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Abstract: As a countermeasure to the greenhouse gas problem, the world is focusing on alternative
fuel vehicles (AFVs). The most prominent alternatives are battery electric vehicles (BEV) and fuel cell
electric vehicles (FCEVs). This study examines FCEVs, especially considering hydrogen refueling
stations to fill the gap in the research. Many studies suggest the important impact that infrastructure
has on the diffusion of AFVs, but they do not provide quantitative preferences for the design of
hydrogen refueling stations. This study analyzes and presents a consumer preference structure for
hydrogen refueling stations, considering the production method, distance, probability of failure to
refuel, number of dispensers, and fuel costs as core attributes. For the analysis, stated preference data
are applied to choice experiments, and mixed logit is used for the estimation. Results indicate that the
supply stability of hydrogen refueling stations is the second most important attribute following fuel
price. Consumers are willing to pay more for green hydrogen compared to gray hydrogen, which is
hydrogen produced by fossil fuels. Driver fuel type and perception of hydrogen energy influence
structure preference. Our results suggest a specific design for hydrogen refueling stations based on
the characteristics of user groups.

Keywords: alternative fuel vehicle; consumer preference; energy transition; fuel cell vehicle; hydrogen
refueling station; mixed logit; vehicle infrastructure

1. Introduction

Due to greenhouse gas emissions (GHG), 195 countries have signed the Paris Agreement. Among
industries, the transportation sector is responsible for 24% of global carbon dioxide (CO2) emissions [1].
Early car manufacturers tried to solve this problem by improving energy efficiencies [2], but the
fundamental problem is not solved yet. Therefore, zero emission automobile research has been
conducted [2]. Among zero emission automobiles, battery electric vehicles (BEVs) and fuel cell electric
vehicles (FCEV) are most frequently mentioned [3]. Car manufacturers are gradually increasing the
focus on developing environmentally friendly alternative fuel vehicles (AFVs) in coordination with
countries’ popularization plans [2]. For BEVs, General Motors began development in the 1990s, and
many manufacturers, including Tesla, are now developing BEVs. The BEV inventory has grown
quickly, surpassing five million units in 2018 [4]. However, the FCEV inventory was only 11,200 units
in 2018 [5], indicating insufficient popularity and related research compared to BEV. The dominant
type of alternative energy vehicle for the future is being discussed. Although FCEVs are growing
at a slower pace than BEVs, they may have advantages in travelable miles on a full charge [6] and
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reducing refueling time [7]. Due to the reasons mentioned above, this study examines FCEVs as zero
emission alternatives.

Similar to BEVs, FCEVs also use an all-electric power train, but the energy source is a fuel cell
stack. An FCEV uses hydrogen as fuel and releases water and heat [8]. As FCEVs use a new energy
source, hydrogen, it is important to expand infrastructure for the successful diffusion of FCEVs. The
use of eco-friendly cars cannot increase without improvement in the infrastructure [9]. A refueling
station supplies hydrogen for FCEVs. At the end of 2019, 470 hydrogen refueling stations were in
operation worldwide [10]. Japan had the most stations, with 113, followed by Germany with 81 and
the United States with 64, and 34 stations were in operation in South Korea [10]. All hydrogen refueling
stations in South Korea are provided with gray hydrogen [11], and the government is planning to
increase the supply with green hydrogen [12].

Previous studies analyzed the influence of infrastructure and hydrogen refueling stations on the
diffusion of FCEVs. The geographical distribution of hydrogen refueling stations is generally consistent
with the number of FCEVs [13]. Many studies concentrated on the effects of subsidies, policy support,
and initial infrastructure construction related to the technical adoption of FCEVs [14,15]. However,
these studies did not consider the future direction of the design of new hydrogen refueling stations.
Previous studies only considered the relationship between AFVs and infrastructure, and infrastructure
was assumed to be one variable, such as level of accessibility. Through these studies, only the diffusion
index of hydrogen refueling stations can be presented, and the implications for the direction of the
infrastructure’s supplementary configuration cannot be derived.

