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Abstract: We analyze energy use efficiency of manufacturing industries in US manufacturing
over five decades from 1960 to 2011. We apply a 4-component stochastic frontier model, which
allows disentangling efficiency into a short- and long-term efficiency as well as accounting for
industry heterogeneity. The data come from NBER-CES Manufacturing Industry Database. We
find that relative to decade-specific frontiers, the overall efficiency of manufacturing industries,
which is a product of transient and persistent efficiencies has deteriorated greatly in the 1970s and
rebounded only in the 2000s. The industries are very efficient in the short-term and this has not
changed over five decades. The high level of overall inefficiency is almost completely due to the
structural inefficiency which can be explained by what is referred to as the “energy paradox”. Finally,
higher energy-intensive industries perform worse in terms of energy use efficiency than their low
energy-intensity counterparts.

Keywords: energy efficiency; energy intensity; stochastic frontier; persistent efficiency; transient
efficiency; US manufacturing; energy paradox

1. Introduction

According to the U.S. Energy Information Administration, manufacturing industries in the US
consume about a third of total energy consumed (see also [1]). (https://www.eia.gov/consumption/)
The analysis of energy demand for manufacturing has therefore important implications for energy
policy, where energy efficiency and savings is an important agenda (see, e.g., [2]). Additionally,
improving energy use efficiency seems to be a natural way to mitigate climate change (see, e.g., [3]). If
manufacturing industries are not efficient, it puts strains on the whole economy in general and energy
producers and distributors in particular. This is especially true for the energy-intensive industries
where energy consumption relative to its output is large.

For a long time, a lot of effort has been made to develop energy-efficient technologies, not only
to lessen environmental damage but also to bring down the monetary cost of production. However,
Refernece [4] identify and discuss the wide-spread “energy-paradox”, whereby energy-efficient
technologies, that would have paid-off, are in reality not adopted. The authors of [5] find that
the adoption of energy-efficient technologies may be boosted by involving managers, who are in a
position close to operations. The existence of the “energy-paradox” may indicate that the industry
remains inefficient. Indeed, [6] find that the mean plant-level efficiency in the United States over the
time-period 1987–2012 ranges from 33% to 86% for plants in various manufacturing industries.
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Such huge inefficiencies are a matter of concern. Enormous financial savings could have been
achieved if manufacturing firms were more efficient. The performance of manufacturing in terms
of energy use is heterogeneous both in time and cross-sectional dimensions. One common factor
influencing energy consumption is the price of energy. The authors of [7] confirm that the biggest
determinant of energy intensity is the price of electricity. The cross-sectional variation is further
determined by technology, i.e., some industries require more energy than others. The time variation
has many determinants. Most important is probably the change in macroeconomic conditions.
The beginning of the 1970s was marked by the oil prices, which had a detrimental effect on costs
related to energy in manufacturing. It was an expectation that there should have been a surge in
adopting the new energy-saving technologies which would eventually improve energy efficiencies.
However, [8] finds that the energy consumption did not rebound quickly implying that the response
to a decline in real energy prices was slow.

In this paper, we investigate the energy use efficiency of US manufacturing from 1958 to 2011.
More specifically, we conduct an analysis at an aggregated level, where the unit of observation is
defined as NBER 6-digit NAICS (see [9]). We split the whole time period into five decades and assume
a decade-specific technology. We define energy intensity as energy demand per measure of economic
activity (see, e.g., [10]). In each decade, we consider 10 percent the most and least energy-intensive
industries. Further, following [11], we decompose overall inefficiency into persistent or structural
and transient inefficiencies. This has an advantage over for example [3] or [6] since we can identify if
efficiency can be improved with relatively small effort, or structural approach is required. We find
a significant drop in energy use efficiency in the 1970s, which has probably been caused by the oil
crisis. The return to the pre-1970s levels was reached only in the 2000s, which is in agreement with
slow rebound estimates of energy consumption (see, e.g., [8]). Remarkably, such low levels of overall
energy use efficiency owing to very low levels of structural inefficiency that cannot be managed with
ease. This finding goes in unison with the “energy-paradox” (see [4]). Finally, higher energy-intensive
industries are characterized by lower levels of energy use efficiency than low-intensive counterparts.

The paper is organized as follows. Section 3 introduces models that are used to measure energy
use efficiency and 4-component stochastic frontier model that accounts for heterogeneity and splits
overall inefficiency into persistent and transient components. Section 4 describes data and variable
construction. Empirical results are presented and discussed in Section 5. Section 6 concludes.

2. Literature Review

Analysis of the energy use efficiency is interesting from both academic and business perspective.
More efficient use, especially by energy-intensive industries, would result in lower demand for energy
as well as output (see, e.g., [12]). Examining efficiency estimates could also complement accounting
for rebound effects ([13]) when making energy consumption forecasts. Energy subsidies could also
be inappropriately targeted to support highly inefficient producers if inefficiency measurement is
improper (see, e.g., [14]). Here we provide a brief review of methods used in measuring energy and
technical or cost efficiency.

Depending on the available data, measurement of technical efficiency can be done by using either
stochastic frontier (SF) methods (see [15]) or data envelopment analysis (DEA) approach (see [16]). For
a cross-sectional data with fewer observations, one can opt for DEA to estimate the benchmark and
then measure inefficiency as a deviation from the benchmark. SF in contrast defines the benchmark
accommodating stochastic noise and decomposes the composed error (sum of noise and inefficiency)
into inefficiency and statistical noise. The noise can be both positive and negative and can be seen
as positive and negative shocks to the production process. In the panel-data context, there are
different possibilities to decompose the composed error term. One way is to allow inefficiency to be
persistent and hence time-invariant. This approach is referred to as the first-generation panel-data SF
modeling. The second-generation SF models assume that the inefficiency is time-varying. The first
and second-generation models assume an error term (the deviation from the frontier) that has two
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components. Applying DEA to a panel data would be comparable to a second-generation SF model,
which would produce time-varying efficiency estimates without accounting for possible noise. The
third-generation SF model considers an error term with three components. The two components are
time and firm-specific, i.e., statistical noise and time-varying inefficiency. The third component is
time constant. The authors of [17–20] propose to treat it as time-invariant inefficiency. The authors
of [21] assume it is an individual effect or firm heterogeneity. Thus, Kumbhakar and co-authors
model two types of inefficiency (persistent and transient) ignoring heterogeneity, while Greene models
transient inefficiency and heterogeneity ignoring persistent inefficiency. The fourth-generation class
of SF models is originally introduced by [22] and accounts for both types of inefficiency as well as
heterogeneity. Incidentally, the fourth-generation SF models are also known as the 4-component SF
models.

