore,
it is particularly significant to identify and eliminate noise points. Jokinen et al. [6] deal
with noise on the basis of spatial clustering based on hierarchical density, and proposes a
density-based cluster ability measure. We propose a noise recognition and cutting method
based on the reverse density and critical reverse density in natural neighbors. The reverse
density and critical reverse density are specifically defined as follows.

Definition 6: (Reverse density). Based on the natural neighbors NaN(xi) of the data object xi,
we define the inverse density as the average distance between xi and all its natural neighbors:

Rd(xi) =
1

Sup ∑
xj∈NaN(xi)

d(xi, xj) (5)

Definition 7: (Critical Reverse density). The critical reverse density of point xi is calculated
from the average reverse density Rd(xi) and the standard deviation of the reverse density std(Rd(xi))
of all objects in the data set D:

CRd(xi) = mean(Rd(x)) + α · std(Rd(x))(∀x ∈ D) (6)

where α is a tuning coefficient, and experiments show that a = 1 is suitable for most data sets.
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Definition 8: (Noises). If the xi’s reverse density is larger than its critical inverse density, it is a
noise point.

Noises = {x|∀x ∈ D, Rd(x) > CRd(x)} (7)

In accordance with the natural neighbors of point x obtained in cell 1 and the above
concepts, we simultaneously conduct noise recognition for all points in the n sub-cells of
cell 2. This step is parallel to improve computational efficiency. When it is judged that x is
a noise, it is transported to the environment outside the cell 2 and discard x. The details
rules of the evolution rules of Noises Recognition and Cutting (Noises-rc) in cell 2 are shown
in rules R2.

• R21 (Noise recognition rule): For each point xi in D, using Equation (6) to get Rd(x)
and then using Equation (7) to get CRd(x) in sub-cells of cell 2.

• R22 (Noise cutting rule): For each point xi in D, if the object xi satisfies the Equation
(8) it will be transmitted from the cell 2 to the environment. Otherwise, the rest of the
data is sent to cell 1.

3.2.3. The Evolution Rules of Constructing the Affinity Matrix, Degree Matrix and
Laplacian Matrix in Cell 3

In spectral clustering, the construction of affinity matrix plays an important role in
the clustering result. Generally, it is obtained by calculating the Gaussian kernel distance
between the data point xi and its natural neighbors. However, due to the influence of
noise points, the natural neighbors of the data points are mixed with noises, which is not
conducive to the construction of the affinity matrix. Relatively speaking, noise identification
and screening based on reverse density and critical reverse density are extremely effective.
The data set D’ is deduced through the Section 3.2.2 which is the core data set. Therefore,
we perform the natural neighbor searching again to acquire the core natural neighbor of
the data object. Although it will increase the complexity of the algorithm to a certain extent,
it is worthwhile compared with the greatly improved accuracy. The core natural neighbor
is defined as follows.

Definition 9: (The Core Natural Neighbors). For each object x in dataset D, its core natural
neighbors are k nearest neighbors without noises, denoted as CNaN (x).

At last, we perform spectral clustering (NJW [28]). On the basis of the affinity matrix
W, we calculate the degree matrix D:

Dii =
n

∑
j=1

Wij (8)

As for the Laplacian matrix L, we utilize the Symmetric normalized Laplacian matrix:

L = I − D−1/2WD−1/2 (9)

Next, we choose the eigenvector u1, u2, · · · uc corresponding to the first k eigenvalues
of the L to comprise U = {u1, u2, · · · uc}, U ∈ Rn∗c, and standardize it by row to get Y:

Yij = Uij/(∑
j

U2
ij)

1/2
(10)

The details rules of the evolution rules of constructing the Affinity Matrix, Degree
Matrix, and Laplace matrix in cell 3 are shown in rules R3.

• R31 (Constructing the affinity matrix rule): Based on the core natural neighbors CNaN
(x) and the input parameters, the affinity matrix W is calculated in cell 3. For the jth
natural neighbor in CNaN(xi) of xi, Wij = exp(d(i, j)2/2σ2). Moreover, If Wij is a real
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number while Wji is equal to 0, the value of Wij is assigned to Wji by the principle
of symmetry.

• R32 (Constructing the degree matrix rule): According as the affinity matrix and the
Equation (8), the degree matrix is obtained in cell 3.