Considering hydrogen refueling stations, some consumers indicate that hydrogen production is
highly dependent on fossil fuels [16], countering the slogan of decarbonization [17]. Additionally, the
anxiety of consumers about hydrogen explosions hinders the diffusion of products [18], and the storage
and transportability of hydrogen is also known as a bottleneck [19]. Thus, there are various external
factors related to hydrogen refueling stations, but no research has been conducted on how to construct
them with consideration of infrastructure attributes. Therefore, this study analyzes the structure of a
preferred hydrogen refueling station, which includes structure properties such as hydrogen production
methods, accessibility to infrastructure, transportation, and storage [19,20].

The main purpose of this study is to analyze the structure of consumer preference for hydrogen
refueling stations and it suggests future infrastructure dissemination plans in order to help active
energy transition. Previous studies have set out to discuss the infrastructure that should be established
for the dissemination of alternative fuel vehicles [21]. There was also a need to construct a hydrogen
refueling station for the diffusion of FCEVs [13,22]. However, there was not enough discussion on the
design or the specific aspects of the hydrogen refueling station. South Korea plans to expand production
of hydrogen vehicles from 2000 in 2018 to 6.2 million in 2040 (2.9 million for domestic demand and 3.3
million for exports) and to expand hydrogen refueling stations from 14 in 2018 to 310 in 2022 and 1200 in
2040 [12]. These schemes represent the government’s willingness to disseminate FCEVs. Additionally,
South Korea holds various automobile manufacturing technologies, and Hyundai, South Korea’s
largest automaker, has invested heavily in FCEVs and previously launched commercial FCEVs [23]. In
consideration of this, it is relevant to assume that Korean consumers likely know more about FCEVs
and are suitable as the research target [24]. Therefore, we analyze the consumer preference structure for
the design of hydrogen charging stations in South Korea, considering the demand side. In particular, a
mixed logit model was used to reflect the heterogeneity of consumers. In addition, scenario analysis
was performed based on preference analysis.

This paper is organized as follows. Section 2 investigates previous studies on AFV and
infrastructure, including FCEV. Section 3 describes the methodology used, and Section 4 describes
the data for the experiment. Section 5 explains the analysis results and scenario analysis results for a
hydrogen fueling station, and Section 6 concludes and outlines policy implications.
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2. Literature Review

Previous studies obtained quantitative information on consumer preferences to expand various
eco-friendly AFV markets. Governments worldwide (the United States, Japan, the Netherlands,
Canada, and France) are establishing policies to promote the expansion of the eco-friendly AFV
market [25]. In Korea, vehicle users have experienced the impacts of oil price changes, which
has led to increased interest in eco-friendly AFV vehicles. Additionally, several empirical studies
on vehicles and infrastructure analyzed the impact of infrastructure on the adoption of AFVs [26].
The AFV automobile market and infrastructure market spread were proposed simultaneously, as
electric cars could be constrained by diving range without charging infrastructures, and fuel storage
and hydrogen car infrastructure were barriers to the widespread introduction of hydrogen cars [27,28].
An agent-based model was used to simulate the co-expansion of plug-in electric vehicles (PEVs) and
PEV infrastructure [21]. Low-speed charging cannot secure the economies of scale of charging costs
by 2030, even if PEVs are increased, suggesting that deficient PEV infrastructure hinders the growth
of PEVs.

Some studies have focused on FCEVs. FCEVs will increase in demand from 2030 to 2050, but
there are problems to be solved, including fuel efficiency, mileage, and hydrogen refueling stations.
Specifically, studies have mentioned that the expansion of hydrogen refueling stations is essential for
the commercialization of hydrogen vehicles [29–31]. Lack of infrastructure, including battery refueling
stations, high battery costs, and short mileage, requires high acceptance among vehicle consumers
for mass market generation, and if infrastructure is improved, consumers are willing to pay higher
prices for vehicle properties [22,32]. A study on the spread of hydrogen refueling stations for FCEV
distribution, including determining the initial number of hydrogen refueling stations for self-sustaining
market deflation through threefold simulation approach studies, was conducted [14]. Some studies
suggested that households are willing to bear financial burdens, while others indicated positive
attitudes about hydrogen refueling station policy [33]. To expand the supply of FCEVs, the South
Korean government is overcoming these shortfalls through various policy measures, including financial
support for purchasing hydrogen cars, tax cuts, and hydrogen refueling station installations [25].
In particular, refueling infrastructure impacts the growth of FCEVs, and research shows that the
amount of FCEV supply is consistent with the geographical distribution of hydrogen filling stations.
Therefore, countries like Korea are trying to build infrastructure for EVs and FCEVs and provide policy
support [9].