Traditionally, energy efficiency measurement is contemplated in terms of energy intensity.
However, it is argued that other measures should also be considered, for example DEA ([23]). This
was one of the first studies to consider the production theory framework as a base for energy efficiency
measurement. The authors of [23] employ DEA for the manufacturing sector constructed by the U.S.
Bureau of Labor Statistics (BLS). She finds quite high efficiency scores for aggregate manufacturing for
the 1970–2001 time period. Recall, however, that DEA does not account for heterogeneity or persistent
efficiency akin to the second generation SF models, which can be seen as a disadvantage of using DEA.
Furthermore, she finds higher efficiency scores towards the end of the sample. But because she used
an intertemporal frontier approach, she could not distinguish whether this is attributed to technical
progress or not. This can be viewed as the second disadvantage of using DEA when panel data are
available. Many other studies have used DEA to analyze energy efficiency. The authors of [24], for
example, investigate the energy efficiency of the Indian manufacturing sector for the 1998–2004 time
period. The authors of [25] apply DEA to measure economy-wide energy efficiency using aggregated
data on the OECD countries. The authors of [26] investigate energy use efficiency of canola production
in Iran. See the review of [27] for other studies that employ DEA.

SFA has also been used to measure energy efficiency and efficiency in the energy sector. The
authors of [28,29] were the first to advocate using SFA to estimate efficiency in manufacturing sectors.
However, he did not go beyond a cross-sectional analysis. The authors of [30] use the second-generation
SF model to measure energy efficiency of different states in the US residential sector. The authors
of [31] investigate energy efficiency in the automotive manufacturing sector using plant-level data.
The authors again use the second generation model. The authors of [32] are the first to use the third
generation SF model to analyze the efficiency of the Swiss electricity distribution sector. The authors
of [33] used the fourth-generation model to aggregate frontier energy demand model and estimate
economy-wide persistent and transient energy efficiency in the US. The authors confirm the findings
and arguments of [23] that energy intensity is not a good indicator of energy efficiency. The authors of
[33] as well as [34] emphasize the importance of accounting for heterogeneity as well as estimating
two types of inefficiency. This is the approach, which we apply for the first time to this type of data
using three different models. Our models are described in the next section.

3. Methodology

3.1. Models

In this paper, we apply three different models to investigate energy use efficiency. In all models,
we assume that the production technology consists of one output Y and a vector of four inputs
X = (L, K, NEM, E), where L is the labor, K is the capital stock, NEM is the non-energy materials, and
E is the energy. The production technology using multiple outputs (transformation function), can be
written, in implicit form as,

AF (Y, X) = 1. (1)
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If the manufacturing process does not experience production shocks, A = 1, and F (Y, X) = 1.
However, since both positive and negative shows hit the production, the transformation function is
made stochastic by setting A = exp(v), v can be both positive and negative. Besides, if inputs are not
used with 100% efficiency, the transformation function in (1) can be expressed as

AF (Y, θX; β) = 1, (2)

where θ < 1 is the input technical efficiency (defined as the ratio of minimum of each input required
and actual amount used) and β is the set of the technology parameters of the function F . Since the
transformation function is homogeneous of degree 1 in inputs (see [35]), so we can rewrite (2) as

AF (Y, λθX; β) = λ, λ > 0. (3)

Further, we can set λ = (Eθ)−1, where E is the energy input. Note that any other input could
have been chosen to be in place of E. Then (3) becomes

X−1
1 θ−1 = f (Y, X̃−E; β) exp v, (4)

where X̃−E = (L/E, K/E, NEM/E). Taking logs of both sides of (4) and denoting u = − log θ ≥ 0,
we obtain (Model 1)

− log E = log f (Y, X̃−E; β) + v− u. (5)

The stochastic frontier (SF) formulation in (5) is known as the input distance function formulation,
where u is input oriented inefficiency, which measures percentage (when multiplied by 100) over-use
of all the inputs. For small values of u, e−u ≈ 1− u. That is, technical efficiency is 1 minus technical
inefficiency. It is important to keep this relationship in mind because we switch from one to the other
quite frequently. Technical efficiency in this model refers to the efficiency of all inputs including energy.
That is, in this model, inefficiency, u, is interpreted as over-use of all the all inputs, including energy, at
the same rate. The other two models focus exclusively on energy-use efficiency. Before we explain
how u can be estimated, we introduce two other approaches.

The transformation function can also be written as a factor requirement function (see, e.g., [36]).
Since the focus is on energy use, we can express the technology in terms of E, and write it as,

E = G(Y, X−E), (6)

where X−E = (L, K, NEM). Again, assuming that both positive and negative shocks v′ can influence
energy requirement and positing that energy is not used 100% efficiently used, we can rewrite (6) as

E = g(Y, X−E; γ) exp v′ exp u′, (7)

where γ is the vector of parameters of the energy requirement function, v′ is a symmetric error term and
u′ is the energy use inefficiency. Taking to logs of both sides of the (7) gives us the energy requirement
function with inefficiency, viz., (Model 2)

log E = log g(Y, X−E; γ) + v′ + u′. (8)

This approach was, for example, applied by [6,29] to plant-level data using the second-generation
SF model. Note that (8) has a stochastic cost function type formulation. Any inefficiency in the use of
energy will increase cost.

Finally, in our last model we recognize endogeneity of output Y. That is, we assume profit
maximizing behavior to derive the energy demand function

E = H(w, X−E), (9)
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where w = wE/p, wE is the energy price and p is the output price. Similar to the factor requirement
function, we can obtain energy use inefficiency from the demand function (Model 3)

log E = log h(w, X−E; δ) + v′′ + u′′, (10)

where δ is the vector of parameters of the energy demand function, v′′ is a symmetric error term and
u′′ is the energy use inefficiency.

The difference between (5) and (10) is that in the latter energy input is chosen optimally by
maximizing profit. In (5) energy overuse treats all other inputs as given. That is, inefficiency in this
model shows by how much energy is overused to produce a given level of output and all other inputs.
On the other hand, inefficiency in (10) comes from excess use of energy when all other inputs and output
are chosen optimally instead of taking them as exogenously given. From econometric estimation point
of view this means Y and X−E are exogenous in Model 2, whereas they are endogenous in Model 3.

In the next sub-section we examine all three models in more detail in the light of panel stochastic
frontier framework. In particular, we add firm-heterogeneity and decompose inefficiency into
persistent and transient components.