• R33 (Constructing the Laplacian matrix rule): As for the Laplacian matrix L, we utilize
the Symmetric normalized Laplacian matrix using Equation (9) in cell 3.

• R34 (Constructing novel cluster sample): Based on the above concepts and Equation
(10), we construct the Y in cell 3 for the next step of clustering. Each row of Y represents
a sample. Simultaneously, it is transmitted into cell 4.

3.2.4. The Evolution Rules of K-Means (Clustering Method)

In the last step of NCNNSC-CP, the K-means is applied to cluster the new samples into
clusters C1, C2, · · ·Cc. In cell 4, there are k sub-cells running simultaneously.

The details rules of the evolution rules of K-means are shown in rules R4.

• R41 (Random selection of cluster center rule): Randomly selecting c points from the
dataset as the initial cluster centers and store them in c sub-cells.

• R42 (Clustering rule): The distance between each sample point and each cluster center
in sub-cell is calculated and transmitted to cell 4. Then, the data points are clustered
according to the principle of nearest distance in cell 4.

• R43 (Redefine the cluster center rule): According to each cluster divided by rule R42,
the average distance of each cluster is calculated to change the cluster center. If the
cluster center changes, the clustering process are repeated. Otherwise, the cluster
result C1, C2, · · ·Cc is output to cell 5.

3.3. The Communication Rules between Different Cells

Communication between cells in the CP system can only be achieved when there is
a synapse between different cells. In order to ensure the effectiveness of the system and
improve the efficiency of the system, this paper constructs a CP system with directional
communication rules. In the CP system, some membranes are responsible for initializing
objects and outputting results, and some membranes are responsible for algorithm execu-
tion. Orderly communication between different membranes makes the whole algorithm
more effective.

There are three communication rules in the CP system: one-way transmission and two-
way transmission between cells and one-way transmission between cells and the environment.

(1) One-way transmission between cells includes Rule1, Rule2, Rule5, Rule6, and Rule7.
λ is null.

• Rule1 : (0, u/λ, 1) It can transfer the string u including the original data and parame-
ters from cell 0 to cell 1.

• Rule2 : (0, u/λ, 2) The original data string u can be sent to cell 2 from cell 1It can
transfer the string u including the original data and parameter α from cell 0 to cell 2.

• Rule5 : (1, u/λ, 3) It can transmit the strings u of the natural neighbors, natural
characteristic value, and related parameter strings of the dataset in cell 1 to cell 3.

• Rule6 : (3, u/λ, 4) The strings u of new sample data and related parameter generated
in cell 3 are transported to cell 4.

• Rule7 : (4, u/λ, 5) The clustering results generated in cell 4 are transferred to cell 5
for storage.

(2) Two-way transmission between cells is Rule3.

• Rule3 : (1, u/v, 2) It can transfer the string u of the natural neighbors and the natural
characteristic in cell 2 to cell 3, and transfer the dataset without noises υ in cell 3
to cell 2.

(3) One-way transmission between cell and the environment is Rule4.

• Rule4 : (2, u/λ, e) The noise data u generated in cell 2 is transferred to environment e
and discarded.
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3.4. Computational Complexity

We assume that n is the total number of points in the dataset. The time complexity
of NCNNSC-CP algorithm can be calculated as follows. (1) The time complexity for
searching the natural neighbors is O(nlogn). (2) Noise recognition and cutting require O(n).
(3) Constructing the Affinity Matrix requires O(n2). (4) Eigenvalue decomposition requires
O(n3). (5) Clustering by K-means requires O(n). To sum up, the overall complexity of the
proposed clustering method NCNNSC-CP is O(n3).

4. Experiments Analysis
4.1. Experimental Setting

All experiments were conducted in Matlab 2016a on a PC with Intel core i5-940M CPU,
4GB RAM, Windows 7 64-bit operating system. In the section, we conduct experiments
on synthetic data sets and real data sets to evaluate the performance of the proposed
NCNNSC-CP method. At the same time, we compare it with state-of-the-art clustering
methods, including K-means [32], DBSCAN [33], DPC [34], Cut-PC [35], SC [29], U-SPEC
(Ultra-Scalable Spectral Clustering) [15], U-SENC (Ultra-Scalable Ensemble Clustering) [15],
and NNSC, for comparative analysis.

