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Abstract: The identification of underground formation lithology can serve as a basis for petroleum
exploration and development. This study integrates Extreme Gradient Boosting (XGBoost) with
Bayesian Optimization (BO) for formation lithology identification and comprehensively evaluated the
performance of the proposed classifier based on the metrics of the confusion matrix, precision, recall,
F1-score and the area under the receiver operating characteristic curve (AUC). The data of this study
are derived from Daniudui gas field and the Hangjinqi gas field, which includes 2153 samples with
known lithology facies class with each sample having seven measured properties (well log curves),
and corresponding depth. The results show that BO significantly improves parameter optimization
efficiency. The AUC values of the test sets of the two gas fields are 0.968 and 0.987, respectively,
indicating that the proposed method has very high generalization performance. Additionally,
we compare the proposed algorithm with Gradient Tree Boosting-Differential Evolution (GTB-DE)
using the same dataset. The results demonstrated that the average of precision, recall and F1 score
of the proposed method are respectively 4.85%, 5.7%, 3.25% greater than GTB-ED. The proposed
XGBoost-BO ensemble model can automate the procedure of lithology identification, and it may also
be used in the prediction of other reservoir properties.

Keywords: Extreme Gradient Boosting; Bayesian Optimization; formation lithology identification

1. Introduction

Lithology identification plays a crucial role in the exploration of oil and gas reservoirs, reservoir
modelling, drilling planning and well completion management. Lithology classification is the basis
of reservoir characterization and geological analysis. It is possible to generate lithological patterns
after being informed of lithology. Such patterns can be applied in simulators for the purpose of
understanding the potentiality of an oil field. Apart from the significance in geological studies, lithology
identification also has practical value in enhanced oil recovery processes and well planning [1–4].

Many researches have been done on lithology identification, which is mainly divided into two
parts: direct and indirect. The direct methods to determine the lithology are to make inferences from
core analysis and drilling cuttings [5,6]. However, it is expensive, time-consuming and not always
reliable since different geologists may provide different interpretations [7]. Compared with the direct
method, using well logs to identify lithology is a universal indirect method, which is more accurate,
effective and economical. Until now, there have been many lithology identification methods associated
with logs, including the cross plotting method, traditional statistical analysis and several machine
learning methods [8–10]. The cross plotting takes a considerable amount of time of an experienced
analyst, especially in the heterogeneous reservoir. Due to the high dimensional, non-linear and
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noisy characteristics of well log data, traditional statistical methods, such as histogram plotting and
multivariable statistical analysis, are difficult to identify lithology accurately [11]. Therefore, robust,
efficient and accurate predictive techniques are required in the formation lithology identification.
At present, machine learning is becoming a vital instrument to predict lithology with well log data.
Machine learning can analyze the high dimensional and non-liner well log data and make the process
of the lithology identification more efficient and intelligent.

Several machine learning techniques have been introduced to lithology identification. They are
mainly divided into unsupervised learning and supervised learning. A variety of unsupervised
learning approaches to the problem of lithology prediction based on well log data have been applied
over the past few decades. Konaté et al. combined cross-plot and principal component analysis (PCA)
methods to extract the critical information of lithology identification [12]. Yang et al. performed a
synergetic wavelet transform and modified K-means clustering techniques in well logs to classify
lithology [13]. Bhattacharya et al. applied Multi-Resolution Graph-based Clustering to reduce the
uncertainty of propagating single-well based lithology prediction [14]. Shen et al. used wavelet
analysis and PCA to handle lithology identification [15]. Unsupervised learning can classify lithology
based on the characteristics of the data, but the accuracy is usually lower than supervised learning.
It can be better as an exploratory technique if the geology is unknown. In recent years, supervised
learning methods are frequently prescribed for lithology identification. Ren et al. applied artificial
neural networks (ANN) to calculate the lithology probabilities [16]. Wang et al. applied support vector
machine (SVM) and ANN in recognizing shale lithology based on well conventional logs and suggested
that SVM is superior to ANN [17]. Sun et al. proposed that Random Forest (RF) had higher accuracy
and consumed less time than SVM [18]. Xie et al. comprehensively compared the performance of
five machine learning methods and concluded that Gradient Tree Boosting (GTB) and RF had better
accuracy than the other three methods [19].