However, most studies only highlight the need for hydrogen stations for FCEVs and do not show
the characteristics necessary for hydrogen stations. Firstly, hydrogen stations face economic problems.
Hydrogen refueling stations are predicted to operate under financial losses for about 10 to 15 years in
the initial stage due to lack of demand for charging [34]. Therefore, reducing investment and operating
costs and increasing utilization rates are essential, and economic analysis of how to invest in public
resources is needed. The supply stability of hydrogen refueling stations will be a problem in the
future [19]. Currently, hydrogen refueling stations can accommodate 25 FCEVs per day. Furthermore,
FCEV stands for eco-friendly vehicles because no emissions are generated while driving; hydrogen
energy production uses fossil fuels [17]. Many studies have shown that environmental concerns affect
consumer consumption [35–37]. The expansion of hydrogen refueling stations is an essential factor in
the supply of FCEVs, but it suffers from safety problems [38]. There are claims that hydrogen stations
risk exploding [18]. Additionally, the perception of FCEVs can be negative, because it is difficult to
install a large amount of fuel supply infrastructure practically [39]. However, there are no studies that
comprehensively and quantitatively analyze these issues. This study intends to analyze the consumer
preference structure for FCEV-related charging infrastructure, including the issues mentioned above,
from an econometric perspective.



Energies 2020, 13, 3959 4 of 13

3. Methodology

The hydrogen fueling station has a variety of policy issues. Considering these in order to maximize
consumer welfare, it is necessary to understand the structure of consumer preferences. Accordingly,
this study uses a discrete selection model based on a random utility theory that analyzes consumer
utility for multiple attributes.

The most widely used discrete selection model is the logit model, which is expressed in closed
form for easy calculation. However, due to the independence of irrelevant alternative (IIA) restrictions,
results may not correspond to reality. Therefore, this study uses the mixed logit model that considers
consumer heterogeneity and reduces the IIA restrictions. The mixed logit model relaxes IIA constraints
by assuming distribution in coefficients of consumer preference, reflecting the heterogeneity of
individuals, and it better reflects reality [40]. This model is widely used to predict and analyze new
products [41]. For example, it is used in forecasting the media market, analyzing the implementation
of new programs in public transportation, or the establishment of energy policy [42–45]. Equation (1)
defines the utility function of the mixed logit model:

Unjt = Vnjt + εnjt = β′nXnjt + εnjt (1)

Unjt is the utility of respondent n by selecting alternative j in the choice set t. Utility can be divided
into the deterministic term, Vnjt, and the stochastic term, εnjt. β′n is the coefficient of attributes and is
assumed to be normal or log-normal distribution consisting of b and

∑
.

Based on Equation (1), the probability that the consumer n selects alternative j from the alternative
set t is expressed in Equation (2).

Pnjt(θ) = Pr
(
Vnjt −Vnkt > εnkt − εnjt, ∀k , j

)
=

∫ T∏
t=1

 eβ
′
nXnjt∑

m eβ
′
nXnjt

 f (β|θ)dβ (2)

This study estimates mixed logit using maximum simulated likelihood (MSL). Regarding the
likelihood function in Equation (2), it is difficult to find an analytical solution through the maximum
likelihood estimation [40]. MSL is one of the simulation utilization methods used to solve this
problem [46]. MSL estimates randomly by making draws βr from f (β

∣∣∣θ) R times and then calculates
the average choice probability. It is expressed as Equation (3).

SLL(θ) =
N∑

n=1

ln

 1
R

R∑
r=1

T∏
t=1

 eβ
′
nXnjt∑

m eβ
′
nXnjt


 (3)

The estimated β can be used to calculate the amount of marginal willingness-to-pay (MWTP) and
relative importance (RI). MWTP refers to the amount of change in willingness-to-pay by respondents,
as a characteristic increases or decreases by one unit and is based on the compensation value from a
microeconomic perspective. Relative importance is represented as a ratio of the part worth for each
attribute and indicates how much each attribute affects consumer choice. In this case, part−worthx is
calculated by multiplying the difference between the maximum level and the minimum level of the
property by a parameter. MWTP and RI are calculated using Equations (4) and (5).