4.2. Evaluation Metrics

In order to measure the quality of the clustering results, external indicators have
been usually used in the clustering validity indexes. This paper uses 4 commonly used
clustering indicators—accuracy (Acc), F1-measure, Normalized Mutual Information (NMI),
and Adjusted Rand Index (ARI)—to evaluate clustering performance, which has been
advocated and discussed [36].

(1) Acc: Accuracy indicates the ratio of the number of samples with correct clustering
to the total number of samples, where P is the predicted label and T is the true label.

Acc =

k
∑

i=1
max

∣∣pi ∩ tj
∣∣

j

N
(11)

(2) ARI: Rand Index represents the degree of similarity between the predicted value
and the actual value of the sample, and its range is [0, 1]. However, for random results,
RI does not guarantee that the score is close to 0, so the Adjusted Rand Index with higher
discrimination is proposed. The value range is [−1, 1]. The larger the value, the more
consistent the clustering result is with the real situation.

RI =
TP + TN

TP + FP + TN + FN
(12)

ARI =
RI − E[RI]

max(RI)− E[RI]
(13)

where TP, FP, TN, and FN represent true positive, false positive, true negative, and false
negative decisions, respectively.

(3) F1-measure: The F1-measure is the harmonic mean of precision and recall, and
it is a commonly used comprehensive evaluation index in clustering. The Precision indi-
cates the proportion of samples classified as positive samples that are actually positive
samples. The Recall rate refers to the proportion of instances that are actually classified as
positive instances.

F =
2 ∗ P ∗ R

P + R
(14)

P =
TP

TP + FP
(15)
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R =
TP

TP + FN
(16)

(4) NMI: Normalized Mutual Information utilized information theory to measure the
differences between the clustering partitions and its range is in [0, 1].

NMI(X; Y) = 2
I(X; Y)

H(X) + H(Y)
(17)

where I(X;Y) is the mutual information between X and Y, and H(X), H(Y) are the entropy
of random variables.

4.3. Experiments on Synthetic Datasets

Table 1 shows the basic information of the nine synthetic data sets. The original data
of the nine synthetic data sets are shown in Figure 5.

Table 1. The basic information of the nine synthetic data sets.

Dataset Objects Attributes Clusters

D1 513 2 5
D2 420 2 2
D3 1532 2 2
D4 3883 2 3
D5 1114 2 4
D6 1064 2 2
D7 1915 2 6
D8 1427 2 4
D9 8533 2 7
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Figure 6 shows that all clustering methods have good clustering performance on the D1
dataset. It can be seen from Figure 7 that in addition to the USENC and USPEC algorithms,
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other clustering methods work well on the D2 dataset. This may be because USENC and
USPEC are more focused on clustering of very Ultra-scale data sets with limited resources.
As shown in Figure 8, only the DPC, K-means, and USENC methods are not effective for
the D3 dataset. In fact, DPC and K-means cannot detect non-spherical clusters.
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The clustering results in Figure 9 demonstrate that DBSCAN, Cut-PC, USENC, and
NCNNSC algorithms can cluster D4 well. Although k-means, DPC, SC, and NNSC per-
form well on the spherical cluster dataset, they cannot handle circular clusters. USPEC
algorithms performed the worst. It can be seen from Figure 10 that most of the algorithms
can perform clustering excellently on the D5 dataset. However, DPC, K-means, and USPEC
are not well recognized, which again proves that DPC and K-means cannot handle circular
clusters well.
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Figure 11 illustrates that DBSCAN, Cut-PC, and NN-NCSC are processed well for
clusters of spiral clusters. The similarity is that these three algorithms have been processed
with noise. Generally, SC can handle spiral clusters well, but part of the data in this dataset
is too scattered, which affects the final clustering performance. As shown in Figure 12, only
DBSCAN, USENC, and NCNNSC-CP have good clustering results for the data set D7. SC
and Cut-PC achieved similar results. Other algorithms are less efficient.
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From the clustering shown in Figure 13, Cut-PC, USENC, and NCNNSC-CP can
identify clusters in the D8 dataset, while other algorithms cannot. As for the last data set
D9, which is displayed in Figure 14, only Cut-PC and NCNNSC-CP clustered it correctly.
The USENC clustering results are almost correct but there are some deviations. The
clustering results of SC and USPEC are similar, and most of the data are classified into
four categories. For other algorithms, the clustering results are very poor. Therefore,
NCNNSC-CP algorithms can effectively detect irregular data sets.
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In conclusion, the NCNNSC-CP algorithm performs better than other algorithms from
Figures 2–10 and can properly recognize different types of clusters. Simultaneously, it can
achieve effective clustering results on data sets of different scales and can be applied to
more complicated situations.

