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Abstract: The application of a distribution static synchronous compensator (D-STATCOM) is the best
technical means to solve the problem of reactive power compensation and harmonics. The D-STATCOM
system has the characteristics of variable parameters, strong coupling, nonlinearity and multi-variability.
In order to improve the speed of the dynamic tracking response and anti-disturbance capability of
the D-STATCOM, the article proposes an improved Linear Active Disturbance Rejection Controller
(LADRC) based on the total disturbance deviation control method. Combined with double closed-loop
control, the inner loop takes the current as the state variable, and the outer loop uses the DC side
output voltage as the state variable to achieve robust stability of the D-STATCOM and controller output.
The simulation results show that the improved LADRC is more stable than the traditional LADRC
in controlling the DC voltage waveform of the compensator, reactive current tracking and reactive
power compensation waveform when it is disturbed, which verifies the superiority and feasibility of
the improved LADRC.

Keywords: D-STATCOM; principle of deviation control; linear active disturbance rejection control;
double closed loop; anti-interference characteristics

1. Introduction

A distribution static synchronous compensator (D-STATCOM) is a kind of parallel device for
reactive power compensation, which is mainly used in low-voltage distribution networks [1]. It has the
characteristics of powerful functions, excellent performance and high cost performance. Various static
reactive power compensators and their control strategies are constantly improving. The control
strategies proposed by experts at home and abroad are generally divided into three categories: (1)
Traditional proportional integral control [2], (2) intelligent control technologies such as neural networks
and sliding mode control [3–5] and (3) control methods based on traditional modern control theory [6].
All kinds of control methods have certain limitations. Traditional PI (Proportional-Integral) control
cannot solve the problem of the system remaining stable when it is disturbed by uncertainty. When faced
with some nonlinear, time-varying, coupling and uncertain parameters and structure, the control effect
is not particularly ideal, and in this case, the controller is no longer suitable. The convergence speed
of an intelligent control algorithm is slow and it cannot reach the requirement of expected real-time
control. The accuracy of the dynamic model of the controller is the key to the control effect. For complex
systems, it is often difficult to accurately describe the dynamic characteristics of the system due to a
large amount of control. However, the state space expression depends on the precise mathematical
model of the system. For D-STATCOM, which is composed of IGBT (Insulated Gate Bipolar Translator)
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components, the internal harmonic content of the system is ignored during the precise modeling.
The mathematical model of modern control theory based on state-space theory adopts the state-space
equation, which mainly focuses on time domain analysis. The state equation can only describe a stable
system, focusing on the system state and its internal relations. Therefore, the modern control theory
cannot achieve a satisfactory control effect in the practical system.

The technology of the Active Disturbance Rejection Controller (ADRC) was proposed by
Han J.Q. researchers in the process of deeply studying the inherent essence of traditional PID
(Proportion Integration Differentiation) controllers [7]. It provides a new idea for disturbance
compensation, and its core element is an extended state observer (ESO), using a state observer to
establish a modified model of the controlled object, innovatively putting forward a new state variable,
taking the internal and external disturbances as the total disturbance and using the observer to
observe [8]. Based on that, Professor Gao Z.Q. proposed the Linear Active Disturbance Rejection
Controller. Through the pole assignment in the frequency domain, the parameters to be set are reduced
to three, which greatly simplifies the controller parameter tuning. Reference [9] simplified the structure
of a nonlinear ADRC and proposed an LADRC method.

The technology of the Linear Active Disturbance Rejection Controller has been applied in many
advanced fields of science and technology, such as missile weapons, precision control [10], etc.,
but although it has great engineering application value, LADRC is rarely used in D-STATCOM
systems. Reference [11] applied nonlinear ADRC control to the inner current loop of a D-STATCOM.
However, the controller has complicated parameter adjustment and lacks proof of controller stability.
Reference [12] proposed an improved LADRC strategy and method, but it has not been applied to
actual physical systems.

In this paper, the improved Linear Active Disturbance Rejection technology is implemented to
control the D-STATCOM system and the proposed control strategy is simulated and analyzed. Firstly,
the mathematical model of the D-STATCOM in a two-phase rotating coordinate system is achieved by
coordinate transformation [13]. Then the traditional LADRC is improved and applied to the current
and voltage loops of the system. The disturbance rejection ability and convergence of LESO, as well as
the stability and disturbance rejection characteristics of the LADRC combined with the system are
analyzed by using classical control theory. Finally, the control performance of the improved LADRC
and the traditional LADRC is compared and analyzed by MATLAB/Simulink simulation.