3.2. Stochastic Frontier Approach with Panel Data

The stochastic production frontier function approach was introduced for cross-sectional data
independently by [37,38]. This is expressed as

log qi = r(X i; ω) + vi − ui, (11)

where r(·) is the technology (namely, the production function in logarithmic form), qi is an output,
X i is a vector of inputs (in log) for a production unit i, ω is a vector of parameters that define the
technology, vi is the usual error/noise term, and ui ≥ 0 is the inefficiency. In this model, the data
are cross-sectional and hence error components vi and ui represents cross-sectional shocks to the
production and production unit-specific inefficiency. When panel data are available, shocks and
inefficiency can be both time-constant and time-varying. The authors of [22,39,40] were first to
recognize this and formulated the following 4-component stochastic frontier model for panel data. We
use this framework for our Model 1, and write it as:

log qit = r(X it, trend; ω) + v0i − u0i + vit − uit, (12)

where t is a time period in which a production unit i is observed. In (12) we have two additional
terms compared to (11). More specifically, vit is the usual symmetric error term, v0i is an individual
(production unit) effect also known to represent individual production shock (or heterogeneity),
u0i ≥ 0 is the persistent or structural time-invariant inefficiency, and finally uit ≥ 0 is the transient
or short-term time-varying inefficiency. Thus, the overall inefficiency is the sum of persistent and
transient inefficiency and overall efficiency TEoverall is decomposed into persistent TEpersistent and
transient TEtransient, i.e.,

TEoverall = TEpersistent × TEtransient (13)

Note that persistent and transient efficiency (TEpersistent and TEtransient) are defined as e−u0i and
e−uit , respectively. The originally proposed model assumed all 4 components to be random and
homoskedastic. This model did not include the determinants of inefficiency. In our analysis, we will
use the [11] model that introduces determinants of both types of inefficiency in (12).

To estimate parameters ω in (12), we assume that vit ∼ N (0, σvit), v0i ∼ N (0, σv0i ), uit ∼
N+ (0, σuit), and u0i ∼ N+ (0, σu0i ), where N+ means the positive part of the zero mean normal
distribution, making uit and u0i half-normally distributed. We assume that both noise vit and
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individual effects v0i are homoskedastic, so that σvit = σv and σv0i = σv0 . We introduce determinants of
time-varying inefficiency via the pre-truncated variance of uit. More specifically, we assume

σ2
uit

= exp (zuit ψu), i = 1, · · · , n, t = 1, · · · , Ti, (14)

where zuit denotes the vector of covariates that explain time-varying inefficiency. Since uit is

half-normal, E(uit) =
√
(2/π) σuit =

√
(2/π) exp

(
1
2 zuit ψu

)
, and therefore, anything that affects

σuit also affects time-varying inefficiency. The determinants of persistent inefficiency can be modeled
similarly. However, because the data-set does not provide natural determinants of the persistent
inefficiency, we leave it homoskedastic, i.e., σu0i = σu0 .

The parameters ω, as well as variances of the 4 components and their determinants, can be
estimated by the single stage maximum simulated likelihood (MSL) method (see Appendix B and [11]
for details of the estimation procedure). We follow [39] to calculate the persistent and transient
efficiencies. The overall efficiency is then calculated as the product of the persistent and transient
efficiencies.

We add firm-heterogeneity and decompose inefficiency into persistent and transient inefficiency
in the same way as in Model 1, for both Models 2 and 3, which are outlined in (8) and (10). After adding
these components, the models will look quite similar to (12) mathematically. Because of this, we skip
the details and avoid repetitions. However, note that the interpretation of inefficiency in these models
are different. In Model 2 inefficiency refers to overuse of energy, given everything else. Consequently,
persistent and transient inefficiency in Model 2 decompose energy overuse into a time-invariant and a
time-varying components, ceteris paribus. Similar to Model 2, inefficiency in Model 3 described in (10)
after adding firm heterogeneity and persistent inefficiency is specifically related to energy overuse.
But it does not take other inputs as given, which is what Model 2 does. In Model 3 inputs are chosen
optimally, and inefficiency in production is transmitted to overuse of inputs via demand for energy.
That is, we focus only on energy by examining the energy demand function.

4. Data

The source of the data we use in this paper is NBER-CES Manufacturing Industry Database, which
can be accessed at http://www.nber.org/nberces/. It covers 473 six-digit 1997 NAICS manufacturing
industries over 1958–2011. We split our analysis into five decades: 1958–1969 (labeled “the 1960s”),
1970–1979 (labeled “the 1970s”), 1980–1989 (labeled “the 1980s”), 1990–1999 (labeled “the 1990s”), and
2000–2011 (labeled “the 2000s”).

The output Y of an industry is calculated as the difference between the value of industry shipments,
which are based on net sales, after discounts and allowances, and the change in end-of-year inventories.
The labor L is calculated as PRODH ∗ PAY/PRODW, where PRODH is the number of production
worker hours, PAY is the total payroll, and PRODW is production workers’ wages. Capital stock K is
obtained as the sum of real equipment and real structures. Energy E is the expenditure on purchased
fuels and electrical energy. The cost of overall materials MATCOST in the database includes delivered
cost of raw materials, parts, and supplies put into production or used for repair and maintenance and
purchased electric energy and fuels consumed for heat and power and contract work done by others
for the plant. The cost excludes the costs of services used, overhead costs, or expenditures related to
plant expansion. Because the overall cost of materials includes energy, the non-energy materials, NEM
are determined as the difference between overall materials and E. See [9] for more details.

The paper analyzes the differences in energy use efficiency between industries that use relatively
little and a lot of energy in their production. We define energy intensity EN_INTENSITY as the ratio
of the expenditures on purchased fuels and electrical energy E and the value of industry shipments
VSHIP, which is the energy cost per unit of sales. The authors of [10], for example, define energy
intensity as energy consumption divided by a measure of economic activity. Alternatively, one can
define energy intensity as the cost of energy in total costs. We have tried this approach and the

http://www.nber.org/nberces/
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correlation coefficient between these two measures of energy intensity was 0.98. So either of them
could be used.

Table A1 shows the summary statistics for output and four inputs for 10 percent of the top and
bottom energy-intensive manufacturing industries in the respective decade. The criterion to include
an industry is that data on it is available for at least 4 years in a decade.

5. Empirical Results

5.1. Change in Energy Intensity of Industries

First, we analyze how energy intensity has evolved in US manufacturing for over the five decades.
We concentrate on the top and bottom 10% of the industries in terms of their energy intensity. More
specifically, we calculate the 10th and 90th percentile of energy intensity in the 1960s, then we consider
industries whose energy intensity is smaller than the 10th percentile and larger than the 90th percentile
in the 1960s. Of these industries, we consider only those for which data are available for a period of at
least 4 years. Then we repeat this exercise for the other four decades. Table 1 gives a summary statistics
of the energy intensity for all industries for the period 1958–2011 as well as by decade and by energy
intensity. As we can see, there are industries for which the energy use is negligible. However, some
industries consume quite a lot of energy in the production process. All parts of the distribution were
increasing up to the 1990s and then started declining.

Table 1. Descriptive statistics of energy intensity by decade and by the intensity of energy use.

