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Abstract: In the grid-tied micro-grid context, energy resilience can be defined as the time period
that a local energy system can supply the critical loads during an unplanned upstream grid outage.
While the role of renewable-based micro-grids in enhancing communities’ energy resilience is
well-appreciated, the academic literature on the techno-economic optimisation of community-scale
micro-grids lacks a quantitative decision support analysis concerning the inclusion of a minimum
resilience constraint in the optimisation process. Utilising a specifically-developed, time-based
resilience capacity characterisation method to quantify the sustainability of micro-grids in the face of
different levels of extended grid power outages, this paper facilitates stakeholder decision-making on
the trade-off between the whole-life cost of a community micro-grid system and its degree of resilience.
Furthermore, this paper focuses on energy infrastructure expansion planning, aiming to analyse the
importance of micro-grid reinforcement to meet new sources of electricity demand—particularly,
transport electrification—in addition to the business-as-usual demand growth. Using quantitative
case study evidence from the Totarabank Subdivision in New Zealand, the paper concludes that at the
current feed-in-tariff rate (NZ$0.08/kWh), the life cycle profitability of resilience-oriented community
micro-grid capacity reinforcement is guaranteed within a New Zealand context, though constrained
by capital requirements.

Keywords: renewable energy systems; microgrids; optimal expansion planning; energy resilience;
resilient energy systems; critical loads; electric vehicles; techno-economic analysis; HOMER Pro;
New Zealand

1. Introduction

The past two decades have witnessed a remarkable evolution of micro-grids (MGs) from a
nascent concept to a pivotal player in the transition to 100% renewable energy [1–3]. The power
industry has accordingly seen an ever-increasing penetration of distributed energy resources into
utility grids. The key drivers behind the stakeholders’ willingness towards additional, often non-trivial,
capital investments for resilience capacity are [4–6]: (1) the constantly falling costs of renewable
energy technologies, which are transforming the economics of green energy, most notably solar
photovoltaic (PV) panels and battery energy storage systems (BESSs), (2) the growing awareness about
the inadequacy of current approaches to energy resilience at community-scale, specifically the use of
diesel generators to provide backup power during utility grid outages, and (3) the growth of engaged
prosumers, who place great value on their energy self-sufficiency for sustainable living.
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In the context of on-grid MGs, energy resilience is generally defined as “the amount of time that
an MG can sustain critical loads during a grid outage”, and often serves as a synonym for outage
survivability [7]. A recent, growing strand of the literature has documented and emphasised the
increasingly important role of planning for resilience within the context of grid-tied MGs, which,
in turn, improves the resilience of a nation’s entire power grid. For instance, Eskandarpour et al. [8]
have formulated a mixed-integer linear programming problem for the optimal sizing and siting of
MGs within power systems by considering the cost of unserved energy during utility grid outages as
the objective function, while adhering to a limited budget for resilience improvements. In another
instance, Barnes et al. [9] have revealed the potentially significant benefits of including energy resilience
constraints in the long-term investment planning problem of networked MGs in terms of the prolonged
outage survivability and overall cost-efficiency. Furthermore, Anderson et al. [7] have shown the
economic and resilience benefits delivered by renewable energy technologies in a hybrid MG. More
specifically, they have demonstrated that adding a 845-kW PV system together with a 172-kWh BESS
to an existing 305 kW of backup diesel generators extends the time period the MG can sustain crucial
loads by 1.8 days, while generating savings of US$104,000 in energy costs over the reinforced MG
life-cycle. Table 1 provides an overview of recent studies centred on the optimal capacity expansion
planning of grid-tied renewable energy systems. Moreover, Table 2 presents a summary of the previous
studies that focused on the long-term, integrated resource and resilience planning in the context of
renewable and sustainable energy systems (in addition to the studies reviewed above). The reader is
referred to [10] for a more detailed review of the methods and research trends in the MG resilience
improvement literature.

As Tables 1 and 2 indicate, no previous study, as far as can be ascertained, has introduced
a systematic method to quantify the cost of insuring grid-tied renewable energy systems against
sustained grid outages in the optimal equipment capacity expansion planning processes—to meet
some desired minimum level of resilience. Accordingly, this paper bridges the gap between these two
streams of literature by proposing a modelling framework to estimate the additional costs incurred
to procure energy resilience in the optimal capacity expansion planning processes of grid-connected
community MGs. The paper additionally presents a sensitivity analysis to highlight the impact of
varying minimum degrees of energy resilience required by stakeholders on the optimal life-cycle costs
associated with the capacity reinforcement of grid-connected MGs.

The remainder of this paper is organised as follows. Section 2 describes the overall structure of
the test-case, the fundamental assumptions underlying the study, and data requirements for the case
study. Section 3 provides the modelling approach, while Section 4 presents the results and examines
the robustness of optimal MG capacity configurations. Finally, conclusions are made and potential
areas for future work are discussed in Section 5.



Energies 2020, 13, 3970 3 of 29

Table 1. Summary of the recent previous work dealing with the cost-optimal capacity expansion planning of renewable energy systems.

Ref. Technologies Considered in
the Candidate Pool Optimisation Approach Key Contribution(s) Key Insight(s) from Case Study Analyses

[11]

Solar photovoltaic (PV), wind
turbine, fuel cell, diesel
generator, heat storage,

and battery

Mixed-integer linear
programming solved using the

General Algebraic Modeling
System (GAMS)

• Using interval linear
programming to characterise the
uncertainty associated with
long-term weather projections.

• Taking a multi-period planning
approach to improve the precision
of decision-making in the
allocation of renewable
energy resources.

• The technology diversity degree
decreases, as the acceptable level of
robustness against weather forecast
uncertainties increases.

• At present, fuel cells are not
cost-competitive with mature
battery technologies.

[12] Solar PV, wind turbine, diesel
generator, and battery

Scenario-based stochastic
optimisation

• Considering multiple conflicting
objectives, namely the
minimisation of life-cycle costs,
greenhouse gas emissions, and the
non-renewable fraction of power
generation capacity.

• The total net present cost of capacity
additions would have been
underestimated by about 23% if the
model-inherent uncertainties
(forecasts of load demand and
climatic variables) were not modelled.