In this article, the second part introduces the mathematical model of the D-STATCOM, and then in
the third part, the methods of improving the LADRC are proposed by deeply studying the connotations
of the traditional first-order LADRC and second-order LESO. Combining the LADRC control with
the D-STATCOM system, the improved LADRC is applied to the D-STATCOM voltage and current
double loop, and the corresponding controller is designed. The fourth part proves the improvement
of LESO’s anti-interference characteristics and convergence in the frequency domain. As well as
the anti-disturbance characteristics of the improved LADRC combined with the actual D-STATCOM
system, the Lynard–Chiapart principle is used to prove the stability of the controller. In the fifth part,
the simulation results prove the superiority and feasibility of the improved LADRC compared with the
traditional LADRC.

2. Mathematical Modeling of the D-STATCOM System

The typical structure of the D-STATCOM system is shown in Figure 1, where usa, usb, usc are
representative of the three-phase grid voltage; R is the line resistance at the grid side; L is the filter
inductance between the D-STATCOM and the grid connection point; C is the capacitance at the DC
side; udc is representative of the voltage of the DC side; ia, ib, ic are the actual output currents of the
compensator; ULa, ULb, ULc are the measured voltages at the output of the D-STATCOM. The control
structure of the STATCOM consists of two parts, one is the drive circuit space vector pulse width
modulation (SVPWM), the other is the control layer. usabc depicts the three-phase voltage at the
D-STATCOM side and output side and iabc is the three-phase current output [14].
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Figure 1. D-STATCOM structure diagram. 
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The compensation coefficient of the D-STATCOM is 1 and the output harmonic content of
the device is ignored. Then, according to Kirchhoff’s voltage law, the mathematical model of the
D-STATCOM in a static three-phase coordinate system is as follows [15]:

L dia
dt = ULa − usa −Ria

L dib
dt = ULb − usb −Rib

L dic
dt = ULc − usc −Ric

C dudc
dt = −ia sin(ωt− δ)−

ib sin
(
ωt− 2

3π− δ
)
− ic sin

(
ωt + 2

3π− δ
)

(1)

Among them: 
ULa = udc sin(ωt− δ)

ULb = udc sin(ωt− 2
3π− δ)

ULc = udc sin(ωt + 2
3π− δ)

(2)

It can be seen from Equation (1) that the design of the controller is complex because the three-phase
current is time-varying. Therefore, the coordinate transformation method is used to transform the
mathematical model in the three-phase static coordinate system into the two-phase synchronous
rotating coordinate system. The transformation matrix is as follows:

P =
2
3


cosθ cos(θ− 2π/3) cos(θ+ 2π/3)
− sinθ − sin(θ− 2π/3) − sin(θ+ 2π/3)
√

2/2
√

2/2
√

2/2

 (3)

Equation (1) through coordinate transformation. The D-STATCOM is obtained at dq0. The mathematical
model in a rotating coordinate system [16]: L did

dt = ωLiq −Rid − usd + ULd

L
diq
dt = −ωLid −Riq − usq + ULq

(4)
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C
dudc
dt

=

√
3
2

(
cos δid + sin δiq

)
(5)

In Equations (4) and (5), usd and usq are the voltage components of the d-axis and q-axis on the
grid side after coordinate transformation; ULd and ULq are the voltage components of the D-STATCOM
system output voltage; id and iq are the d-axis and q-axis components of the D-STATCOM injection
grid side current, respectively. The δ between the grid voltage and the output voltage of the static var
compensator can be used to determine whether the system absorbs or emits reactive power.