Time Period Industries Median Mean SD Min Max

All Both most and least energy-intensive 0.0417 0.0489 0.0565 0.00008 0.3414

All Least energy-intensive 0.0045 0.0046 0.0015 0.00008 0.0082
All Most energy-intensive 0.0690 0.0873 0.0527 0.03169 0.3414

The 1960s Least energy-intensive 0.0035 0.0033 0.0011 0.00008 0.0046
The 1960s Most energy-intensive 0.0489 0.0627 0.0333 0.03169 0.2006
The 1970s Least energy-intensive 0.0049 0.0048 0.0009 0.00061 0.0061
The 1970s Most energy-intensive 0.0706 0.0881 0.0513 0.04258 0.3311
The 1980s Least energy-intensive 0.0068 0.0065 0.0012 0.00304 0.0082
The 1980s Most energy-intensive 0.0850 0.1128 0.0639 0.05426 0.3414
The 1990s Least energy-intensive 0.0047 0.0046 0.0010 0.00121 0.0061
The 1990s Most energy-intensive 0.0645 0.0819 0.0477 0.04202 0.2775
The 2000s Least energy-intensive 0.0042 0.0042 0.0011 0.00108 0.0058
The 2000s Most energy-intensive 0.0711 0.0921 0.0513 0.04630 0.2709

It can be seen that in each decade, the 10th and 90th percentiles are specific for the decade. The
industries that satisfy the above procedure are shown in Figures 1 and 2. The red decade-specific
horizontal lines show 10th and 90th percentiles for low and high energy-intensive industries,
respectively. The bold green solid line shows the mean of energy intensity for these industries.

One conclusion that we can draw from Figures 1 and 2 and Table 1 is that the energy intensity
has a shape that is closer to a parabola than a flat line. Whether we are looking at the 10th or the 90th
percentile, the energy intensity has been increasing from 1960s through the 1980s and then started to
fall in the 1990s and then stalled through the 2000s. One possible explanations can be that energy was
abundant and relatively cheap up until 1990s when manufacturers started to consider better and more
energy-saving technologies.
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Figure 1. Energy intensity of industries. Shown are industries whose energy intensity are lower than
the 10th percentile in a respective decade. Notes: Horizontal red lines show the 10th percentile of
energy intensity in a respective decade. The bold green solid line shows the mean of energy intensity
for industries whose energy intensity are lower than the 10th percentile in a respective decade.
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Figure 2. Energy intensity of industries. Shown are industries whose energy intensity exceeds the
90th percentile in a respective decade. Notes: Horizontal red lines show the 90th percentile of energy
intensity in a respective decade. The bold green solid line shows the mean of energy intensity for
industries whose energy intensity exceeds the 90th percentile in a respective decade.

5.2. Energy Use Efficiency

In this section, we present the results from three models that are presented in Equations (3), (8) and
(10). In all three models, the transient inefficiency is modeled to follow either linear or quadratic trend,
that is σuit is a function of time in (14). Further, in all three models, we used a translog (log quadratic)
specification for the underlying technology. The first model considers energy use inefficiency via an
input distance function (IDF). Since inefficiency is radial in the IDF formulation in (3), the energy
use efficiency is the same as the efficiency in the use of all other inputs. In the latter two models,
inefficiency comes from energy use alone. The difference is that in (10), output can be endogenous,
and manufacturing firms are assumed to be profit-maximizing.

The results from models 1, 2, and 3 by decade are presented in Tables 2–4. We observe that in
all these models, with an exception of the model 3 for the 1990s, all 4 components are statistically
significant and thus use of the [11] model is justified. So, the conclusion about appropriateness of
using the 4-component model is in line with [33,34]. This means that models that account for only
two components such as [41–43], or three components such as [21] or [18–20] are misspecified and
likely to produce wrong results on efficiency. For the 1990s, model 3 could have been estimated
using [20] approach.
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Table 2. Model 1 as in Equation (3). Dependent variable is − log E. z-values in parentheses.

Parameter The 1960s The 1970s The 1980s The 1990s The 2000s

Intercept 1.430 (24.95) 1.094 (6.44) 1.635 (7.17) 1.109 (6.55) 2.459 (16.77)
0.5 * log(K/E)2 0.020 (1.51) 0.019 (0.39) 0.028 (0.24) 0.091 (3.14) −0.031 (−1.37)
0.5 * log(L/E)2 0.107 (9.48) −0.041 (−3.25) 0.092 (4.83) −0.031 (−1.77) 0.072 (2.69)
0.5 * log(NEM/E)2 0.189 (17.96) 0.124 (6.50) 0.187 (6.92) 0.160 (6.52) 0.071 (2.56)
0.5 * log(Y)2 0.002 (0.41) −0.017 (−0.95) 0.044 (14.23) 0.043 (21.12) 0.054 (29.65)
0.5 * Trend2 0.003 (4.33) −5.8× 10−4 (−0.45) 0.004 (3.40) 0.003 (2.72) 0.003 (4.58)
log(K/E) −0.082 (−2.68) 0.118 (0.92) −0.142 (−1.21) 0.026 (0.32) 0.023 (0.32)
log(K/E) ∗ log(L/E) 0.039 (4.53) 0.061 (6.54) 0.002 (0.08) −0.031 (−2.72) −0.052 (−2.78)
log(K/E) ∗ log(NEM/E) −0.037 (−3.89) −0.057 (−2.24) −0.006 (−0.10) −0.064 (−2.88) 0.058 (2.45)
log(K/E) ∗ log(Y) 0.020 (3.53) 0.002 (0.29) 0.042 (2.29) 0.016 (3.78) 0.023 (2.52)
log(K/E) ∗ Trend 0.005 (2.83) 0.006 (1.12) 0.005 (1.59) 0.004 (1.93) 0.002 (1.32)
log(L/E) 0.493 (17.03) 0.418 (4.42) 0.501 (6.96) 0.862 (11.33) 0.903 (10.50)
log(L/E) ∗ log(NEM/E) −0.148 (−10.56) −0.032 (−2.54) −0.137 (−4.89) −0.016 (−1.08) −0.059 (−2.67)
log(L/E) ∗ log(Y) −0.011 (−1.26) −0.030 (−1.42) 0.024 (1.63) −0.051 (−6.52) −0.032 (−7.93)
log(L/E) ∗ Trend 0.006 (5.75) −0.002 (−0.42) −0.001 (−0.84) 0.002 (0.98) −0.006 (−2.65)
log(NEM/E) 0.431 (23.41) 0.242 (8.68) 0.363 (4.87) 0.331 (5.19) 0.061 (1.06)
log(NEM/E) ∗ log(Y) −0.018 (−2.14) 0.018 (1.00) −0.063 (−3.79) −0.028 (−6.73) −0.023 (−2.72)
log(NEM/E) ∗ Trend −0.007 (−6.50) −0.005 (−1.01) −0.005 (−2.51) −0.007 (−3.93) 0.003 (1.62)
log(Y) −0.932 (−76.70) −0.772 (−10.27) −1.014 (−37.43) −0.991 (−65.69) −1.059 (−60.64)
log(Y) ∗ Trend −1.1× 10−4 (−0.16) −0.001 (−0.70) −0.001 (−0.50) −0.001 (−1.49) −0.005 (−4.01)
Trend −0.017 (−2.39) 0.017 (1.14) 0.006 (0.28) 0.020 (2.40) 0.012 (0.81)
Random effects component: log σ2