[13]
Wind turbine, bi-directional

electric vehicle charging
infrastructure

Semi-dynamic, semi-static
programming

• Formulating the utility generation
expansion planning problem to
determine the optimal additional
capacity of wind generation and
the optimal penetration of electric
vehicles that maximise the utility’s
profits in the long run.

• Integration of vehicle-to-grid
technology can play a significant role
in improving the economic viability of
renewable energy capacity
expansion decisions.
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Table 1. Cont.

Ref. Technologies Considered in
the Candidate Pool Optimisation Approach Key Contribution(s) Key Insight(s) from Case Study Analyses

[14]
Solar PV, wind turbine, diesel

generator, battery,
and utility line

Mixed-integer nonlinear
programming solved using
meta-heuristic optimisation

algorithms

• Simultaneous optimisation of
long-term investment costs and
short-term operating costs.

• Co-optimisation of investment
planning and energy scheduling
problems reduces the total life-cycle
costs by about 10%.

• Increasing the capacity of the line
connecting the micro-grid (MG) to the
upstream grid results in lower costs of
handling the uncertainties in load and
weather forecasts.

[15] Solar PV and wind turbine Multi-agent systems

• Bi-layer, agent-based simulation of
the capacity expansion planning
problem to aid MG operators in
decision-making among a range of
candidate investment plans to
maximise their profits. The inner
(operational) layer simulates the
renewable energy market
behaviour, the outputs of which
are fed into the outer (planning)
layer, which evaluates the
profitability of each
investment scenario.

• Characterising the competitive
behaviour of MG operators within an
existing utility’s territory makes the
numeric simulation results more
accurate and representative of
real-world practice.
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Table 2. Summary of the previous work focused on the integration of resilience constraints into the long-term investment planning processes of renewable
energy systems.

Ref. Technologies/Resources/Systems
Considered in the Candidate Pool Optimisation Approach Key Contribution(s) Key Insight(s) from Case Study

Analyses

[16] Unspecified distributed generation
Mixed-integer linear

programming solved using
GAMS

• Treating the uncertainty associated
with the occurrence of extreme
weather events using information
gap decision theory.

• Proposing a resilience planning
model for active distribution grids
to produce optimal trade-offs
between the added capacity of
backup distributed generation and
hardened utility lines within certain
budget constraints.

• Information gap decision theory is
an effective approach for supporting
decision-making in the planning of
distribution electricity networks
for resilience.

• The best-compromise solution
between additional distribution
generation allocation and
distribution line hardening highly
relies on the acceptable degree of
conservativeness for the resilience
of the system.

[17] Hydro, wind, solar, geothermal,
nuclear, coal, natural gas, and oil

Multi-objective optimisation of
the national-level, energy

infrastructure capacity
expansion problem

• Assessing the resilience of the U.S.
national energy and transportation
systems to a set of extreme events.

• Considering cost, sustainability,
and resilience as three
independent objectives.

• Proposing a resilience measure to
quantify the ability of the energy
and transportation systems to
recover from the consequences of a
large-catastrophic event.

• Investment and operating costs,
sustainability degree, and resilience
level are competing objectives,
which cannot be improved at the
same time, when jointly planning
national energy and
transportation systems.
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Table 2. Cont.

Ref. Technologies/Resources/Systems
Considered in the Candidate Pool Optimisation Approach Key Contribution(s) Key Insight(s) from Case Study

Analyses

[18] Electric power system and natural
gas system Two-stage robust optimisation

• Proposing an integrated expansion
planning framework for electricity
and natural gas systems, which
aims at improving power grid
resilience against extreme events.

• Joint investment planning of
electricity and natural gas networks
provides the opportunity to
significantly reduce the cost of
resilience as compared to the case
where resilience requirements are
met alone through additional power
grid resources.

[19] Solar PV, battery, and combined
heat and power HOMER software

• Characterising the desired resilience
preferences of a site based on the
battery bank’s duration of
autonomy. Specifically, battery
banks were sized to serve the peak
load demand for 4 h in cases of a
grid outage.

• The expected costs for the additional
battery bank to meet the resilience
requirements scale with the size of
the project (that can be measured by
the mean load demand).

• Achieving resilience requirements
using additional battery arrays
incurs sizable capital, replacement,
and operation and
maintenance costs.

[20] Unspecified distributed generation
technologies Two-stage robust optimisation

• Proposing an optimal distributed
generation placement model that
minimises the total load shedding in
extreme events, whilst additionally
characterising the uncertainty
coupled with the time of occurrence
and duration of natural disasters.

• Increasing the penetration of
distributed generation resources
within distribution networks
significantly improves the
cost-efficiency of procuring
resilience provisions.



Energies 2020, 13, 3970 7 of 29

Table 2. Cont.

Ref. Technologies/Resources/Systems
Considered in the Candidate Pool Optimisation Approach Key Contribution(s) Key Insight(s) from Case Study

Analyses

[21] Solar PV, wind turbine, diesel
generator, and battery Two-stage robust optimisation

• Proposing a grid-tied MG
investment planning model to
optimally site and size candidate
sets of distributed energy resources
and utility lines, whilst adhering to
a pre-specified degree of resilience
to N-k contingencies. 1

• Increasing the minimum required
resilience level increases the
life-cycle cost of
grid-connected MGs.

• The computational time increases
exponentially with the maximum
number of simultaneous
contingencies considered.

[22] Battery and diesel generator
Mixed-integer linear

programming solved using
GAMS

• Developing a framework to
optimise the type and size of
backup power equipment for
critical services in islanded
operation modes of grid-tied MGs.

• Measuring the end-consumer
preferences for resilience to grid
outages using the average critical
customer interruption index.

• Quantification of the stochasticity
associated with extreme weather
events in terms of occurrence time
and duration.

• Capturing the stochasticity of
extreme weather events could
reduce the cost of MG capacity
reinforcement—through dedicated
additional backup power
capacity—to meet the resilience
requirements by up to about 12%,
as compared with
deterministic models.

1N-k contingency criterion guarantees that N critical components within a power network can continue normal operation in cases any k components simultaneously suffer a failure.
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2. Test-Case System: Totarabank, New Zealand

The Totarabank Subdivision consists of eight freehold residential lots (ranging in size from 1200 m2

to 2100 m2) and a communal building (on the ninth, common lot) with a large area of around 6 ha
held in common ownership [23]. Located in central Wairarapa, New Zealand (GPS coordinates:
41◦1′4” S 175◦40′0” E), the subdivision adheres to sustainability design criteria to suggest ways for
resilience integration. Figure 1 shows the geographical location and description of the case study
subdivision Totarabank.Energies 2020, 13, x FOR PEER REVIEW 6 of 27 
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Figure 1. Satellite photographs of the case study area: (a) location of the subdivision on a New Zealand
map; (b) layout of the subdivision showing the lots (image courtesy of Google Earth).