3. Principle Analysis of Traditional LADR and Improved LADRC Structure Design

The LADRC consists of Linear State Error Feedback (LSEF), a Linear Extend State Observer
(LESO) and a Linear Tracking Differentiator (LTD) [17]. The LTD introduces a differential into the
controller to avoid the contradiction between overshoot and rapidity. It is the core of LADRC that the
total disturbance of the LESO observation system is estimated and compensated in real time. LSEF
synthesizes the interference estimation to create control signals. The traditional structure of the LADRC
is shown in Figure 2.
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3.1. Design of Traditional LADRC

It can be seen from Equation (4) that there are two first-order differential equations, and the
two-state variables are coupled to each other, which can be regarded as a defined generalized
disturbance of the controlled object, to achieve the purpose of decoupling. Because LADRC does not
need to rely on a specific mathematical model of the controlled object, the differential equation of the
controlled object can be written in the following general form:

.
y = −a0y + bu + w (6)

where w is an unknown external disturbance and b is the input control gain. Since b0 is known,
this equation can be written as:

.
y = −a0y + (b− b0)u + b0u + w (7)

where −a0y + (b− b0)u + w is the sum of the total unknown disturbance and the information of the
known object, recorded as f . x1 = y and x2 = f are selected as state variables. The transformation into
a continuous state is described as follows: .

x = Ax + Bu + E
.
f

y = Cx
(8)
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Among them: A =

[
0 1
0 0

]
, B =

[
b0

0

]
, E =

[
0
1

]
, C =

[
1 0

]
. The corresponding LESO is

established as follows: 
e = z1 − x1
.
z1 = z2 − β1e + b0u
.
z2 = −β2e

(9)

In Equation (9), z1 and z2 are state variables of the linear extended state observer, and the state
variable z1 tracks the output y of the system and z2 tracks total disturbance f . By selecting the
appropriate observer gain coefficients β1 and β2, the observer state variables can be used to observe the
system output y and the total disturbance f .

Design of the system disturbance compensation link:

u =
−z2 + u0

b0
(10)

If the estimation error of the observer is ignored, Equation (8) can be simplified as:

.
y = x2 + b0u = x2 + (−z2 + u0) ≈ u0 (11)

The response rate of the construction error:

u0 = kp(v− z1) (12)

v is the given reference input and kp is the proportional control coefficient. The closed-loop transfer
function of the controller is:

G(s) =
kp

s + kp
(13)

Let the controller bandwidth kp = ωc and configure observer poles at −ω0 [18]. For Equation (8),
it can be obtained:

λ(s) = s2 + β1s + β2 = (s +ω0)
2 (14)

where ω0 is the observer bandwidth, and the bandwidth gain obtained is:[
β1

β2

]
=

[
2ω0

ω2
0

]
(15)

At this point, the selection of b0, ω0 and ωc will affect the control performance of the traditional
LADRC. Equations (9), (10) and (12) constitute the structure block diagram of the traditional LADRC,
as shown in Figure 3.
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3.2. Design of Improved LADRC

The traditional LADRC controls the D-STATCOM by using the deviation between the given
value and the actual feedback value and makes the deviation close to zero to achieve the control
purpose. The key is that the LESO can observe the total disturbance from inside and outside the
system and compensate the controlled quantity according to the observation disturbance in real time.
Taking the d-axis of the D-STATCOM as an example, the controlled system is a first-order linear
differential equation, so the first-order LADRC is selected for improved analysis. For the traditional
LESO corresponding to the first-order system, refer to Equation (9).

It can be seen from the formula that the adjustment of z1 and z2 is achieved through the deviation
of e1, so that it can track the actual value of the state variable needed. In order to get a better control
effect in the traditional LESO it is important to make the z1 approach x1, which makes e1 approach zero
quickly. Secondly, z2 approaches x2. Once the order is disordered, the control function of the controller
fails. If z1 has tracked x1, that is, e1 has approached zero, then it becomes difficult to control z2 in
order. Because of this, the traditional LESO can only select a larger observer bandwidth to weaken the
feature that the deviation of e1 is small. To solve this contradiction, this paper proposes to redefine the
deviation quantity of control z2 [19]. The traditional LESO is rewritten as:{

z1 = e1 + x1

z2 =
.
z1 + β1e1 − b0u

(16)

From Equations (9) and (16), it can be obtained that:{
z1 = x1 + e1

z2 = x2 +
.
e1 + β1e1

(17)

It can be concluded that the deviation of control z2 and x2 becomes
.
e1 + β1e1. During the operation

of the LESO, each state variable and its derivative is continuously differentiable, so the derivatives
of e1 can be calculated. Therefore, this deviation is regarded as a new change rate of z2, and then an
improved LESO can be obtained: 

e1 = z1 − x1
.
z1 = z2 − β1e1 + b0u
.
z2 = −β2

( .
e1 + β1e1

) (18)