It is worth noting that RF and GTB belong to ensemble methods, and they are the heated topic in
the field of supervised learning. However, a more efficient ensemble method called Extreme Gradient
Boosting (XGBoost) has rarely been reported in lithology recognition. Moreover, the performance of
data-driven methods depend on the parameters, and the values of parameters should be adjusted to
acquire proper estimations. Grid search is the most widely used parameter optimization algorithm
nowadays, but this method relies on the optimization by the traversing of all parameters, which costs
a lot in the calculation process. Besides, grid search needs to sample in multiple same internals for
continuous data, where the global optimum cannot always be achieved [20]. To deal with this problem,
the Bayesian Optimization algorithm (BO), an emerging optimization algorithm based on probability
distribution in recent years, is introduced.

BO can obtain the optimal solution of a complex objective function in a few evaluations.
Ghahramani et al. pointed out that BO is one of the most advanced, hopeful techniques in probabilistic
machine learning and artificial intelligence fields [21].

This study proposes XGBoost classifier combined with BO algorithm for formation lithology
identification. Simultaneously, in order to more comprehensively evaluate the performance of our
learning model, the effect of lithology identification, the performance of the algorithm is evaluated
based on the metrics of classification accuracy, confusion matrix, precision, recall, F1-score and the area
under the receiver operating characteristic curve (AUC) have been used for estimation. Additionally,
we compare the proposed algorithm with those in the literature using the same dataset, which are GTB
and GTB with ED.

2. Materials and Methods

2.1. Studied Data

The studied area is located in the Ordos Basin in the central west of China (Figure 1), which is the
main producing area of natural gas in China.
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time logging data captured by sensors are noisy, which causes a certain particular deviation in the 
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algorithm.  
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Figure 1. Locations of the study area and the studied sections.

The relevant research data are collected from two gas fields in Ordos Basin, namely, Daniudi
gas field (DGF) and Hangjinqi gas field (HGF) [19]. The dataset we used is log data from twelve
wells (with 2153 examples) that have been labelled with a lithology type based on observation of core.
This dataset consists of a set of eight predictor variables and a lithology class for each example vector.
Predictor variables include seven from well log measurements and corresponding depth. The seven
log properties include: acoustic log (AC), caliper log (CAL), gamma ray log (GR), deep latero log
(LLD), shallow latero log (LLS), density log (DEN) and compensated neutron (CNL). The sampling
frequency of well logs is 0.125 m.

Due to the complex geological structure, the tectonic development of the target layer and real-time
logging data captured by sensors are noisy, which causes a certain particular deviation in the measurement
results. Therefore, data preprocessing is required before using a machine learning algorithm.

Using the Tukey’s method to detect outliers is a standard method of noise reduction. In this method,
the sequence has been divided into four parts, and then it is required to find the first quartiles Q1 and
third quartiles Q3 [22]. The interquartile range (IQR) is calculated by Equation (1). Lower Inner Fence
(LIF) and Upper Inner Fence (UIF) have been calculated through Equations (2) and (3). All the values
outside of LIF and UIF are considered as outliers and should be eliminated. The data is shown in Table 1.

IQR = 1.5× (Q3 −Q1) (1)

LIF = Q1 − IQR (2)

UIF = Q3 + IQR (3)

The core analyses report that the lithology classes are composed of clastic rocks, carbonate rock
(CR) and coal (C). According to the detrital grain size classification of Chinese oil industry [23],
the clastic rocks in this research are divided into six types, namely, pebbly sandstone (PS) (>1 mm grain
size), coarse sandstone (CS) (0.5–1 mm grain size), medium sandstone (MS) (0.25–0.5 mm grain size),
fine sandstone (FS) (0.01–0.25 mm grain size), siltstone (S) (0.005–0.05 mm grain size), and mudstone
(M) (<0.005 mm grain size). The number of samples in each class for the research areas could be
presented, as shown in Figure 2.
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Table 1. Statistical details about the well logs in this article.