MWTPk = −
βk

βprice
(4)

RIk =
part−worthk∑
l part−worthl

=
βk(xk,max − xk,min)∑

l βl(xl,max − xl,min)
× 100 (5)
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4. Data and Survey Design

This study used stated preference (SP) data from choice experiments to analyze consumer
preferences for virtual market conditions of hydrogen refueling stations. The data were collected
in different regions of South Korea to reflect demographic distribution. The survey was conducted
twice, and respondent ages ranged from 20s to 60s. The pilot survey was conducted online from
April 6 to April 9, 2020. Using the pilot survey, the questionnaire was refined to improve readability
and respondent understanding. The main survey was conducted online from May 11 to May 19,
2020 by Gallup Korea, a specialized survey company. Table 1 shows the demographic distribution
of respondents.

Table 1. Demographic properties of sample.

Category Characteristic Respondents (n) Percentage (%)

Total 850 100.0

Gender
Male 447 52.6

Female 403 47.4

Age

20–29 168 19.8
30–39 180 21.2
40–49 218 25.6
50–59 180 21.2
60–69 104 12.2

Education Level
High school or less 124 14.6

University/college or above 726 85.4

The survey questions were in two parts. Part 1 asked questions about respondent demographic
characteristics and perceptions of various problems, current status of car ownership, usual mode of
operation, and recognition of hydrogen energy. The results of part 1 show that 60% of respondents
know where the electric charger is located. However, only 15% of respondents know the location
of the hydrogen refueling station. This can be interpreted as a result of the lesser popularization of
FCEVs than BEVs. In April 2020, 103,700 BEVs were adopted in Korea, while only 7033 FCEVs were
adopted. Additionally, only 12% of respondents know that there is an additional waiting time during
FCEV refueling. Attributes considered important when purchasing FCEVs were price (21.9%), safety
(15.4%), automobile type (13.5%), and access to infrastructure (1.9%). Overall, 12.6% of respondents
answered that accessibility of infrastructure is important among the top five attributes. Accessibility of
infrastructure is a top five attribute for 36.4% of BEV owners. This indicates that infrastructure can be a
significant inconvenience when AFVs are used, but for respondents who do not use them, there is a
lack of awareness of the importance of infrastructure.

In part 2, a choice experiment was performed to grasp the structure of consumer preferences of a
hydrogen refueling station. A choice experiment is a method used to present a combination of products
with hypothetical characteristics to consumers and allows respondents to reveal preferences that can
be measured [47]. Existing research that studied AFVs included fuel cost, driving range, refueling time,
accessibility, and emission. Considering this, the survey covers six attributes to analyze consumer
preferences of hydrogen refueling stations: (1) hydrogen fuel production method; (2) distance from
home to hydrogen fueling station; (3) fuel cost; (4) number of dispensers of low pressure; (5) number
of dispensers of high pressure; (6) probability of being unable to refuel due to lack of hydrogen.

Firstly, the respondents’ environmentalism is considered through their preference of hydrogen
production method. As discussed in Section 2, people who are more aware of the environment tend
to be more sensitive to CO2 emissions when selecting automobiles or prefer AFVs [30]. FCEV use
does not generate emissions. However, fossil fuels can be used in producing hydrogen fuel. In this
study, green hydrogen is presented as an eco-friendly fuel, and gray hydrogen is presented as being
produced by fossil fuels.
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Secondly, accessibility is reflected by distance from home to hydrogen refueling station. Many
studies set the level of accessibility as the percentage of gas stations. However, this can increase the
cognitive burden on respondents, leading to inappropriate results. In May 2020, there are 21,723
electric car charging stations and 26 hydrogen refueling stations in Korea. About 14.5% of electric
car charging stations in Korea are installed in residential areas like supermarkets and convenience
stores. In addition, the average daily driving range of Koreans (national, based on passenger cars) is
39.2 km/car [48]. This showed a driving range of up to 20 km for one-way travel. Thus, the level of
accessibility is assumed to be from 1 km to 20 km.