As of May 2020, Totarabank has 14 inhabitants, and an existing installed grid-integrated power
generation capacity of 11.4 kW, 100% from solar PV modules, which have an average remaining life
span of 19.25 years. Accordingly, the load power demand is met through electricity importing from the
main grid at night when the onsite PV system is not delivering, while any surplus electricity is sold
back to the grid during the day. However, the primary issue of the current power dispatching strategy
is its failure to serve the crucial loads at night if the upstream network fails or requires maintenance.
This, together with the anticipated growth in demand (led by the electrification of transport), reveals
the necessity for the reinforcement of the current energy system—to improve the site’s energy resilience,
self-sufficiency, and security of supply.

2.1. Candidate Technologies

The considered site is richly endowed with renewable energy resources, particularly solar and
wind. The candidate technologies included in the model for optimisation are (1) PV modules, (2) wind
turbines (WTs), and (3) a BESS. Furthermore, an unreported preliminary techno-economic study
suggested that a BESS is the most cost-effective technology for onsite energy storage among feasible
options for Totarabank, namely hydrogen storage system (electrolyser, hydrogen reservoir, and fuel cell),
batteries, flywheels, and super-capacitors. More specifically, a Li-ion battery system was chosen, as it
offers the best combination of energy density, low self-discharge, and manufacturing cost, compared
with other mature battery technologies [24]. Accordingly, the selected components were assembled in
an AC-coupled configuration to form the grid-connected MG shown in Figure 2.
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2.1.1. PV Modules

The power output from each PV module in time t is obtained from Equation (1) as a function of
solar irradiance and the module’s temperature, which is estimated from Equation (2) [25].

Pt
PV = PPV,r × ηPV × fPV ×

 Gt
T

GT,STC

× (
1−

(
kp

100
×

(
Tt

PV − TSTC
)))

, (1)

Tt
PV = Tt

a + Gt
T ×

(NOCT − 20
0.8

)
, (2)

where PPV,r, ηPV, fPV, kp, and NOCT denote the module’s rated power, efficiency, derating factor,
temperature coefficient, and nominal operating cell temperature, respectively; Gt

T is the global
horizontal irradiance in time t; GT,STC and TSTC represent the solar irradiance and temperature at the
standard test conditions, respectively; and Tt

a is the ambient temperature.

2.1.2. Wind Turbines

The power output from each WT is obtained from the manufacturer-provided power curve, shown
in Figure 3 [26]. Additionally, the wind speed data is hub height normalised using the power-law,
which is expressed in Equation (3) [27].
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hub = Vt
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, (3)
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where Vre f represents wind speed measured at the height of hre f in time t, and γ is the wind
shear exponent.

2.1.3. Battery Arrays

The energy content of the battery bank, comprising of battery packs connected in parallel, in time
t can be calculated from Equation (4) [28].

Et
B = Et−∆t

B +
(
Pt

B × ∆t
)
, (4)

where ∆t denotes the operating time increment and Pt
B is the charging/discharging power of the battery

bank in time t that can be calculated based on the system-wide supply-demand balance constraint
from Equation (5) [29].

Pt
B = Pt

PV + Pt
WT ∓ Pt

g − Pt
L, (5)

where Pt
WT is the power output from WTs in time t, Pt

g is the exchanged power with the utility grid,
a positive (negative) value of which represents an imported (exported) power, and Pt

L is the total
residential load power demand. A positive value of Pt

B represents the charging state, whereas negative
values signify the discharging state.

Moreover, the energy stored in each battery pack is constrained to lie within the feasible range of
values, [EB,min, EB,max].

2.1.4. Hybrid Inverter

A grid-interactive inverter (also called multi-mode battery inverter/charger, or bidirectional
dual-mode hybrid inverter) is used in an AC-coupled configuration, which is capable of managing
inputs from multiple sources in both on- and off-grid operating modes. The hybrid inverter is modelled
by its overall efficiency.

2.1.5. Utility Grid

The cost of importing/exporting electricity from/to the utility grid in time t is obtained from
Equation (6) [30].

costt
g =

{
πt

ex × Pt
g × ∆t i f Pt

g > 0,
FiT × Pt

g × ∆t i f Pt
g < 0,

(6)

where πt
ex is the wholesale power price in time t and FiT represents a fixed feed-in-tariff.

2.1.6. Electric Vehicle Charging Station

AC level 2 charging, which is the most common home charging solution, is considered in this
project [31]. Accordingly, a level 2 electric vehicle supply equipment (EVSE) is employed, which is
modelled by its efficiency. It is connected directly to the MG’s hybrid inverter via a dedicated circuit
and provides charging through a 240 V AC plug.

2.2. Key Assumptions

The following simplifying assumptions were made:

• The MG capacity expansion planning was carried out from a macro (centralised) perspective.
Accordingly, this study does not focus on how to optimally assign the equipment capacity to
each lot.

• The costs associated with the replacement and operation and maintenance (O&M) of the existing
installed solar inverters were not reflected in the model. The reason lies in the fact that these
assets are privately owned, while the new capacity additions were assumed to be shared by the
community. That is, accounting for the replacement and O&M costs of the currently privately held
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solar inverters will require more sophisticated market designs (such as peer-to-peer markets) for the
intra-community electricity exchanges to establish a fair playing field—which are currently cleared
under a pure flat-rate tariff structure. Note that the rationale behind making this assumption
stems from the difference in the service life of PV panels and solar inverters.

• The energy stored in the stationary battery bank is not allowed to be used for electric vehicle (EV)
charging purposes—allowed only for critical loads to address the resilience of the community and
to improve the service life of the stationary battery bank.

• The case study site’s mobility requirements were assumed to be 40 km/day/lot, while the EVs’
average efficiency was assumed to be 0.12 kWh/km, considering a Nissan Leaf, which is New
Zealand’s most popular EV [32–34].