The poles of the improved LADRC observer are reconfigured and also configured to −ω0.
The observer matrix is rewritten:

( .
z1
.
z2

)
=

(
−β1 1

0 −β2

)(
z1

z2

)
+

(
b0 β1 0
−b0β2 0 β2

)
u
y
.
y

 (19)

Then
.
y is the derivative of the output variable y. The observer characteristic equation is:

λ1(s) = (s + β1)(s + β2) = (s +ω0)
2 (20)

Therefore: [
β1

β2

]
=

[
ω0

ω0

]
(21)

At this time, the overall structure control block diagram of the improved LADRC is as follows
Figure 4:
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At this point, the mathematical model of the improved LADRC is:
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z1 = z2 + bu0 − β1(z1 − y)

.
z2 = −β2

[( .
z1 −

.
y
)
+ β1(z1 − y)

]
u0 = kp(v− z1)

u = u0−z2
b0

(22)

3.3. Design of D-STATCOM Controller Based on Improved LADRC

3.3.1. Design of Current Inner Loop Controller

Taking the d-axis current as an example, it can be known from Equation (4) that:

did
dt

= ωiq −
1
L

Rid −
1
L

usd +
1
L

ULd (23)

The first-order improved LADRC is adopted to construct the state-space equation:
.
x1i = x2i + b0iui
.
x2i =

.
f i

yi = x1i

(24)

where x1i is the actual current id of the d-axis and x2i is a new variable of system expansion.
fi = −R

L id +ωiq − 1
L usd, b0 = 1

L , ui is the given current of the system id_re f . Then the LADRC of the
d-axis of the inner current loop is [20,21]:

.
z1i = z2i + b0iui − β1(z1i − y)

.
z2i = −β2

[( .
z1i −

.
y
)
+ β1(z1i − y)

]
u0i = kp

(
id_re f − z1i

)
ui =

u0i−z2i
b0i

(25)

3.3.2. Design of Voltage Outer Loop Controller

From Equation (5), we can get:

dudc
dt

=

√
3
2

1
C

(
cos δid + sin δiq

)
(26)
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The state equation of the outer voltage loop is constructed:
.
x1u = x2u + b0uuu
.
x2u =

.
f u

yu = x1u

(27)

At this time, x1u is the actual output voltage on the DC side of the D-STATCOM system and x2u is

a new variable of system expansion. fu =
√

3
2

sin δiq
C , b0 =

√
3
2

1
C , uu = udc_re f . The LADRC of the outer

loop is: 

.
z1u = z2u + b0uuu − β1(z1u − y)

.
z2i = −β2

[( .
z1u −

.
y
)
+ β1(z1u − y)

]
u0u = kp

(
udc_re f − z1u

)
uu = u0u−z2u

b0u

(28)

Now the double closed-loop LADRC for the D-STATCOM system is designed. The improved
LADRC is applied to the current inner loop and the voltage outer loop. The overall structure diagram
of the system is shown in Figure 5.
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4. Performance Index Analysis of Improved LADRC in Frequency Domain

It can be seen from Figure 3 that the first-order LADRC is a feedback system, and its essential
problem is the proof of system stability. The LESO is the core structure of Linear Active Disturbance
Rejection Control technology. Its function is to estimate and compensate the total disturbance by
observation. In this paper, the classical control principle is applied to analyze the immunity and
convergence of the LESO, and the immunity and stability of the LADRC is combined with the actual
D-STATCOM system.
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4.1. Disturbance Immunity Analysis of Improved LESO

The Laplace transform of Equation (19) can be obtained by:

Z1(s) =
ω2

0 + 2ω0s

(s +ω0)
2 Y(s) +

b0s

(s +ω0)
2 U(s) (29)

Z2(s) =
ω0s

s +ω0
Y(s) −

b0ω0

s +ω0
U(s) (30)

This section focuses on the effect of noise perturbation ηc of output variable y and control variable
ηr of output perturbation u on the improved LESO. The transfer function of the observed noise can be
obtained from Equation (29):

z1

ηc
=
ω2

0 + 2ω0s

(s +ω0)
2 (31)

ω0 = 10, 20, 30, 40 are set, respectively, to obtain the Bode plot curve of this transfer, as shown in
Figure 6:
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According to its frequency domain characteristic curve, it can be concluded that with the increase
in ω0, the system bandwidth becomes larger and the tracking speed increases accordingly.