Thirdly, supply stability can be explained by the standby time after arriving at the refueling
station and refueling failure probability. Hydrogen volume causes problems in transportation and
storage [19], which allows only 50 FCEVs per day to refuel at hydrogen stations with the current
technology. Accordingly, when visiting a station, the inconvenience is reflected in the probability
of failure if the remaining hydrogen in the refueling station is exhausted. Additionally, refueling
time and the miles on a full charge of the FCEV differ depending on the kind of the dispenser. A
low-pressure dispenser (350 bar) takes three minutes to increase the hydrogen pressure for refueling
and five minutes to refuel and can travel up to 300 km. A high-pressure dispenser (700 bar) takes nine
minutes to increase the hydrogen pressure and five minutes to refuel and can travel up to 600 km.
Therefore, refueling time, miles on a full charge, and estimated standby time differ depending on the
type of dispenser. Thus, two types of dispenser are designated for the virtual hydrogen refueling
station. In May 2020, the average number of dispensers for electric vehicle charging stations in Korea
is 1.85, with the following specific results: one unit (52.3%), two units (23.2%), three units (6.6%), four
units (3.9%), and five or more units (14.1%). Therefore, one to four dispensers are shown for each type.

The economical attribute was considered through fuel costs. The unit of fuel efficiency of FCEVs
is Korean won(KRW)/kg, but as a result of the pilot survey, the general consumer lacks awareness
of FCEVs, so it is difficult for respondents to answer when presented with the fuel efficiency unit of
FCEVs. Therefore, the fuel efficiency is presented in units of KRW/km. In consideration of the previous
study, the prices are suggested from KRW 50/km to equidistant intervals [22,24,31]. Fuel efficiency is
based on Nexo, South Korea’s first commercial FCEV, to help respondents understand. Table 2 shows
the attributes and levels determined by this study.

Table 2. Attributes and levels.

Attribute Levels

Hydrogen fuel production method gray, green
Distance from home to hydrogen fueling station 1 km, 4 km, 10 km, 20 km
Fuel cost 50 KRW, 100 KRW, 150 KRW, 200 KRW
No. of dispensers of low pressure 1, 2, 3, 4
No. of dispensers of high pressure 1, 2, 3, 4

Probability of failure to refuel one of 50 visits, one of 20 visits, one of 10 visits, one of
5 visits

The number of cases of 2 × 4 × 4 × 4 × 4 × 4 = 2048 is required to represent all the properties and
levels set in this study. As the number of all cases cannot be presented to respondents, the total number
of alternatives is reduced to 32 by constructing fractional factorial design. Thereafter, four alternatives
were grouped into one set for respondents to state preferences. Among the total of eight alternative
sets, four sets are randomly presented to the respondents.

5. Results and Discussion

The mixed logit was used for the analysis, and normal distribution was assumed for all variables.
MSL was used as the estimation method, and random draws for simulation were performed 100
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times through the Halton method. When the number of draws is 100 or more, there is no significant
difference in coefficient [49]. The empirical research model is represented in Equation (6).

Unj = β1XGreen + β2XDistance + β3XNo.o f re f ueling guns + β4XHigh pressure charger ratio + β5XFailure + β6DFuel + εnj (6)

In Equation (6), XGreen is a dummy variable for the hydrogen supplied, which is expressed as 1
for green hydrogen and 0 for gray hydrogen. The variables XDistance, XNo. o f re f ueling guns, XFailure, and
DFuel correspond to distance, total number of dispensers, and probability of refuel failure, respectively.
XHigh pressure charger ratio represents the ratio of high-pressure dispensers to total number of dispensers.

The analysis results are shown in Table 3. When the production method was green hydrogen, the
distance was closer, the total number of dispensers was greater, the probability of refuel failure was
lower, and the fuel cost was lower, participants showed increased preference for hydrogen refueling
stations. Distribution was found to be significant when normal distribution was assumed for the
production method, distance, probability of failure of refueling, and cost of refueling. Therefore, there
was heterogeneity in consumer preference. However, for the total number of dispensers and the ratio
of high-pressure dispensers, heterogeneity was not revealed in preference of consumers, so the analysis
was conducted with a fixed coefficient rather than an assumption of distribution for these attributes.
As for RI, fuel cost was the most important, followed by probability of failure, eco-friendliness of
production method, distance, and total number of dispensers.