v0i
lnVARv0iIntercept −3.820 (−95.00) −2.548 (−15.71) −2.978 (−12.85) −2.066 (−65.46) −3.204 (−67.88)
Persistent inefficiency component: log σ2

u0i
lnVARu0iIntercept −4.570 (−56.15) −3.936 (−5.12) −2.197 (−21.74) −3.943 (−44.12) -0.764 (−23.66)
Random noise component: log σ2

vit
lnVARvitIntercept −6.571 (−97.67) −6.445 (−49.51) −6.455 (−47.84) −6.379 (−44.86) −7.431 (−44.92)
Transient inefficiency component: log σ2

uit
lnVARuitIntercept −4.548 (−4.04) −7.251 (−4.62) −3.859 (−8.03) −5.909 (−3.74) −3.658 (−13.88)
lnVARuitTrend −1.372 (−3.10) 0.462 (0.80) −1.469 (−5.51) −0.931 (−2.12) −0.634 (−6.76)
lnVARuitTrend2 0.098 (2.91) −0.067 (−1.17) 0.139 (5.54) 0.104 (3.09) 0.056 (7.84)
Sample Size
N 105 113 104 98 109
∑N

i=1 Ti 968 850 835 817 1005
Sim. logL 1497.73 1144.89 1055.05 1021.78 1067.50
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Table 3. Model 2 as in Equation (8). Dependent variable is log E. z-values in parentheses.

Parameter The 1960s The 1970s The 1980s The 1990s The 2000s

Intercept −8.488 (−21.97) −4.999 (−8.78) −4.001 (−42.61) −7.573 (−33.18) −7.973 (−26.42)
0.5 * log(K)2 0.019 (0.70) 0.131 (1.90) 0.057 (2.29) −0.038 (−1.79) −0.130 (−5.22)
0.5 * log(L)2 −0.782 (−15.67) −0.087 (−3.52) 0.106 (6.43) 0.047 (1.26) −0.049 (−1.44)
0.5 * log(NEM)2 −0.486 (−5.73) 0.258 (6.97) 0.127 (4.43) 0.791 (10.17) −0.256 (−15.50)
0.5 * log(Y)2 0.849 (6.90) 0.353 (7.99) −0.310 (−6.63) 0.300 (5.12) −0.678 (−24.19)
0.5 * Trend2 −7.2× 10−4 (−0.30) −0.009 (−3.52) −0.027 (−15.93) −0.006 (−3.63) −0.017 (−11.00)
log(K) 1.504 (26.62) −0.552 (−2.51) −0.270 (−3.07) −0.014 (−0.20) 0.129 (1.03)
log(K) ∗ log(L) 0.349 (9.52) −0.038 (−0.97) −0.130 (−4.60) −0.055 (−1.17) −0.007 (−0.16)
log(K) ∗ log(NEM) −0.344 (−10.11) 0.198 (2.41) −0.149 (−10.31) 0.068 (1.75) −0.124 (−3.52)
log(K) ∗ log(Y) −0.158 (−9.43) −0.150 (−4.94) 0.257 (21.41) 0.056 (2.08) 0.275 (16.63)
log(K) ∗ Trend 0.023 (7.19) 0.008 (1.50) −0.020 (−6.35) 0.004 (1.15) 0.006 (1.55)
log(L) 1.022 (11.95) −0.138 (−1.37) 0.464 (7.54) 0.448 (4.34) −0.114 (−2.11)
log(L) ∗ log(NEM) 0.982 (9.05) −0.080 (−1.22) 0.007 (0.19) −0.413 (−4.51) −8.7× 10−5 (−3.2× 10−3)
log(L) ∗ log(Y) −0.758 (−7.77) 0.167 (1.90) 0.017 (0.36) 0.400 (4.23) 0.065 (1.25)
log(L) ∗ Trend −0.023 (−2.89) −0.006 (−0.73) 0.003 (0.76) −0.007 (−1.45) −2.1× 10−4 (−0.04)
log(NEM) 0.763 (5.20) 0.148 (0.64) 0.527 (4.98) 0.792 (8.17) 0.005 (0.04)
log(NEM) ∗ log(Y) −0.052 (−1.69) −0.405 (−8.70) 0.007 (1.01) −0.684 (−66.10) 0.339 (29.12)
log(NEM) ∗ Trend 0.039 (3.99) 0.001 (0.11) −0.019 (−2.58) 0.002 (0.26) −0.005 (−0.94)
log(Y) −0.432 (−1.28) 1.182 (5.33) 0.393 (2.43) 0.954 (12.19) 1.475 (6.87)
log(Y) ∗ Trend −0.030 (−1.75) 0.004 (0.20) 0.036 (2.78) −0.002 (−0.13) 0.005 (0.43)
Trend −0.044 (−2.14) 0.061 (2.18) 0.105 (4.91) 0.018 (0.78) 0.085 (3.62)
Random effects component: log σ2

v0i
lnVARv0iIntercept 0.567 (25.03) −2.153 (−24.98) −1.542 (−37.01) −0.367 (−5.24) −0.643 (−26.28)
Persistent inefficiency component: log σ2

u0i
lnVARu0iIntercept −1.363 (−23.33) 0.459 (10.69) −0.469 (−15.46) −0.730 (−9.23) −1.022 (−19.82)
Random noise component: log σ2

vit
lnVARvitIntercept −6.180 (−25.73) −4.043 (−66.60) −4.723 (−63.28) −4.185 (−57.02) −4.079 (−74.23)
Transient inefficiency component: log σ2

uit
lnVARuitIntercept −3.195 (−14.71) −1.013 (−1.92) −17.732 (−5.89) −9.850 (−8.06) −0.320 (−0.88)
lnVARuitTrend 0.214 (7.36) −2.225 (−4.11) 1.531 (5.13) 0.673 (5.07) −1.666 (−8.42)
Sample Size
N 105 113 104 98 109
∑N

i=1 Ti 968 850 835 817 1005
Sim. logL −274.84 155.72 328.12 163.25 136.60
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Table 4. Model 3 as in Equation (10). Dependent variable is − log E. z-values in parentheses.