• A cooperative energy scheduling strategy (for example the one proposed in [35]), to be materialised
in the implementation phase, was assumed to be able to coordinate the flexible charging of EVs,
such that the daily periods of time the EV charging infrastructure sits unused is minimised.

• Vehicle-to-grid (V2G) services [36], as well as the effect of load growth due to the eco-village’s
population growth, were not taken into consideration. Rather, the system expansion is planned to
meet the expectation of growing loads from the existing number of inhabitants.

• The product models were chosen, based on the authors’ judgement of both efficiency and
cost-effectiveness, from the options available in the Australia and New Zealand renewable energy
markets, while costs are always cited in New Zealand currency.

2.3. Data

The techno-economic specifications of the selected components and the associated sources are
summarised in Table 3.

Table 3. Techno-economic specifications of the components.

Specification Component

PV Modules 1 Wind Turbines 2 Battery Arrays Converter

Manufacturer part
number

TSM-285 PD05,
Trina Solar X-2000L RESU 3.3,

LG Chem
SPMC240-AU,

Selectronic
Rated capacity 285 W 2 kW 3.3 kWh 3 kW

Capital cost $237/unit $3967/unit $3645/unit $4600/unit
$832/kW $1984/kW $1105/kWh $1533/kW

Replacement cost 3 $237/unit $3229/unit $3645/unit $4600/unit
O&M cost 3 $0.7/unit/year $26.4/unit/year $7.3/unit/year $3.9/unit/year
Useful life 25 years 20 years 4 15 years 15 years
Efficiency 17.4% N/A 5 95% 6 96%

Source [37,38] [26] [39–41] [42,43]
1 Photovoltaic (PV) module costs include the cost associated with the solar inverter. 2 WT costs include the
cost of the required guyed tower. 3 The replacement and O&M costs were adjusted in accordance with the
capital-to-replacement and capital-to-O&M cost ratios used in [44–46]. 4 The approximate average operational
service life of small and micro WTs is 120,000 h. However, since they do not operate at wind speeds below cut-in,
their service life is typically considered as 20 years [47]. 5 N/A: Not applicable, since the WT’s performance is
modelled by its characteristic power-speed curve, in the same way as in [48]. 6 The battery bank’s efficiency
represents its round-trip efficiency.

Moreover, in view of the study objectives and simplifying assumptions outlined above, the costs
associated with the EVSE were exogenously treated. More specifically, they were taken into account through
cost premiums imposed on the optimised MG whole-life cost solutions. Specifically, the Delta AC Mini
Plus EVSE, was chosen in this analysis to serve the level 2 charging. It has the following techno-economic
specifications [49,50]: capital and replacement costs = $2564/unit, O&M cost = $17/unit/year, service
life = 25 years, efficiency = 99%, maximum output power = 7.36 kW, and input rating = 230 V AC.
Accordingly, the EV charging load was classified as deferrable, the monthly average value of which was
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assumed to be constant throughout the year, with an average value of 48 kWh/d, and a peak value of
(n × 7.36) kW, in compliance with the maximum power output from n EV chargers.

Table 4 presents the data and sources for the parameter settings of the conceptualised MG system.

Table 4. Conceptualised MG system’s scalars and sources.

Scalar Value Source Scalar Value Source

fPV 88% [51] hhub 7 m (this paper)
kp −0.41%/◦C [37] hre f 50 m [52]

NOCT 44 [37] FiT $0.08/kWh [53]
GT,STC 1 kW/m2 [54] ∆t 1 h [55]
TSTC 25 ◦C [54] EB,max

1 2.9 kWh [40]
γ 0.15 [56] EB,min

2 0.29 kWh [40]
1EB,max denotes the maximum usable capacity of each module. 2 By definition, EB,min = (1−DOD) × EB,max, where
DOD is the depth of discharge [%] [35].

Figure 4 shows the average wholesale power price for each hour across the five-year period of
2015 to 2019 [57], which were considered as forecasts of utility power price.
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Figure 4. Forecasted profile for the wholesale electricity price at hourly resolution. The numerical
values belonging to this figure are listed in Table S1 in Supplementary Material.

Figure 5 depicts the forecasted residential load power demand profile. The time-series data were
synthesised from the GREEN Grid household electricity demand data [58] through downscaling the
GREEN Grid study’s sample of dwellings to the Totarabank’s household population according to the
proportionate scaling method described in [59].
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Forecasts of wind and solar resources were determined using the NASA Surface Meteorology
and Solar Energy database [52]. Accordingly, the monthly-averaged wind speed values over a 10-year
historical period, and monthly-averaged insolation and air temperature values over a 22-year historical
period were retrieved from the database. Monthly mean forecasts of wind speed and solar radiation
are shown in Figure 6, while Figure 7 displays monthly mean temperature [52]. In general, an annual
average wind speed value of 5 m/s, and an annual insolation value of 4 kWh/m2/d are commonly
considered acceptable thresholds for the commercial viability of wind and solar projects, while seasonal
variations of resources can also affect the optimal resource combination of a PV/WT renewable energy
system [60]. As can be seen from Figure 6, not only is wind energy a more reliable source of power
than solar in the considered area, but it also shows a more constant trend than solar energy.
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3. Methodology

This section presents the methodology developed for the resilience-constrained capacity expansion
planning of MGs.