Table 3. Estimation results of mixed logit model for hydrogen refueling station (base model).

Attribute Assumed
Distribution Mean of β Variance of β MWTP

(KRW) RI

Green Normal 1.0473 *** −1.1779 *** 83.2464 19.42%
Distance (km) Normal −0.0521 *** 0.0871 *** 4.1441 18.36%
No. of dispensers Fixed 0.0529 *** - 4.2015 5.88%
Ratio of high-pressure
dispenser (%) Fixed 0.0901 - - -

Failure (%) Normal −0.0640 *** 0.0066 *** 5.0871 21.36%
Fuel cost (KRW/km) Normal −0.0126 *** 0.0008 *** - 34.98%

Note: *** Significant at the 1% level.

While total number of dispensers impacts preference, there was no difference in preference for
each type of dispenser. The low-pressure dispensers and the high-pressure dispensers were considered
separately, but preferences for each were not separated. For the hydrogen production method, when
produced with green hydrogen, consumer preference was greater than when produced with gray
hydrogen. This indicates that consumers may be willing to pay an additional fee to operate the FCEV
in an eco-friendly way. Consumers are willing to pay an average of KRW 83.25/km if they are improved
to an eco-friendly hydrogen production method rather than gray hydrogen. Currently, the average
operating cost of FCEV is KRW 85.40/km (calculated based on Korea’s average charging cost (KRW
8216.7/kg) and Hyundai Nexo’s fuel economy (96.2 km/kg)), and when operating with green hydrogen,
consumers are willing to pay KRW 168.66/km. Considering the current number of cars registered per
vehicle age and the average annual five-cycle fuel cost, the average cost per kilometer of a general
vehicle is KRW 121.93/km (calculated by considering the weighted average of the number of registered
vehicles by age and average fuel efficiency by year with average fuel cost at the time of the survey
(2020.4.6–2020.4.9)), which means that consumers are willing to pay up to KRW 46.73/km to reduce
greenhouse gas emissions.

The results show that as the distance between home and hydrogen refueling station increases,
consumer preference decreases. WTP is KRW 4.14/km as the distance to the refueling station gets
closer by one kilometer. This indicates that people are willing to pay 4.9% more to bring the refueling
station closer to one kilometer. Compared with previous studies, the better accessibility, the higher the
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market preference [22,24,31]. This shows that the results of this study are in line with related studies.
The word hydrogen is reminiscent of danger and explosion [18]; therefore, people can hesitate to desire
a hydrogen station near home. However, according to the results of model 3, there were no inflection
points within the proposed distance, demonstrating that consumers prefer hydrogen refueling stations
closer to their homes.

The probability of failure is the second most important attribute after the fuel cost. This means
that people prefer refueling stations that do not have a probability of failure to refuel, and they are
willing to go 1.23 km further to reduce the probability of failure by 1%. If expressed as an expense,
consumers are willing to pay an additional KRW 5.09/km to reduce the probability of failure to refuel
by 1%. This means that consumers are willing to pay around 6% more of the current refueling cost.

The probability of failure to refuel is related to the transportation and storage of the hydrogen
refueling station, and according to the South Korean government’s “hydrogen technology development
roadmap”, the hydrogen refueling station can supply up to 250 kg of hydrogen per day. This is enough
fuel for approximately 50 FCEVs. According to this survey, the average number of refueling times per
month for vehicle owners is 3.55, and assuming that the frequency of refueling of FCEVs is the same,
the number of FCEVs that can be handled by only one hydrogen refueling station is 423. However,
this assumes that all FCEVs are uniformly allocated to the hydrogen refueling station, so the actual
number of FCEVs that a single station can refuel is further reduced. South Korea expects 650,000 cars
by 2022 and 2.75 million cars by 2040 for domestic use, with 310 and 1200 hydrogen refueling stations
planned, respectively. Conservatively, in 2022, 153 hydrogen refueling stations will meet the demand
for 650,000 FCEVs. Therefore, the government plan does not affect the probability of refueling failure.
However, conservative calculations from this study show that, while at least 6501 hydrogen refueling
stations are required, the planned number of hydrogen refueling station is 1200. Therefore, the number
of hydrogen refueling stations cannot meet the demand of FCEVs, and the probability of failure to
refuel increases, hindering the growth of FCEVs. To prevent this, an increase in the number or capacity
of hydrogen refueling stations and an increase in fuel consumption must be supported.