Parameter Mean Min Q1 Median Q3 Max IQR

AC (µs/m) 238.99 159 214.04 232.3 251.92 608.6 56.82
CAL (cm) 25.04 21.39 22.85 24.28 26.28 44.78 5.14
GR (API) 93.03 24.27 63.58 83.71 118.93 771.34 83.03

LLD (Ωm) 931.53 5.35 14.50 31.85 73.59 99,990.00 88.64
LLS (Ωm) 291.73 5.54 15.28 32.56 71.43 26,057.18 84.23

DEN (g/cm3) 2.46 1.21 2.42 2.53 2.601 2.97 0.27
CNL (%) 21.48 0.4 14.24 17.96 26.27 92.77 18.05
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Figure 2. The number of samples in each class for the research areas: (a) The distribution of lithologies
in the Daniudi gas field (DGF); (b) the distribution of lithologies in the Hangjinqi gas field (HGF).

2.2. Methods

2.2.1. Extreme Gradient Boosting

XGBoost algorithm is a lifting algorithm that generates multiple weak learners by continuous
residual fitting, which belongs to a kind of ensemble learning. The accumulation of weak learners will
produce a strong one in the end. In the optimizing process, XGBoost uses Taylor expansion to introduce
the information of the second derivative as loss functions, so the model has a faster convergence speed.
Besides, to prevent overfitting, XGBoost added regularization terms in loss functions to inhibit the
complexity of the model [24].

Assuming D =
{
(xi, yi)

}
(|D|) = n, xi ∈ Rd, yi ∈ R) is a data integration, including n samples with

each sample having d eigenvalues, whereas xi represents the value of sample i. The classification and
regression tree (CART) is selected as the base model, then the integrated model of XGBoost composes k
(number of trees) base models into an addition expression to predict the final result [25].

ŷi =
K∑

k=1

fk(xi) (4)

The prediction precision of the model is determined together by deviation and variance, while the
loss function can reflect the deviation of the model. To control the variance and simplify the model,
regularization terms are added to inhibit the model complexity. Together with the loss functions of the
model, objective functions of XGBoost functions are constituted as following. Obj(t) =

n∑
i=1

l
(
yi, ŷ(t−1)

i + ft(xi)
)
+

∑
k

Ω( fk)

Ω( f ) = γT + 1
2λ‖w‖

2
(5)

where Obj(t) is the objective function of tree t, ŷ(t−1)
i is the summation of the output values of the

previous t − 1 trees, ft(xi) is the output value of tree t, l is the differentiable convex loss function to
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balance the prediction value ŷi and true value yi. Ω is the penalty term representing model complexity,
γ is the regularization parameter representing the leaf number, λ is the regularization parameter
representing the leaf weights and w is the value of a leaf node. Define I j =

{
i
∣∣∣q(xi) = j

}
as the sample

set of leaf set j, then expand the loss functions with Taylor series at ŷ(t−1)
i . Define gi and hi as the first

derivative and second derivative of Taylor expansions, respectively, then remove the constant term, so
the loss function after t iterations becomes

Obj(t) =
T∑

j=1


∑

i∈Ii

gi

w j +
1
2

∑
ieli

hi + λ

w2
j

+ γT (6)

where w j is the weight of leaf node j. Define Gi =
∑
i∈l j

gi and Hi =
∑
i∈l j

hi then substitute them into

Equation (6), so the objective function can be simplified as

Obj(t) =
T∑

j=1

[
Giw j +

1
2
(Hi + λ)w2

j

]
+ γT (7)

In the above equation, leaf node w j is an uncertain value, so take the first derivative of objective
function Obj(t) with respect to w j and the optimal value w∗j of leaf node j can be obtained.

w∗j = −
Gi

Hi + λ
(8)

Substitute w∗j back into the objective function, so the minimum value of Obj(t) can be calculated as

Obj(t) = −
1
2

T∑
j=1

G2
j

H j + λ
+ γT (9)

2.2.2. Bayesian Optimization

Unlike other optimization algorithms, BO constructs a probability model of functions to be
optimized and utilizes the model to determine next point that requires evaluation. The algorithm
assumes a collection function according to the prior distribution, while the new sampling sites are
used to test the information of objective functions to update the prior distribution. Then most possible
locations for the global values (given by posterior distribution) are tested. It can be seen that although
BO algorithm needs to operate more iterations to confirm that next sampling point, fewer evaluations
are required to find the minimum of a complex convex function [26].