According to Equation (29), the input disturbance transfer function is as follows:

z1

ηr
=

b0s

(s +ω0)
2 (32)

b = 100 and ω0 = 10, 20, 30, 40 are set and the frequency domain characteristic curve of the disturbance
transfer function at the input can be obtained.

It can be seen that, compared with Figure 6, with the increase in ω0, the disturbance phase of
the tracking input in Figure 7 becomes increasingly delayed, but the high-frequency gain is almost
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unchanged. It can be seen that the system has a good inhibition effect on input disturbance. From the
above analysis, it can be seen that the improved LESO has good disturbance resistance and strong
robustness for the observed disturbance and the actual input disturbance.
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4.2. Convergence and Error Estimation of Improved LESO

E1(s) = Z1(s) −Y(s) are used in Equation (29) to get:

E1(s) = −
s2

(s +ω0)
2 Y(s) +

b0s

(s +ω0)
2 U(s) (33)

From f = x2 =
.
y− b0u we can get:

F(s) = sY(s) − b0U(s) (34)

In the Laplace transformation formula, F(s) is f . In the same way, E2(s) = Z2(s)− F(s) is used to obtain:

E2(s) = −
s2

s +ω0
Y(s) +

b0s
s +ω0

U(s) (35)

For the convenience of analysis, Y(s) and U(s) are all taken as step signals, namely: Y(s) =

U(s) = K
s . The steady-state error of the system can be obtained as follows:

Es1(s) = lim
s→0

sE1(s) = 0

Es2(s) = lim
s→0

sE2(s) = 0
(36)

The above formula shows that the LESO has good convergence, and it can guarantee the estimation
of state variables without difference and realize the disturbance rejection and compensation of the
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controller to the total disturbance. In the following, the transient process is analyzed in the time
domain by the undetermined coefficient method. When b0 = 0, it can be obtained:

Z1(s) = K(
1
s
−

1
s +ω0

+
ω0

(s +ω0)
2 ) (37)

The inverse Laplace transform of the above equation is:

z1(t) = K −K(1−ω0t)e−ω0t (t ≥ 0) (38)

The maximum value of tmax = 2/ω0 is found and used in Equation (39) to get:

z1max = K
(
1 + e−2

)
≈ 1.135K (39)

Since the output signal y(t) is a step signal, it suddenly changes at zero time. At this time,
the estimation error e no longer inclines to zero, and the maximum error can reach 13.5%. However,
there is a delay in the power system. Because the output of the inertial D-STATCOM does not change
abruptly throughout the power network, the error of state variable estimation by this improved LESO
approximates zero when time t tends to infinity. Therefore, the estimation and tracking of the state
variable of the improved LESO does not have serious errors.

4.3. Performance Analysis of Improved LADRC Combined with D-STATCOM System

4.3.1. The System Structure of Improved LADRC

According to Equation (22), it can be concluded that:

u =
ωc(v− z1) − z2

b0
(40)

By Laplace transformation of the above formula, Equations (29) and (30) obtain:

U(s) =
1
b0
·C1(s) · [ωcV(s) −C2(s)Y(s)] (41)

Among them:

C1(s) =
(s +ω0)

2

s2 + (ω0 +ωc)s
(42)

C2(s) =
ω0s2 +

(
2ωcω0 +ω2

0

)
s +ω2

0ωc

(s +ω0)
2 (43)

According to Equation (9), the frequency domain model of the controlled object is:

y =
f + b0u

s
(44)

At this time, the simplified block diagram of the system can be designed by Equations (41) and
(44) as follows Figure 8:
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Figure 8. Simplified block diagram of the improved LADRC system.

At this point, the closed-loop transfer function of the system is:

Gc1(s) =
ωcC1(s)G1(s)/b0

1 + C1(s)G1(s)C2(s)/b0
(45)

where G(s) is the transfer function of the controlled object.