The RI of the number of dispensers is the lowest compared to other attributes, indicating small
difference in preference between the two dispensers. Alternatively, respondents may not understand
the difference between the dispensers, or the background knowledge of respondents may be insufficient
due to the lack of sufficient hydrogen refueling stations. Additional analysis is conducted to consider
perception, knowledge, and fuel type. The estimation results are shown in Table 4. The variable of
Statement represents the perception difference between green and gray hydrogen and is measured on
a five-point Likert scale. If respondents answered more than three, Statement is 1, otherwise 0. The
variable of Knowledge represents an accurate knowledge of green and gray hydrogen and is measured
based on several questions. If the respondent’s answer is correct, Knowledge is 1, otherwise 0. The
variables of Driver (Fossil) and Driver (Environ) represent fuel types. If respondents used gasoline or
diesel vehicles, Driver (Fossil) is 1. If respondents used BEVs or FCEVs, Driver (Environ) is 1.
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Table 4. Estimation results of mixed logit model for hydrogen refueling station (interaction included).

Attribute Assumed
Distribution

Model 2 Model 3 Model 4 Model 5

Mean of β Variance
of β Mean of β Variance

of β Mean of β Variance
of β Mean of β Variance

of β

Green Normal 1.1961 *** 1.0638 *** 1.0575 *** 1.1767 *** 1.0516 *** 1.1543 *** 1.0539 *** 1.1589 ***

Green×Statement Normal −0.9149 *** 0.1481
Green×Knowledge Normal 0.7702 *** −0.7716

Distance (km) Normal −0.0793 *** 0.0789 *** −0.0328 *** −0.0516 *** 0.0859 ***

Distance2 Normal 0.0013 * −0.0012
Distance×Driver

(Fossil) Normal −0.0240 **

Distance×Driver
(Environ) Normal −0.0511 *** −0.0466 * 0.0637 ***

No. of refueling
dispenser Fixed 0.0487 *** 0.0535 *** 0.0472 ** 0.0648 *** 0.0499 ***

High-pressure
dispenser ratio (%) Fixed 0.0759 0.0851 *** 0.1466 0.0905 0.0806 * 0.0787

Failure (%) Normal −0.0645 *** 0.1066 *** −0.0656 *** 0.1129 *** −0.0639 *** 0.1090 *** −0.0638 *** 0.1090 ***

Failure×Driver
(Fossil) Normal −0.0025 −0.0337*

Failure×Driver
(Environ) Normal 0.0128 −0.0085

Fuel cost (KRW/km) Normal −0.0126 *** −0.0139*** −0.0128 *** 0.0139 *** −0.0126 *** −0.0138*** −0.0125 *** 0.0139 ***

Note: *** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.

The WTP for reducing 1% of a vehicle’s average CO2 emissions is indicated by 20 to 90 EUR
depending on respondents’ environmental awareness [38]. The WTP for green hydrogen depends on
respondent knowledge of gray and green hydrogen. Interestingly, WTP is different between those who
think that they know the difference between gray and green hydrogen and those who actually know.
In this survey, 202 respondents state that they know the difference between green hydrogen and gray
hydrogen (at least three points on the Likert scale). However, only 80 of the 202 respondents actually
know the difference. According to Model 2, if respondents answered that they know the difference
between green hydrogen and gray hydrogen in advance, they are willing to pay more, up to KRW
22.38/km. This is a significant decrease compared to KRW 95.19/km, the WTP of respondents who
answered that they did not know the difference. However, for respondents that actually know the
difference, their willingness-to-pay was KRW 83.68/km, which was lower than the willingness-to-pay of
those who answered that they do not know but similar to the overall average. Therefore, respondents
who answered that they know the difference between the two types of hydrogen but did not actually
know the difference do not intend to pay more than KRW 121.93/km, which is the average oil ratio
of traditional fossil fuel-based cars. However, if respondents know the difference, they are willing
to pay more than current oil costs. This result suggests that, when switching from gray hydrogen to
green hydrogen production, priority should be given to publicizing the difference between the two
hydrogens to help improve the environment.