3.1. Modelling Approach

The U.S. National Renewable Energy Lab’s Hybrid Optimization of Multiple Energy Resources
(HOMER) Pro software (version 3.13.8) [61] was used to minimise the project’s life-cycle cost subject to
techno-economic design constraints for different levels of energy resilience. The software features two
algorithms to search for the cost-optimal design configuration: (1) an original grid search algorithm
that simulates all of the feasible resource combinations that meet the loads, and (2) a new proprietary
derivative-free optimisation algorithm, called “HOMER Optimizer”, which frees the user from the
need to define the search space. Additionally, the conceptualised MG’s life-cycle cost reflects all
of the cost components associated with supplying energy to the considered site in present value,
namely, the capital, replacement, and O&M costs of new energy infrastructure, as well as the net
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cost of energy exchange with the utility grid. At each time-step of the MG operation, an energy
dispatch analysis is carried out, whereby the load demand is served by the least-cost combination of
dispatchable and non-dispatchable distributed energy generation units, released energy from storage
devices, traded energy with the upstream grid, and load shifting. Additionally, deferrable loads are
placed in second priority, and supplied using the surplus power (to the needs of primary loads) from
non-dispatchable micro-generation units—solar PV and WT technologies—ahead of charging the
storage devices. The energy scheduling problem is solved for each time-step of the baseline year and is
repeated for the remaining years of the planning horizon, while discounting future cash flows to adjust
the results for inflation. HOMER Pro is also equipped with the “Multi-Year” module, which allows for
modelling the dynamic characteristics of the economic MG planning problem by running a simulation
for each ensuing year of the project lifetime. However, since the HOMER Optimizer does not support
multi-year planning, first, the optimal capacity configuration was determined using the HOMER
Optimizer without considering the dynamic characteristics of the problem, and then the search space
was defined based on the preliminary results obtained, with adequate margins, in size steps of 1 unit.
Finally, the model was re-run using the HOMER’s original grid search algorithm—which simulates all
of the feasible equipment capacity combinations with respect to the defined design space. This enabled
avoiding sub-optimal solutions, while retaining computational tractability. The conceptualised MG
system was simulated under both the cycle-charging and load-following energy dispatch strategies in
each simulation case, and the strategy that resulted in a lower levelised cost of energy (LCOE) was
selected as the optimum solution.

In addition, HOMER employs specifically-developed algorithms to synthesise one-year of hourly
time-series insolation, air temperature, and wind speed data from the corresponding monthly average
values to reflect the characteristics of real data (of the same level of granularity) in terms of seasonal,
daily, and hourly patterns. Accordingly, hourly-basis, year-round profiles for weather data were
derived based on the corresponding monthly average data, shown in Figures 6 and 7.

3.2. Characterisation of Energy Resilience

To quantify the resilience capacity of the MG system to prolonged utility grid outages,
the simulation was executed multiple times with varying values of grid reliability. Three built-in
parameters in HOMER Pro were used to characterise the grid reliability, namely, (1) mean outage
frequency, (2) mean repair time, and (3) repair time variability. Each random outage was injected
into the model at a pseudo-random time-step throughout the year-long operational period, while
the associated failure duration was determined by independent sampling from a normal distribution
defined by mean repair time and repair time variability. Accordingly, the mean outage frequency
was varied from 1 to 20 in steps of 1, the mean repair time was varied from 1 h to 168 h (2 weeks) in
steps of 4 h, while the repair time variability was fixed at 1 h—which adds a stochastic dimension to
the model. That is, 840 ((168 h/4 h) × 20 frequencies) independent outage time-series were produced
for the optimisation model. Moreover, to improve the cost-efficiency of the optimal MG capacity
configuration solutions, the model was designed to sustain only the critical loads during extended
utility grid outages.

In this light, the total load on the MG system was partitioned into critical and non-critical loads,
and non-critical loads were turned off when the grid was off. To this end, first, the residential load
duration curve was derived by sorting the hourly-basis, one-year residential load curve, as illustrated
in Figure 8. Accordingly, the average value of intermediate loads was determined and set as the
threshold criterion for residential load partitioning. More specifically, the residential load profile was
clipped at this point to form the critical residential load profile. The amounts of residual residential
demand that was left from the peak being clipped established the profile of time-stamped non-critical
residential load demand, which was only active under the normal, grid-connected operation regime.
Additionally, in the grid outage events, the deferrable load was limited to as much as the energy
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needed to fully charge one EV (Nissan Leaf, battery capacity = 30 kWh [34])—to meet the emergency
management needs at the site.
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3.3. Model Assumptions and Design Standards

Table 5 lists further input data for the model parameters and their respective sources.

Table 5. MG capacity expansion planning model’s parameters.

Parameter Value Source

Nominal discount rate 4.5% [63]
Expected inflation rate 1.9% [64]

Project lifetime 25 years (this paper)
Minimum autarky ratio 1 80% (this paper)

Maximum annual capacity shortage in meeting critical loads 0% (this paper)
Load growth rate 1.1% per annum [65]

1 The time-based autarky ratio indicates the self-sufficiency degree of the MG and can be determined by dividing
the yearly number of time-steps where no electricity is purchased from the grid (to meet the full demand) by the
total number of time-steps considered for the representative year of the optimisation [66].

Figure 9 shows a flowchart of the research methodology to include energy resilience criteria in
the long-term MG optimisation model implemented in HOMER, which is illustrated by means of
the considered case study example. As Figure 9 shows, first, the HOMER model is run for each of
the above-described 840 outage time-series for the test-case under investigation and the solutions are
recorded. Then, the model results of the numerical case example at each simulation run are aggregated
to obtain the sensitivity of the total discounted system costs, energy exchange levels with the national
grid, and the optimal MG configuration to the variations of the key grid outage parameters.
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4. Results and Discussion

This section presents and discusses the numerical simulation results obtained for the test-case MG
laid out in Section 2 by applying the method described in Section 3.

4.1. Feasibility and Optimal Capacity Configuration

The optimum equipment capacity configuration was determined first with the grid reliability
level set at 100%. Table 6 presents the optimisation results for this baseline scenario. (It should be
noted that all the simulation results are based on the manufacturer-provided equipment specifications
and technical data, which represent the performance of the equipment under standard test conditions.)
The table demonstrates that a WT is a more economically viable power generation technology than
solar PV for generation expansion at the considered site, as it could be expected from the historical
meteorological data (see Figure 6). However, given the complementary daily and seasonal cycles
of wind speed and insolation, the existing installed capacity of solar PV is still expanded in the
cost-optimal solution, albeit by a small margin. This not only validates the viability of the existing PV
generation system, but also indicates its sizeable impact on the diversification of the feasible future
generation mix for the site.
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Table 6. Optimal capacity additions and corresponding costs for a 100% reliable grid.

PV 1,2

[kW]
WT 1

[kW]
Battery 1

[kWh]
Inverter 1

[kW]
EVSE 1,3,4

[kW]
TNPC 5

[$]
LCOE

[$/kWh]

0.855 4 6.6 3 14.72 35,891 0.094
1 The optimal equipment capacity was determined as multiples of the selected components’ nameplate capacities.
2 The optimal PV capacity represents the newly added capacity of the site’s PV plant. 3 The electric vehicle supply
equipment (EVSE) did not take part in the optimisation procedure. The optimal size of the EVSE was determined
outside the model by finding the total minimum EV charging capacity that meets the peak EV charging demand of
the site under cooperative EV charging conditions. The obtained total minimum capacity was then divided by the
maximum charging capacity of each charger and rounded up to the nearest integer to obtain the optimal number
of chargers. 4 The optimal size of the EVSE is defined based on the maximum charging capacity of each charger.
5 TNPC represents the conceptualised MG’s “total net present cost”. The reader is referred to [67–69] for a detailed
description of the net present value method and levelised cost of energy (LCOE) calculations.