Parameter The 1960s The 1970s The 1980s The 1990s The 2000s
Intercept −5.788 (−27.29) −4.111 (−13.84) −4.328 (−19.92) −6.833 (−27.68) −6.349 (−19.86)
0.5 * log(K)2 −0.055 (−1.54) 0.091 (3.74) 0.011 (0.67) −0.046 (−1.66) −0.109 (−5.19)
0.5 * log(L)2 −0.480 (−13.99) −0.036 (−1.30) 0.246 (19.91) 0.183 (8.27) 0.186 (7.85)
0.5 * log(NEM)2 −0.203 (−1.30) −0.010 (−0.50) 0.047 (1.19) 0.176 (5.53) 0.069 (3.56)
0.5 * log(wE/wY)2 −0.340 (−7.45) −0.005 (−0.24) −0.071 (−1.55) −0.067 (−0.23) −0.105 (−2.50)
0.5 * Trend2 3.5× 10−4 (0.13) −0.011 (−4.85) −0.021 (−12.95) −0.007 (−4.07) −0.018 (−12.46)
log(K) 1.180 (8.92) −0.377 (−3.85) 0.275 (5.94) 0.852 (18.24) 1.061 (14.19)
log(K) ∗ log(L) 0.207 (6.18) 0.020 (0.64) 0.029 (1.27) 0.060 (1.30) 0.065 (2.07)
log(K) ∗ log(NEM) −0.264 (−108.79) −0.005 (−0.72) −0.003 (−1.84) −0.035 (−12.27) −0.012 (−3.90)
log(K) ∗ log(wE/wY) 0.088 (0.93) −0.003 (−0.10) 0.113 (3.90) −0.075 (−0.87) −0.070 (−1.43)
log(K) ∗ Trend 0.016 (5.66) 0.019 (5.67) −0.006 (−3.55) 0.009 (3.87) 0.006 (2.00)
log(L) −0.426 (−1.15) 0.675 (8.24) 0.095 (1.04) 1.736 (26.02) 0.452 (5.57)
log(L) ∗ log(NEM) 0.336 (3.92) −0.057 (−1.93) −0.146 (−4.47) −0.311 (−6.62) −0.163 (−4.85)
log(L) ∗ log(wE/wY) 0.050 (0.47) 0.151 (3.91) −0.031 (−0.71) 0.034 (0.28) 0.055 (1.06)
log(L) ∗ Trend −0.027 (−6.74) −0.010 (−1.85) 0.019 (7.95) 0.001 (0.40) 0.010 (2.29)
log(NEM) 1.128 (2.28) 0.706 (11.62) 0.636 (4.38) 0.292 (3.91) 0.561 (14.16)
log(NEM) ∗ log(wE/wY) −0.053 (−0.39) −0.090 (−2.58) −0.079 (−1.62) −0.111 (−1.01) −0.019 (−0.49)
log(NEM) ∗ Trend 0.023 (4.45) −0.004 (−0.83) −0.006 (−2.29) −0.013 (−3.77) −0.006 (−1.55)
log(wE/wY) −0.542 (−2.10) 0.114 (0.76) −0.094 (−0.54) 1.371 (2.97) 0.533 (1.91)
log(wE/wY) ∗ Trend −0.005 (−0.62) 0.024 (5.10) 0.021 (4.38) 0.013 (0.65) 0.011 (1.43)
Trend −0.093 (−2.22) 0.092 (4.71) 0.113 (8.89) 0.056 (3.85) 0.111 (6.40)
Random effects component: log σ2

v0i
lnVARv0iIntercept 0.769 (20.77) −3.036 (−20.12) −3.841 (−37.08) −0.039 (−0.93) −0.071 (−3.18)
Persistent inefficiency component: log σ2

u0i
lnVARu0iIntercept −4.199 (−9.11) 1.390 (29.23) 0.433 (15.01) −0.981 (−13.94) −2.428 (−18.20)
Random noise component: log σ2

vit
lnVARvitIntercept −5.714 (−8.29) −4.004 (−70.89) −4.749 (−71.78) −4.218 (−57.99) −3.912 (−74.27)
Transient inefficiency component: log σ2

uit
lnVARuitIntercept −3.459 (−13.87) −1.055 (−1.88) −18.646 (−6.10) −9.658 (−9.10) −0.409 (−1.06)
lnVARuitTrend 0.248 (7.63) −2.300 (−4.16) 1.572 (5.21) 0.688 (5.86) −1.765 (−7.76)
Sample Size
N 105 113 104 98 109
∑N

i=1 Ti 968 850 835 817 1005
Sim. logL −290.77 144.77 376.35 151.07 84.05
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Figure 3 shows the evolution of average efficiency over time by the type of efficiency. Figures 4–6
show densities of three types of efficiencies using the formula in (13) for models 1, 2, and 3, respectively
by decade. The three columns in each of the there figures present overall, transient, and persistent
efficiencies. Recall that the overall efficiency is the product of transient and persistent efficiencies. The
rows from 1 to 5 show the decades from the 1960s through the 2000s.
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Figure 3. Average efficiency by year, energy intensity, and type of efficiency. The abbreviation HI
stands for high intensity and LI means low intensity. Notes: The dotted time-series lines are for the
high and solid lines are for low intensity industries.
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Figure 4. Overall, transient and persistent energy efficiency, Model 1. Notes: Solid black curves are
high energy-intensive industries, dotted red curves are low energy-intensive industries. Vertical lines
are respective mean values.

Models 2 and 3 measure energy use efficiency directly. Since we are applying the 4-component
model, the overall energy use efficiency is decomposed into the persistent and transient components.
The left column of Figure 5 reveals that the overall energy use efficiency has deteriorated over time.
This is also confirmed by the middle and lower panels in Figure 3. We note again that the efficiencies
are not comparable as they are measured relative to decade-specific frontiers, however, we can gauge
how industries performed within decades. The energy use efficiency was very low in the 1970s, which
could be the result of the oil crisis, which hit all industries of the economy. The overall efficiency figure
in the 1970s, however, additionally reveals that the high energy-intensive industries were hit much
harder. We have seen in Table 1 that some industries consume energy up to about a third of their actual
sales. The lower panels in the left column of Figure 5 and middle panel in Figure 3 indicate that high
energy-intensive industries were rebounding from the oil crisis and were only short of reaching the
level of overall energy use efficiency only in the 2000s. The levels of overall energy use efficiency are
still very low by any standard for energy-intensive industries. The energy use efficiency of the low
energy-intensive industries is quite stable relative to the decade specific frontiers. Clearly, if the share
of energy costs in production is very low as Table 1 suggests, the shocks to energy use are not that
profound.
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Figure 5. Overall, transient and persistent energy efficiency, Model 2. Notes: Solid black curves are
high energy-intensive industries, dotted red curves are low energy-intensive industries. Vertical lines
are respective mean values.

Looking at the components of the overall efficiency, we again observe that the overall inefficiency
is mainly rooted in the structural energy use inefficiency. The density of the transient efficiency with
an exception of the 1960s is concentrated around unity. The structural efficiency is shown in the
third column of Figure 5 and as persistent efficiency in Figure 3. For low energy-intensive industries,
it remains virtually unchanged, albeit relative to the decade-specific frontier. As is expected after
discussion of the overall efficiency, the persistent efficiency of the high energy-intensive industries
plummeted in the 1970s and increased gradually only in the 2000s.
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Figure 6. Overall, transient and persistent energy efficiency, Model 3. Notes: Solid black curves are
high energy-intensive industries, dotted red curves are low energy-intensive industries. Vertical lines
are respective mean values.