4.3.2. Analysis of Anti-Interference Performance of Improved LADRC in D-STATCOM System

Taking the d-axis of the current loop as an example, the frequency domain model of the
D-STATCOM is presented in reference [22], and then, combined with the overall simplified model of
the control system of Equation (45), the overall structure of the current loop of the D-STATCOM system
shown in Figure 9, which is controlled by the improved LADRC, is obtained:
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Figure 9. Improved LADRC-controlled D-STATCOM system structure.

At this time, the transfer function of the whole controlled system is:

id = M1(s)id_re f −M2(s)usd (46)

where id is the actual output current of the D-STATCOM system; id_re f is the given current value of the
system input; M1 is the transfer function between the actual current output of the system and the given
value of the system and M2 is the transfer function of the system disturbance term. Among them:

M1(s) =
ωcC1(s)

b0(Ls + R) + C1(s)C2(s)
(47)

M2(s) =
b0

b0(Ls + R) + C1(s)C2(s)
(48)

From Equation (46), it can be seen that the modified LADRC disturbance term, in combination
with the D-STATCOM system, is only related to ω0 and ωc. Within the same system, the same ω0 and
ωc are identified. Figure 10 is a graph comparing the transfer function amplitude of disturbance terms
between the improved LADRC and the traditional LADRC.
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It can be seen from Figure 10 that the disturbance gain of the improved LADRC in medium- and
low-frequency bands is significantly lower than that of the traditional LADRC, and the disturbance
rejection ability of the improved LADRC is enhanced. It can be seen from the phase-frequency
characteristics that the improved LADRC lags behind the traditional LADRC in phase, and the
disturbance suppression ability is increased [23].

4.3.3. Stability Analysis of Improved LADRC in D-STATCOM System

According to Equation (46), the transfer function of the D-STATCOM system input items can be
obtained:

id =
ωc(s +ω0)

2

a1s3 + a2s2 + a3s + a4
id_re f (49)

Among them: 
a1 = Lb0

a2 = ω0 + Rb0 + Lb0(ω0 +ωc)

a3 = ω2
0 + (2ωc + Rb0)ω0 + Rb0ωc

a4 = ω2
0ωc

(50)

Observer bandwidth ω0 and controller bandwidth ωc are positive, and the D-STATCOM system
inductance L is positive. It is easy to calculate that a1 a2 a3 a4 are positive. Then, according to the
stability criterion of Lynard–Chiapart algebra, the necessary and sufficient conditions for system
stability are:

∆ =

∣∣∣∣∣∣∣∣∣
a2 a4 0
a1 a3 0
0 a2 a4

∣∣∣∣∣∣∣∣∣ = a4(a3a2 − a1a4) (51)

According to the above equation, it can be seen that the third-order Hervitz discriminant of the
system is greater than zero, namely ∆ > 0. So, the control system is stable [24].
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5. Simulation and Experiment Analysis

In order to verify the effectiveness of the improved LADRC strategy described in this article,
the article builds on the D-STATCOM simulation model shown in Figure 1 based on MATLAB and
Simulink simulation software. When the D-STATCOM is used for reactive power compensation,
the traditional LADRC control and the LADRC double closed-loop control mentioned in this article
are utilized in three aspects: DC side voltage stability and harmonic distortion rate, grid side voltage
drop reactive current tracking and power generated by the D-STATCOM during system load and load
reduction. The compensation performance of the two different controllers is compared and analyzed.
System parameters can be found in Appendix A.

5.1. Comparative Analysis of Steady-State Voltage on DC Side and Harmonic Distortion Rate

Given that the initial voltage of the system is 700 V, it can be seen from Figure 11 that the DC
side voltage curve of the PWM converter controlled by the traditional LADRC has overshoot and
fluctuation, while the DC side voltage curve controlled by the improved LADRC almost reaches the
stable value without overshoot and oscillation.
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Figure 11. DC side voltage curve when using different controllers. (a) DC side voltage curve when
using traditional LADRC, (b) DC side voltage curve when using improved LADRC. Amplitude phase
diagram of improved LADRC and traditional LADRC.