4.4. Experiments on Real Datasets

The UCI data set is a commonly used standard test data set, which is often used
in many clustering experiments. In this paper, we conduct experiments on six real UCI
data sets. The specific information is shown in Table 2. For the parameter setting of
different algorithms, we conduct 20 iterations of experiments for each algorithm. The
results of ACC, ARI, F, and NMI of the nine algorithms on the six UCI data sets are given
in Tables 3–6, respectively. The best results are shown in bold, and the second best are
shown in asterisks (*).

Table 2. The basic information of the six UCI data sets.

Dataset Objects Attributes Clusters

Iris 150 4 2
Seeds 210 6 3

Breastcancer 699 9 2
Banknote 1372 4 2
Thyroid 215 5 3

Ionosphere 351 34 2
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Table 3. The Accuracy of the nine algorithms on six UCI datasets.

Dataset K-Means DBSCAN DPC Cut-PC SC USPEC USENC NNSC NCNNSC-CP

Iris 0.8933 0.9267 0.9067 0.7000 0.9067 0.9467 * 0.9067 0.9000 0.9683
Seeds 0.8905 0.8048 0.8857 0.4978 0.8905 0.6476 0.8095 * 0.8381 0.9355

Breastcancer 0.9585 0.9628 0.6552 0.8526 0.9557 0.6567 0.9714 * 0.9614 0.9739
Banknote 0.6122 0.9628 0.7413 0.9308 0.6851 0.8528 0.8593 0.8958 0.9325 *
Thyroid 0.8058 0.6977 0.7209 0.8000 0.7907 * 0.7070 0.8000 0.7302 0.9018

Ionosphere 0.7094 0.8319 0.6410 0.8234 * 0.7094 0.6439 0.7094 0.8091 0.9091

Bold shows the best result. Asterisk (*) refers to the second-best result.

Table 4. The ARI of the nine algorithms on six UCI datasets.

Dataset K-Means DBSCAN DPC Cut-PC SC USPEC USENC NNSC NCNNSC-CP

Iris 0.7302 0.6841 0.7592 0.4819 0.7583 0.8512 * 0.7592 0.7445 0.9128
Seeds 0.7103 * 0.2163 0.7027 0.3667 0.7054 0.4402 0.5543 0.6065 0.8152

Breastcancer 0.8391 0.7509 0.0939 0.4829 0.8285 0.0026 0.8879 0.8499 0.8736 *
Banknote 0.0485 0.0296 0.2308 0.4045 0.1310 0.4974 0.5161 0.6262 * 0.7480
Thyroid 0.4016 0.0165 0.1316 0.4474 * 0.3752 0.0313 0.4523 0.1114 0.4324

Ionosphere 0.1728 0.2544 0.0000 0.3987 0.1727 0.0045 0.1726 0.3517 * 0.1953

Bold shows the best result. Asterisk (*) refers to the second-best result.

Table 5. The F-measure of the nine algorithms on six UCI datasets.

Dataset K-Means DBSCAN DPC Cut-PC SC USPEC USENC NNSC NCNNSC-CP

Iris 0.8918 0.8667 0.9048 0.7277 0.9053 0.9465 * 0.9048 0.8983 0.9683
Seeds 0.8897 0.5608 0.8822 0.0025 0.8907 * 0.7303 0.8071 0.8360 0.9353

Breastcancer 0.9584 0.8741 0.6623 0.8444 0.9555 0.6954 0.9716 * 0.9614 0.9739
Banknote 0.6026 0.2484 0.7311 0.7648 0.6453 0.8532 0.8597 0.8958 * 0.9325
Thyroid 0.7734 0.5985 0.6252 0.7682 0.7356 0.6547 0.8016 * 0.6714 0.8535

Ionosphere 0.7149 0.7456 0.6228 0.8062* 0.7148 0.6902 0.7147 0.7758 0.8738

Bold shows the best result. Asterisk (*) refers to the second-best result.

Table 6. The Normalized Mutual Information (NMI) of the nine algorithms on six UCI datasets.