5.3. Discussion

It is worth noting that because we have estimated decade-specific frontiers, the efficiencies across
decades are not directly comparable. Thus, we discuss the differences in efficiencies that are estimated
relative to their frontiers. Overall, the level of efficiency is close to that reported by [44]. Based on
Model 1, one result the becomes evident is that the industries move further away from the frontier
over time. We cannot say whether this is because they were lagging behind technological progress or
whether they were becoming less efficient. The second feature is that transient inefficiency is almost
non-existent and input inefficiency almost completely stems from structural inefficiency. Third, we see
a drop in efficiency in the 2000s, which can be attributed to downturns at the beginning of the 2000s as
well as the financial crisis at the end of the decade. Finally, in terms of overall input inefficiency, both
high and low energy-intensive industries perform similarly. Only in the 2000s, low energy-intensive
industries seem to slightly over-perform high energy-intensive industries. We find confirmation for
average levels in Figure 3.

Figure 6 summarizes the energy use efficiency for the third model, which is only slightly different
from Model 2. The change that we observe in Figure 6 relative to Figure 5 is only quantitative.
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Conclusions that we drew from Figure 5 can be repeated for Model 3, so that the results of the third
model can be seen as a robustness check.

It is difficult to say why we observe the so-called “energy paradox”. The US is known to promote
energy efficiency policy (see, e.g., [33]). However, such policies lead to different outcomes. In Sweden
for example, the adoption rate of energy efficiency measures is over 40% ([45]). Although financial
intensive may be an important one in some industries and countries ([46]), Refernece [4] document
lack of adoption, which constitutes the above paradox. The authors of [47] find that the most important
barriers to more energy-efficient organization are internal economic and behavioral barriers. The
authors of [48] name additional barriers including lack of interest in energy efficient technologies.
Further, their findings suggest that adopting sound energy management practices is the most important
driver of increased energy efficiency. Adopting cost-effective technologies is also important, but less so
than the above-mentioned practices.

6. Conclusions

Energy is one of the most important inputs in manufacturing industries. It is a scarce input that
is expensive in both monetary and environmental terms. Hence, both policymakers and businesses
should consider the efficient use of this input in the long-term.

This study uses the stochastic frontier approach to measure energy use efficiency in the US
manufacturing during the time period 1958–2011 using the NBER-CES Manufacturing Industry
Database. When panel data are available as in our case, we advocate using the latest or the 4-component
SF model. We concentrate on the most and least energy-intensive manufacturing industries. More
specifically, we first define energy intensity as the costs of energy in total economic activity. Then
for each of five decades, we identify the top 10% and bottom 10% energy-intensive industries. We
apply the 4-component stochastic frontier model that decomposes overall efficiency into the long-term
or persistent and short-term efficiencies. Our main findings suggest that energy use efficiency in US
manufacturing hit hard by the oil shock in the 1970s and it did not rebound until the 2000s. The major
culprit of the low overall energy use efficiency was structural inefficiency, a finding that goes hand in
hand with the “energy paradox” (see, e.g., [4]). It seems that one of the ways to mitigate low levels of
energy use efficiency should be to do more research along the lines of [5,47,48] to promote, adopt, and
establish energy-efficient technologies as the new benchmark.
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Appendix A

Table A1. Descriptive statistics by decade and by the intensity of energy use.

Time Period Industries Median Mean SD Min Max

Y

The 1960s Least energy-intensive 832.95 1509.60 2214.52 27.10 17,931.30
The 1960s Most energy-intensive 546.85 1251.66 2780.79 79.70 21,983.20
The 1970s Least energy-intensive 1438.45 3796.49 7199.52 150.30 43,128.30
The 1970s Most energy-intensive 1128.70 3024.25 6117.26 111.60 54,446.30
The 1980s Least energy-intensive 3639.00 8997.84 14,000.49 286.80 73,925.10
The 1980s Most energy-intensive 2222.15 4855.71 8216.35 136.60 56,738.40
The 1990s Least energy-intensive 6168.60 16,492.67 23,594.40 219.30 145,256.20
The 1990s Most energy-intensive 3312.50 6678.93 10,571.67 116.30 56,895.00
The 2000s Least energy-intensive 7992.90 19,773.51 30,016.89 149.10 16,2181.80
The 2000s Most energy-intensive 4243.00 9790.06 17,328.47 130.80 123,129.80
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Table A1. Cont.

Time Period Industries Median Mean SD Min Max

K

The 1960s Least energy-intensive 400.85 1131.83 1841.05 6.20 9507.70
The 1960s Most energy-intensive 1548.30 4670.45 12,180.26 111.10 90,867.10
The 1970s Least energy-intensive 631.45 2049.62 3965.95 27.60 20,595.00
The 1970s Most energy-intensive 2646.90 6482.31 14,042.12 257.70 92,312.80
The 1980s Least energy-intensive 960.60 3075.50 5135.97 52.80 25,549.50
The 1980s Most energy-intensive 2475.65 6780.63 13,499.10 236.70 91,786.60
The 1990s Least energy-intensive 1338.90 4242.53 6078.23 39.40 27,170.30
The 1990s Most energy-intensive 2933.30 6867.77 12,257.56 172.20 70,528.90
The 2000s Least energy-intensive 1605.60 5526.12 8706.73 57.30 53,612.40
The 2000s Most energy-intensive 3162.85 7044.35 11,075.66 165.70 58,371.10

L

The 1960s Least energy-intensive 72.40 127.50 147.79 1.35 1018.47
The 1960s Most energy-intensive 31.66 83.17 164.73 3.75 1145.57
The 1970s Least energy-intensive 76.74 121.04 122.07 9.94 727.97
The 1970s Most energy-intensive 30.70 80.51 150.27 3.90 1070.72
The 1980s Least energy-intensive 69.93 116.73 125.13 6.91 686.44
The 1980s Most energy-intensive 28.38 59.72 92.65 2.98 762.71
The 1990s Least energy-intensive 64.72 113.52 117.39 4.49 659.60
The 1990s Most energy-intensive 26.66 55.92 74.33 2.09 423.21
The 2000s Least energy-intensive 55.18 92.35 96.65 2.29 487.05
The 2000s Most energy-intensive 20.63 39.73 53.02 2.48 380.14

NEM

The 1960s Least energy-intensive 432.60 917.37 1687.38 16.90 15,436.70
The 1960s Most energy-intensive 193.25 555.57 1414.46 6.50 11,553.60
The 1970s Least energy-intensive 787.60 2501.26 5759.85 65.80 37,855.40
The 1970s Most energy-intensive 485.10 1460.07 3318.96 14.70 29,737.30
The 1980s Least energy-intensive 1832.10 5568.41 10,423.51 129.60 50,316.50
The 1980s Most energy-intensive 873.20 2306.36 4384.77 27.70 31,836.00
The 1990s Least energy-intensive 2950.90 9604.14 16,286.32 80.50 102,924.30
The 1990s Most energy-intensive 1276.85 3034.87 5404.51 25.30 29,446.20
The 2000s Least energy-intensive 3954.40 10,175.94 18,271.44 63.80 110,074.70
The 2000s Most energy-intensive 1602.30 4847.67 10,339.06 24.80 75,089.60