The total net present cost (TNPC) of the system is broken down into the main cost components
in Figure 10. Three key observations emerge collectively from Table 6 and Figure 10, which can be
generalised to any MG capacity reinforcement problem: (1) the system’s low O&M costs helped
offset its relatively high capital costs, which were mainly generated by new WT and BESS capacity
additions, (2) a comparison of the obtained LCOE with the current average price of domestic electricity
in the Wairarapa region, New Zealand, where the site is located ($0.34/kWh [70]) indicates that an
optimally planned community-based renewable power generation system even surpasses retail grid
parity, and (3) the negative value obtained for the net energy purchased from the utility grid suggests
that not only did energy exchange with the utility grid provide power quality benefits and help avoid
energy spillage (which was often carried out through a dedicated dump load to balance supply and
demand), but it also contributed to the profitability of the project, albeit slightly.
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To understand in more detail the active power flow pattern between the MG and the main grid,
the year-round profiles for energy purchased from the grid and energy sold to the grid, obtained for
the cost-minimal solution under normal, grid-connected conditions, are plotted in Figures 11 and 12,
respectively. The trends visible when comparing the figures are revealing. The battery bank in the
optimal equipment combination enabled the MG to engage in energy arbitrage, by charging when utility
rates were low and discharging during more remunerative times of day, (The buy-back rate is fixed at
NZ$0.08/kWh. However, given the availability of long-term data forecasts, the optimisation protocol
incorporates some degree of forward-looking behaviour into the energy exchange decision-making
process with respect to the load on the MG in the medium to longer term—identifying the more profitable
time-steps for feeding power back into the grid. That is, the profitability is measured independently of
the single rate feed-in tariff.) and/or by shifting the excess power from non-dispatchable renewables
for sale at more valuable times of day. This, additionally, helped reduce peak demand charges.
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4.2. The Cost of Energy Resilience

Using the methodology described in Section 3 for the planning for energy resilience, the optimal
MG capacity expansion problem was solved independently to global optimality for a series of different
scenarios defined by mean grid outage frequency and mean grid repair time. As an example, Figure 13
shows the one-year outage database (with hourly intervals) built stochastically for the middle-case
scenario, with a grid outage frequency of 10 per year and a mean repair time of 84 h. Accordingly,
Figures 14 and 15 respectively depict the resulting TNPC and the corresponding LCOE of the MG
expansion under varying degrees of grid reliability characterised by the above two parameters.
Moreover, the total annual amount of electricity sold to the grid [kWh] and the total annual amount of
electricity purchased from the grid (kWh) at different grid reliability levels are displayed in Figures 16
and 17, respectively. Note that all of the results presented in this sub-section are adjusted for the EVSE
costs, which were determined outside the model by matching the charging station’s capacity to the
peak EV charging demand of the site subject to the cooperative use of the charging infrastructure.
Such cooperative behaviour within the community is expected to uphold the installation of only two
EV chargers at the site (as indicated in Table 6) to fit for the considered multi-family community’s
energy demand for mobility.
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The two-way sensitivity analyses, shown in Figures 14–17, are revealing in the following ways:

• The values of total annual energy imports and exports indicate that the MG’s net purchased
electricity from the grid was approximately a monotonically decreasing function of the grid
unreliability. That is, as the failure frequency of the grid and/or its mean repair time increased,
the total power sold back to (purchased from) the grid increased (decreases) or remained
constant. The underlying reason responsible for this model behaviour is the increase in the excess
non-dispatchable power generation capacity of the MG during normal, grid-connected operations,
as the grid reliability decreases. However, the increase in revenues generated from trading with
the grid, as the MG’s resilience to grid outages improved, only partially offset the additional costs
incurred. This emphasises the necessity to include a minimum acceptable limit for the target
community’s energy resilience—to be derived from specifically-developed surveys to estimate
the value of lost load—in the resilience-oriented MG capacity expansion planning processes to
improve the accuracy of results.
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• Non-surprisingly, increasing the unreliability level of the grid through dedicated parameters,
increased the TNPC of the MG capacity expansion, which, in turn, increased the LCOE associated
with the cost-minimal system.

• The failure frequency of the grid and its mean repair time show almost the same degree of
negative effect on the system’s life-cycle cost when normalised to the same scale (e.g., in the
range of (0 to 1)). Additionally, there seems to exist a front of solutions with respect to the
grid reliability parameters, beyond which the whole-life cost of the system grows exponentially.
For example, in the middle case scenario, where the grid’s mean repair time and failure frequency
were respectively considered to be 84 h and 10 per year, the system’s TNPC was increased only by
about 48%. However, a further 10% increase of either of the above two parameters raised the MG’s
TNPC by a further 26%. This observation can be rationalised by the change in the MG architecture
when the grid unreliability level reaches a critical point, which is discussed in the next sub-section.

4.2.1. Optimal MG System Type

Figure 18 provides the resulting optimal system architecture for different levels of the failure
frequency of the grid and the associated mean repair time. As this figure shows, the MG design space
is divided approximately equally across two grid-connected system structures, namely, (1) existing
PV/added PV/added WT/added BESS, and (2) existing PV/added WT/added BESS. Notably, the figure
indicates that it is cost-optimal to add new PV generation capacity for a system resilient to relatively
low-frequency, long-duration outages, or high-frequency, short-duration outages, or any combination
in between. However, for grid outage scenarios that lie inside the region enclosed by the upper
pseudo-triangle shown in Figure 18, the optimally reinforced MG structure excludes additional PV
panels. This can be explained by the increase in the probability of occurrence of sustained outages during
the night-time hours, where solar panels produce no electricity. Thus, it is more economical to only add
WT and BESS capacity, in view of the lower diurnal variations of wind speed and dispatchability of the
BESS. It is also worth noting that while the considered bounds for the two-dimensional sensitivity
analyses might far exceed the local utility grid’s reliability (especially the scenarios that lie in the
region enclosed by the upper pseudo-trainable in Figure 18), the results of such sensitivity analyses
are important in evaluating the robustness of the baseline system costs and architecture. Accordingly,
Figure 18 demonstrates that the obtained grid-connected MG configuration of existing PV/added
PV/added WT/added battery in the baseline scenario (100% reliable grid) is highly robust to variations
in grid reliability.
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4.2.2. Indicative Resilient System Optimisation Analysis