Dataset K-Means DBSCAN DPC Cut-PC SC USPEC USENC NNSC NCNNSC-CP

Iris 0.7582 0.6986 0.8057 0.5530 0.7857 0.8449 * 0.8057 0.7777 0.9043
Seeds 0.7101 * 0.4095 0.6982 0.4815 0.6869 0.5372 0.6204 0.6560 0.7736

Breastcancer 0.7361 0.5965 0.1089 0.3909 0.7219 0.0047 0.8138 0.7492 0.7501 *
Banknote 0.0303 0.2305 0.3464 0.4566 0.2120 0.4103 0.4328 0.6111 * 0.6420
Thyroid 0.3428 0.2224 0.1786 0.3832 0.3397 0.0422 0.3208 0.1376 0.3815 *

Ionosphere 0.1320 0.2950 0.0699 0.3810 0.1299 0.0087 0.1278 0.3237* 0.1644

Bold shows the best result. Asterisk (*) refers to the second-best result.

In order to more intuitively observe the Acc, ARI, F-measure, and NMI of the nine
algorithms on the six real UCI data sets, histograms have been used to represent them, as
shown in Figures 15–18.
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Regarding accuracy, as shown in Figure 15, except for the banknote data set, the
NCNNSC-CP algorithm has the best results on the five UCI data sets. The result on the
banknote dataset is also the second best. In terms of accuracy, Figure 16 demonstrates
that although the proposed algorithm has general results on the two data sets of Thyroid
and Ionosphere, it has achieved excellent results on the three data sets of Iris, Seeds, and
Banknote. At the same time, it is second only to the USENC algorithm on the Breastcancer
data set. As for F-measure, it is obvious that the NCNNSC-CP algorithm performs best
on all data sets from Figure 17. In the aspect of the NMI, as displayed in Figure 18, except
for the general performance on the ionosphere data set, the proposed algorithm achieved
the best results on the three datasets of Iris, Seeds, and Banknote, and also achieved the
second-best results on the datasets of Breastcancer and Thyroid.

Based on the above analysis, compared with other clustering algorithms, the NCNNSC-
CP algorithm proposed in this paper has excellent performance in clustering.

4.5. Result Analysis

As aforementioned, combining the experimental results on the synthetic data set
and the real data set, compared with other comparison algorithms, the Noises Cutting
and Natural Neighbors Spectral Clustering Based on Coupling P System is better. For
different types of clusters, the corresponding shapes can be correctly identified. Moreover,
the difference in the size of each data set can indicate that the NCNNSC-CP method can
obtain effective clustering results for data sets of different scales and can be applied to
more complex situations. In this paper, all the procedures of the algorithm are carried
out in the structure of the coupled P system. Taking advantage of the extremely parallel
computing characteristics of the coupled P system in membrane computing, the computing
efficiency is improved theoretically. In the part of noises recognition and cutting, all data
points in the data set are determined in parallel at the same time, instead of the traditional
sequential method. After the noise is identified, the noise points can be transported
to the environment in real-time and discarded. When the processed data are clustered
by the K-means algorithm, the c randomly selected cluster centers are simultaneously
operated in parallel on the c sub-cells in the coupled P system. Membrane computing has
the characteristics of extremely parallelism. In the constructed coupled P system, it can
theoretically operate in parallel, which can improve efficiency to a certain extent.

5. Conclusions

In this paper, we propose noise cutting and natural neighbors spectral clustering
based on coupled P system. The concept of natural neighbors and the method of spectral



Processes 2021, 9, 439 21 of 22

clustering are integrated into the coupled P system. The entire algorithm flow runs under
the framework of the coupled P system, which detect and cut noises through the concepts
of critical density and reverse density of natural neighbors. At the same time, the core nat-
ural neighbors of each data object are automatically determined from the noise-processed
dataset, and the affinity matrix of spectral clustering is constructed according to the core
natural neighbors. Then, further cluster them to achieve the final clustering result. Ex-
perimental results indicate that the proposed algorithm is better than other algorithms on
artificially synthetic datasets and UCI real data sets.

In future work, we will further expand the CP system so that it can solve more
optimization and clustering problems. Moreover, it will further improve the performance
of the algorithm, such as the consideration of the automatic determination of the number
of clusters, and the further improvement of the final clustering algorithm.
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