E

The 1960s Least energy-intensive 2.50 4.83 8.95 0.10 75.70
The 1960s Most energy-intensive 29.00 70.23 135.82 2.60 1056.00
The 1970s Least energy-intensive 7.00 18.22 35.64 0.40 225.20
The 1970s Most energy-intensive 96.30 248.52 513.12 7.10 5325.20
The 1980s Least energy-intensive 23.70 56.56 84.23 1.50 348.40
The 1980s Most energy-intensive 202.60 494.83 782.74 20.30 5858.60
The 1990s Least energy-intensive 29.30 66.00 86.92 1.00 350.40
The 1990s Most energy-intensive 219.90 486.65 689.62 8.90 3570.80
The 2000s Least energy-intensive 35.00 78.93 126.08 0.70 858.00
The 2000s Most energy-intensive 355.60 777.17 1158.60 12.00 6775.10

Appendix B

Here we describe how to estimate the model in (11). To facilitate the discussion, rewrite

log qit = r(X it, trend; ω) + v0i − u0i + vit − uit (A1)

as
log qit = r(X it, trend; ω) + ε0i + εit,
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where εit = vit − uit and ε0i = v0i − u0i decompose the error term into two ‘composed error’ terms
(both of which contain a two-sided and a one-sided error terms). Assume the most general case where
all four components are heteroskedastic

σ2
uit

= exp (zuit ψu), i = 1, · · · , n, t = 1, · · · , Ti, (A2)

σ2
u0i

= exp (zu0i ψu0), i = 1, · · · , n, (A3)

σ2
vit

= exp (zvit ψv), i = 1, · · · , n, t = 1, · · · , Ti, (A4)

σ2
v0i

= exp (zv0i ψv0), i = 1, · · · , n, (A5)

where zuit are the determinants of transient inefficiency, zu0i are the determinants of persistent
inefficiency, and zvit and zv0i define the heteroskedasticity functions of the noise and random
effects. The homoskedastic error component is easily derived from (A2–A5) by setting the vector of
determinants to a constant. For example if vit is homoskedastic, zvit is a vector of ones of length ∑n

i=1 Ti.
The conditional density of εi = (εi1, . . . , εiTi ) is given by

f (εi|ε0i) =
Ti

∏
t=1

2
σit

φ

(
εit
σit

)
Φ
(

εitλit
σit

)
,

where σit = [exp (zuit ψu) + exp (zvit ψv)]
1/2 and λit = [exp (zuit ψu)/ exp (zvit ψv)]

1/2.
Integrate ε0i (the distribution of which we know) out to get the unconditional density of εi

f (εi) =
∫ ∞

−∞

[
Ti

∏
t=1

2
σit

φ

(
εit
σit

)
Φ
(

εitλit
σit

)]
× 2

σ0i
φ

(
ε0i
σ0i

)
Φ
(

ε0iλ0i
σ0i

)
dε0i,

where σ0i = [exp (zu0i ψu0) + exp (zv0i ψv0)]
1/2 and λ0i = [exp (zu0i ψu0)/ exp (zv0i ψv0)]

1/2. The
log-likelihood function for the i-th observation of model (A1) is therefore given by

log Li (β, ψu0, ψv0, ψu, ψv)

= log

∫ +∞

−∞

 Ti

∏
t=1


2

σit
φ

(
rit − ε0i

σit

)
×Φ

(
(rit − ε0i)λit

σit

)

 2

σ0i
φ

(
ε0i
σ0i

)
Φ
(

ε0iλ0i
σ0i

)
dε0i


= log

[∫ +∞

−∞

(
Ti

∏
t=1

{
2

σit
φ

(
εit
σit

)
Φ
(

εitλit
σit

)})
× 2

σ0i
φ

(
ε0i
σ0i

)
Φ
(

ε0iλ0i
σ0i

)
dε0i

]
, (A6)

where εit = rit − (v0i + u0i) and rit = log qit − r(X it, trend; ω). We rely on the Monte-Carlo
integration as a method to approximate the integral in (A6). For estimation purposes, we write
ε0i = [exp (zu0i ψu0)]

1/2Vi + [exp (zv0i ψv0)]
1/2|Ui|, where both Vi and Ui are standard normal random

variables. The resulting simulated log-likelihood function for the i-th observation is

log LS
i (β, ψu0, ψv0, ψu, ψv)

= log

 1
R

R

∑
r=1


Ti

∏
t=1


2

σit
φ

(
rit − ([exp (zu0i ψu0)]

1/2Vir + [exp (zv0i ψv0)]
1/2|Uir|)

σit

)

×Φ

(
[rit − ([exp (zu0i ψu0)]

1/2Vir + [exp (zv0i ψv0)]
1/2|Uir|)]λ

σit

)





= log

[
1
R

R

∑
r=1

(
Ti

∏
t=1

{
2
σ

φ
( εitr

σ

)
Φ
(

εitrλ

σ

)})]
, (A7)

where Vir and Uir are R random deviates from the standard normal distribution, and εitr = rit −
([exp (zu0i ψu0)]

1/2Vir + [exp (zv0i ψv0)]
1/2|Uir|). R is the number of draws for approximating the
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log-likelihood function. The full log-likelihood is the sum of panel-i specific log-likelihoods given
in (A7).

We use the results of [39] to calculate persistent and time-varying cost efficiencies. Using
the moment generating function of the closed skew normal distribution, the conditional means
of u0i, ui1, · · · , uiTi are given by:

E(exp{t′ui}|ri) =
ΦTi+1 (Riri + Λit, Λi)

ΦTi+1 (Riri, Λi)
× exp

(
t′Riri + 0.5t′Λit

)
, (A8)

where ri =
(
ri1, . . . , riTi

)′, A = −[1Ti ITi ], 1Ti is the column vector of length Ti and ITi is the
identity matrix of dimension Ti, the diagonal elements of V i are [exp (zu0i ψu0) exp (zuit ψu)], Σi =

exp (zvit ψv)ITi + exp (zv0i ψv0)1Ti 1
′
Ti

, Λi = V i − V i A′ (Σi + AV i A′)
−1 AV i =

(
V−1

i + A′Σ−1
i A

)−1
,

Ri = V i A′ (Σi + AV i A′)
−1

= Λi A′Σ−1
i , φq (x, µ, Ω) is the density function of a q-dimensional normal

variable with expected value µ and variance Ω and Φq (µ, Ω) is the probability that a q-variate normal
variable of expected value µ and variance Ω belongs to the positive orthant., ui = (u0i, ui1, . . . , uiTi )

′,
and −t is a row of the identity matrix of dimension (Ti + 1). If −t is the τ-th row, Equation (A8)
provides the conditional expected value of the τ-th component of the cost efficiency vector exp (−ui).
In particular, for τ = 1, we get the conditional expected value of the persistent technical efficiency.
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