According to the results presented in Figure 14, addressing energy resilience is possible at
comparably small total discounted cost increases of about 16% for a sufficiently resilient system (within
a New Zealand context), tolerable of two sustained outages per year with each duration of the outage
lasting up to four days (or, nearly equally, tolerable of four outages per year each with a maximum
outage duration of up to two days), while optimally planning the capacity additions for the site
under study. To indicate the effect of planning for energy resilience on the added MG equipment
capacity, and in turn, the MG’s life-cycle cost, this sub-section details the results obtained for the MG
system resilient to two extended outages per year each with a maximum outage duration of up to
four days. Moreover, all the analyses presented hereafter are based on this scenario. Table 7 details
the capacity expansion planning results obtained for the case considered in this paper under the grid
unreliability scenario outlined above. The table demonstrates that the only change in the optimal
capacity configuration of the MG with respect to the baseline case (refer to Table 6) is the addition of
one more battery module to cater for the prolonged grid outages, which will need to be replaced in
year 15 of the project.

Table 7. Optimal capacity additions for the system resilient to 2 extended outages per year each with a
maximum duration of up to 4 h.

PV (kW) WT (kW) Battery (kWh) Inverter (kW) EVSE (kW) TNPC ($) LCOE ($/kWh)

0.855 4 9.9 3 14.72 41,783 0.109

4.3. Capital Budgeting Metrics

This section measures the profitability of the investigated MG capacity expansion project based
on three key investment appraisal metrics, namely the return on investment (ROI), internal rate of
return (IRR), and discounted payback period (DPP). HOMER calculates theses economic sustainability
metrics with reference to a base case, which is normally the system with the lowest capital cost that can
meet the load demand on the MG. Accordingly, given the presence of the utility grid at the considered
site, the base case in this analysis is the existing PV/grid architecture, which incurs no capital costs in
view of the presence of a 50 kVA transformer at the site.

4.3.1. Return on Investment

The ROI is defined as the yearly cost savings an investment project generates for the injection of
the financial capital, which can be calculated from Equation (7) [71–73]:

ROI =

∑PL
i = 0

(
CCre f (i) −CC(i)

)
PL×

(
CC−CCre f

) , (7)

where CC and CCre f represent the capital cost of the suggested system and the reference system,
respectively; CC(i) and CCre f (i) denote the nominal cash flow for the proposed system and the reference
system in year i; and PL represents the project lifetime.

4.3.2. Internal Rate of Return

Considering the base case defined above, the IRR is defined as the discount rate at which the
net present value of all cash flows from the proposed investment equals to that of the base case.
Accordingly, the IRR can be calculated as follows [71,72]:

IRR =
PL∑

i = 0

(
PV(NCIre f (i) −NCI(i)

)
(1 + dr)i −

(
CC−CCre f

)
, (8)
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where dr is the real discount rate, and the term (PV(NCIre f (i) −NCI(i)) indicates the present value of
the difference of the two net cash inflow sequences (for the proposed project and the base case) during
the period i, while the net cash inflow represents the system’s income from selling electricity to the
grid and assets’ salvage value minus the components’ capital, replacement, and O&M costs, and the
costs associated with the purchase of electricity from the grid.

4.3.3. Discounted Payback Period

The DPP refers to the time required to recover the difference in the discounted cash flow difference
between the proposed system and the base case system, which can be expressed mathematically
as [71,72,74]

DPP =

1−
ln

 1

(CC−CCre f )×dr


(PV(NCIre f (i)−NCI(i))

ln(1 + dr)
, (9)

where ln represents the natural logarithm.

4.3.4. Resulting Cash Flow Metrics

Table 8 lists the obtained cash flow metrics for the proposed MG capacity expansion programme
with reference to the case where any shortfalls in meeting the growing residential load power demand
and EV charging loads—arising from the shortage in the existing PV generation capacity—is drawn
from the utility grid.

Table 8. Calculated capital budgeting metrics for the proposed resilience-oriented, community-scale
renewable energy development project.

Metric Return on
Investment (%)

Internal Rate of
Return (%)

Discounted Payback
Period (Years)

Value 47.63 54.51 4.74

Table 8 demonstrates that the project yields relatively high ROI and IRR values through cost
savings realised by building an at least 80% energy self-reliant community energy system, which
is able to exploit the differences between the feed-in-tariff rate and wholesale power prices during
off-peak periods of energy-use—by making effective use of a battery bank. The table also shows that
the conceptualised resilient community MG for critical services would pay for itself in as little as
4.74 years, which provides further support for the financial sustainability of the proposed development
plan. Finally, the results of this cost-benefit analysis collectively indicate that not only is the proposed
capital project economically feasible without any subsidies delivered as tax incentives (e.g., renewable
energy investment tax credits or production tax credits), but it also represents an attractive investment
opportunity, which is capable of generating moderate to substantial savings in the community’s energy
bills in the medium to long run.

5. Conclusions

Radial electricity distribution networks have historically been designed to reduce unplanned,
equipment failure-induced outages. However, the combination of multi-day outages as a result
of many of the recent extreme weather events, and the improved cost-efficiency of distributed
energy resources—including renewable energy generation and storage technologies—have stimulated
considerable interest in deploying community-led sustainable energy systems that are capable of
meeting critical loads if the upstream network fails. This study developed the first grid-connected
community MG equipment capacity expansion planning method that integrates energy resilience
constraints without creating redundant capacity. The proposed method yields robust decision-making
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support by evaluating the trade-off between life-cycle costs and the resilience of energy supply.
Specifically, to quantify the resilience of the proposed MG, a time-series of random outages throughout
the year were generated for a range of outage frequencies of certain durations and incorporated into
the HOMER Pro model.