According to Model 4, the preference for approaching the hydrogen refueling station is more
sensitive to drivers than non-drivers. Of 850 respondents, 622 were drivers, 561 were owners of fossil
fuel vehicles, and 44 were owners of eco-friendly vehicles. Drivers of eco-friendly cars were more
sensitive to distance. Actual drivers value hydrogen refueling stations within the range of travel.
Drivers of fossil fuel vehicles were willing to travel up to 4.51 km more, and eco-friendly drivers were
willing to travel up to 6.31 km more.

6. Conclusions

Although many studies presented the importance of the AFV and its infrastructure, specific
measures for the FCEV infrastructure, hydrogen refueling stations, have not been provided. This study
presents a quantitative analysis of consumer preferences for FCEV infrastructure. The preferences were
analyzed by considering five issues of a hydrogen station: fuel costs related to economic performance,
production methods related to environmental performance, average distance related to accessibility,
waiting time, and refueling failure related to supply stability.



Energies 2020, 13, 3959 10 of 13

Depending on the type of energy used in production, hydrogen is green and does not emit
greenhouse gases, or it is gray and does emit greenhouse gases. The results of this study show that
respondents are willing to pay more for green hydrogen than gray hydrogen. The current hydrogen
refueling cost in Korea is about two-thirds the price of the average fueling cost of gasoline cars due to
government support, so FCEVs have the advantage of low maintenance costs. However, this study
finds that, for environmental reasons, consumers will pay the FCEV maintenance cost even if it is
higher than the current fossil fuel vehicle maintenance cost. Additionally, the WTP is KRW 4.14/km due
to a 1-km reduction in accessibility. Consumers will pay 4.9% more than the current cost, and drivers
are willing to pay more than non-drivers. Eco-friendlier drivers are more sensitive to accessibility,
suggesting that accessibility is an important issue for the growth of FCEVs.

In this study, the waiting time was reflected by the number of dispensers, which are divided into
high-pressure and low-pressure dispensers for the analysis. The difference in preference according
to the dispenser pressure was not revealed, but the higher the total number of dispensers, the more
preferred. A preference for avoiding waiting time for refueling was found. However, the minimum
options for the number of dispensers were set to one high-pressure and one low-pressure dispenser,
which is a limitation in the study’s analysis. Consumers will travel 1.23 km further or pay 6% more for
fuel to avoid even a 1% increase in the probability of failure of refueling. Current hydrogen refueling
stations cannot refuel more than 50 FCEVs per day, and there is a lack of plans to open hydrogen
refueling stations, according to the 2040 FCEV supply plan in Korea. To operate hydrogen refueling
stations and distribute FCEVs smoothly, problems such as increasing the capacity of hydrogen refueling
stations, increasing the number of hydrogen refueling stations and improving FCEV fuel efficiency
are suggested.

This study provides three implications. Firstly, this paper analyzes the design of hydrogen
refueling stations through quantitative aspects. We analyzed the consumer preference structure for the
specific design of hydrogen refueling stations using choice experiment methods. In addition, the mixed
logit model reflected the heterogeneity of the individual, and the estimation results were statistically
significant results. Secondly, the analysis shows that four important results can be categorized into
environment, accessibility, supply stability, and cost perspectives. Thirdly, for policy makers, this study
provides a quantitative basis for FCEV deployment plans and implications for other AFV infrastructure
issues. Accessibility and supply stability are issues that have trade-offs if not supported by production
capacity. Therefore, if hydrogen refueling stations are built based on the quantified results of this study,
optimal planning can be established by considering the production method, number of hydrogen
refueling stations, location, and number of dispensers.

The limitations of this study are as follows. Changes in attributes and levels of hydrogen refueling
stations interact with changes in FCEV deployment. Therefore, more accurate implications can be
presented when waiting time, probability of failure of refuel, and accessibility calculations consider
spatial dimension for hydrogen refueling stations. This study only considered the distance of hydrogen
refueling station. In future studies, this will be considered organically, and more accurate diffusion
prospects and diffusion inhibitors can be identified. In addition, based on up-to-date technologies such
as Internet of Things sensors, the spatial dimensions and usage of information about energy systems
can be collected in the future. Using real-time data, a deployment plan can be also provided.
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