It can be seen from Figure 12 that the harmonic distortion rate of the grid-connected current
is greatly reduced when the improved LADRC control is adopted, and the harmonic content of the
grid-connected current is reduced from 3.67% to 1.54%. The simulation results show that the improved
LADRC plays a significant role in restraining the harmonic distortion rate of the grid current and
improving the power quality of the grid, and also shows the effectiveness of the improved LADRC in
controlling the D-STATCOM.
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5.2. Comparative Analysis of Reactive Current Tracking Performance

To observe the tracking ability of the reactive current intuitively, as shown in Figure 13, the voltage
balance drop of the system is set at 0.3 s, and the network voltage drops to 50% of the original value
and returns to the original voltage steady state at 0.7 s. It can be seen from Figure 14 that when the
improved LADRC control is applied, the actual reactive current iq can track iq_re f almost without a
difference and without lag. Compared with the traditional LADRC control, the improved LADRC
has less fluctuation in tracking reactive current when measuring voltage drop, which proves that the
improved LADRC has strong tracking ability.
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5.3. Comparison and Analysis of the Output Power of D-STATCOM Under Load Change

The system is set to load 50% in 0.3 s and restore the original load in 0.7 s, which is taken as the
system disturbance. It can be seen from Figure 15a that the adjustment time of traditional LADRC
control is relatively long. The reactive power amplitude of the D-STATCOM fluctuates greatly, and the
active power of the system greatly overshoots when the system is underloaded. As shown in Figure 15b,
the improved LADRC has a fast adjustment time, and the reactive power issued by the D-STATCOM
has almost no fluctuation when the load of the system is loaded or unloaded. The comparison analysis
shows that the improved LADRC has stronger disturbance immunity.Energies 2020, 13, x FOR PEER REVIEW 18 of 21 
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Figure 15. The power generated by the D-STATCOM system. (a) The power generated by the
D-STATCOM system in traditional LADRC control, (b) the power generated by the D-STATCOM
system in improved LADRC control.

5.4. Experimental Verification

The improved LADRC control method described in this paper is applied to a laboratory 20 kVAr
experimental device. The available power factor values obtained from the control panel are shown in
Figure 16b after curve fitting. It can be seen from the power factor fitting that the power factor of the
system can quickly reach 1 and remain stable. This verifies the effectiveness of the improved LADRC.
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6. Conclusions

In this paper, aiming at the nonlinear, multivariable, and strong coupling characteristics of the
D-STATCOM, an improved LADRC control strategy is proposed to apply to the inner current loop
and outer voltage loop of the D-STATCOM system. The key to the performance of the Linear Active
Disturbance Rejection Controller is whether the extended state observer can accurately estimate the
state variables of the system. The innovation of this paper is to propose a new deviation quantity to
control the state variable of the LESO, to improve the control performance of the whole control system.
The state variables of the traditional LESO only depend on a single deviation control, which causes
the selected controller bandwidth and observer bandwidth to be too large and affects the dynamic
performance of the controller. At the same time, it may amplify high-frequency noise, which makes the
entire control system prone to high-frequency oscillations. Therefore, the next task of our research team
is to resolve the contradiction between the controller and its sensitivity to noise, as well as physical
experiments to support the theoretical analysis.

The specific work of this paper is as follows: Firstly, the mathematical model of the D-STATCOM
is established, then a double closed-loop improved LADRC is proposed and designed by analyzing the
traditional LADRC and the stability and anti-interference characteristics of the improved LADRC in
the frequency domain in combination with the actual system. Finally, the simulation results show that
the improved LADRC control has a faster and more stable dynamic performance than the traditional
LADRC control when disturbed. Therefore, the improved LADRC can better solve the technical
problems brought about by the D-STATCOM system’s total uncertain interference about D-STATCOM
control and has good engineering practice value.
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Abbreviations

Acronym Definition
LADRC Linear Active Disturbance Rejection Control
LESO Linear Extended State Observer
LSEF Linear State Error Feedback
LTD Linear Tracking Differentiator
SVPWM Space Vector Pulse Width Modulation
DC Direct Current

Appendix A

Table A1. D-STATCOM system parameters.

Parameter Value Unit

D-STATCOM system rated capacity 20 kvar
Base voltage 380 V

Base frequency f 50 Hz
DC side voltage udc 800 V

DC side capacitance C 3000 µF
Filter output inductance L 1 mH

Grid side impedance R 0.5 Ω

Table A2. Improved LADRC parameters.

Improved LADRC Parameters Controller Bandwidth Observer Bandwidth Control Gain

Numerical value rad/s 10,000 5000 1000
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