The numerical simulation results obtained from the application of the model to the case example
of Totarabank eco-village, New Zealand, have provided several novel insights:

1. Over the 25-year project life-cycle (planning horizon), the optimally expanded MG system can
gain resilience against two outages per year, each up to four days in length, at relatively small
discounted cost increases of 16% (equating to NZ$5892). This lends support to the idea that at
current costs of renewable energy technologies, it is financially feasible for a community-level site
to achieve a sufficient degree of survivability against sustained grid outages.

2. The optimal architecture (component type combination), namely grid-connected existing
PV/added PV/added WT/added BESS MG system, determined for the case with a 100% reliable
grid, seems to be highly robust against a wide range of grid unreliability values. Much of the
reason for this lies in the fact that solar resource tends to complement wind resource at the
site. However, the evidence from this study shows that in high wind, low solar regions it is
not cost-optimal to add PV capacity when the degree of grid unreliability passes certain limits.
This can mainly be attributed to the lower capacity factor of the PV plant.

3. With an IRR of about 55%, the initial investment required for the capacity expansion of the site’s
energy infrastructure to meet the projected energy consumption growth (driven primarily by
the decarbonisation of the transport), can be recouped in less than five years, while additionally
ensuring backup power supply to critical loads for two outages per year, each up to four days
in length. This, together with the capital affordability of the project, suggests that it can be
financed completely by the local community. Moreover, given the demonstrated evidence of the
cost-efficiency of such programmes, it is expected to be attractive to many third-party investors.

Although this paper has focused particularly on the capacity expansion planning of grid-tied
community MGs, the proposed framework of planning for resilience can be generalised to handle
various types of sustainable energy systems of different scales. Moreover, the area of application of the
proposed framework is not restricted to the expansion planning problems. It can be easily extended
for application to the general renewable energy system capacity planning problem of greenfield sites
having access to the national grid.

The study has a number of limitations, namely:

1. All the estimates were based on defining energy resilience in terms of sustained grid outages.
That is, the study has not accounted for the impact of extreme weather episodes on the operability
of the considered site’s renewable energy generation assets.

2. The proposed method does not account for the planned extended power outages related to grid
capacity additions or equipment maintenance and repair.

3. The study did not include any inputs from the site on the value the community places on the
unserved energy during non-grid-connected operations. It is not implausible that the average
annual loads that are deemed critical by end-consumers be different from the adjusted threshold
criterion for load partitioning in this study.

4. While the integration of unidirectional EV charging infrastructure is shown to be both technically
feasible and economically viable, no attempt is made in this study to investigate the role that
bidirectional charging (powered by V2G technology) can play in improving the profitability of
the project.

Future Work

To address the limitations outlined above, future work needs to develop a more detailed
resilient-oriented MG capacity expansion planning modelling framework that: (1) takes into account
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the local extreme weather impact on the MG’s own onsite renewable energy generation equipment
and expands the proposed resilience quantification method to include the hours of the autonomy of
the storage bank; (2) integrates scheduled outages into the resilience-oriented MG capacity planning
processes by combining them with those of the random unplanned outages to generate an integrated
outage time-series to be fed into the optimisation problem; (3) considers the true value of lost
load perceived by end-consumers that can be derived from specifically-developed surveys, whilst
additionally reflecting the seasonal differences in the elasticity of non-critical loads; and (4) harnesses
the potential of EV batteries in facilitating the integration of renewable energy sources, which may
provide the opportunity to reduce the total discounted system costs and improve the cost-efficiency of
planning for resilience, security, and autonomy of community energy systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/15/3970/s1,
Table S1: numerical values underlying Figure 4; Table S2: numerical values underlying Figure 5; Table S3:
numerical values underlying Figure 11; Table S4: numerical values underlying Figure 12; Table S5: numerical
values underlying Figure 14; Table S6: numerical values underlying Figure 15; Table S7: numerical values
underlying Figure 16; Table S8: numerical values underlying Figure 17; and Table S9: numerical values underlying
Figure 18.

Author Contributions: Conceptualization, S.M.; methodology, S.M.; software, S.M.; validation, S.M., A.C.B.,
and D.B.; formal analysis, S.M., A.C.B., and D.B.; investigation, S.M.; resources, S.M., A.C.B., and D.B.; data curation,
S.M.; writing—original draft preparation, S.M.; writing—review and editing, A.C.B. and D.B.; visualization, S.M.;
supervision, A.C.B. and D.B.; and project administration, A.C.B. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to gratefully acknowledge suggestions and contextual input provided
by the Totarabank Subdivision developer Andy Duncan.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Acronyms
BESS Battery energy storage system
DPP Discounted payback period
EV Electric vehicle
EVSE Electric vehicle supply equipment
HOMER Hybrid Optimization of Multiple Energy Resources
IRR Internal rate of return
LCOE Levelised cost of energy
MG Micro-grid
O&M Operation and maintenance
PV Photovoltaic
ROI Return on investment
TNPC Total net present cost
V2G Vehicle-to-grid
WT Wind turbine
Indices
i Index of year
Scalars
∆t Length of time-step t in hours
ηPV PV module’s efficiency
γ Wind shear exponent
dr Real discount rate
DOD Depth of discharge
EB,min, EB,max Minimum/maximum usable capacity of each battery module
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fPV PV module’s derating factor
GT,STC Solar irradiance at standard test conditions
hhub Hub height of the wind turbine
hre f Reference height of wind speed records
kp PV module’s temperature coefficient
NOCT Nominal operating cell temperature
PPV,r PV module’s rated power
PL Project lifetime
TSTC Cell temperature at standard test conditions
Parameters
Pt

L Total load power demand on the micro-grid in time t
Pt

PV Power output from the PV system in time t
Pt

WT Power output from the wind turbine system in time t
πt

ex Wholesale electricity price in time t
FiT Feed-in-tariff
Tt

PV PV module’s temperature in time t
Gt

T Global horizontal irradiance in time t
Tt

a Ambient temperature in time t
Vt

hub Hub-height wind speed in time t
Variables
costt

g Cost of power exchange with the main grid
CC(i), CCre f (i) Capital cost of the suggested micro-grid/reference system in year i
Et

B Energy content of the battery bank in time t
NCI(i), NCIre f (i) Net cash inflow sequence of the proposed micro-grid/baseline case in year i
Pt

B Charging/discharging power of the battery bank in time t
Pt

g Imported/exported power from/to the national grid in time t
Functions
PV Present value function
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