There are two important procedures when operating BO algorithm. First, a transcendental function
needs to be selected to show the distribution hypothesis of the optimized function. This procedure
usually utilizes the Gaussian process, which is highly flexible and trackable. Then, an acquisition
function is required to construct a utility function from the model posterior distribution, so next point
could be determined to evaluate.

Gaussian Process refers to a set of random variables. In this paper, it represents different parameter
combinations in the XGBoost algorithm, whereas the linear combinations with any limited samples
have a joint Gaussian Process [27].

f (x) ∼ gp(m(x), k(x, x′)) (10)
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where m(x)= E( f (x)), f (x) is the mathematical expectation, k(x, x′) is the covariance function of x and
MAE is the mean absolute error of f (x), the formula of which is

MAE(X, H) =
1
m

m∑
i=1

∣∣∣∣h(xi
)
− yi

∣∣∣∣ (11)

In the formula, h
(
xi
)

refers to the predicted output of XGBoost and yi represents the true error
when calculating the result under current influence factors. One of the characteristics of Gaussian
Process is every x related with f (x), while for a set X = {x1, x2, . . . x1}, there is a joint Gaussian Process
satisfying the formula below

N(0, K)

K =


k(x1, x1) · · · k(x1, xt)

...
. . .

...
k(xt, x1) · · · k(xt, xt)

 (12)

If a pair of known samples
{
x1:, f1:t

}
is added into the new sample xt+1, the joint Gaussian Process

expresses as [
f1:t
ft+1

]
∼ N

(
0,

[
K k
k> k(xt+1, xt+1)

])
(13)

k = [k(xt+1, x1)k(xt+2, x2) . . . (xt+1, xt)] (14)

Calculate the posterior probability of ft+1 with Equations (13) and (14) as

P( ft+1
∣∣∣D1:t, xt+1) = N

(
ut(xt+1), δ2

t (xt+1)
)

(15)

ut(xt+1) = kTK−1 f1:t (16)

δ2
t (xt+1) = k(xt+1, Xt+1) − kTK−1k (17)

After inputting the sample combination points into the Gaussian model, so the mean value and
variance of f (x) can be gained. If the sample points increase gradually, the gap between posterior
probability and true value of f (x) will be narrowed a lot. The target of defining an extract function is
to extract sampling points in parameter space with purposes, while there are two directions to extract
those points [28].

(1) Explore. Select unevaluated parameter combinations as much as possible to avoid local optimal
values, so the posterior probability of f (x) will reach the true value of f (x).

(2) Exploit. Based on the optimal values found, after searching the parameters around, the global
optimum can be found faster.

Probability of Improvement (POI) function is chosen as the acquisition function. The basic idea
of this method is to maximize the probability when the point to be selected next step improves the
maximum. If the current found maximum is f (x+), then the extract function is listed as below:

PI(x) = Φ
(

u(x) − f (x+) − ε
δ(x)

)
(18)

In which Φ refers to the normal cumulative distribution function, which is also called maximum
probability of improvement (MPI).

From Formula (18) it can be seen that the function turns to select the parameter combinations
around the known optimal values. To make the algorithm explore more unknown space as much as
possible, a trade-off function is added. In this case, it can be avoided to search the optimal values near
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to f (x+) and the coefficient ε can be altered dynamically to control the direction to find the optimal
values: Either in the explore direction or exploit direction.

BO algorithm aims to find the x in the set s and make the unknown function f (x) reach the global
maximum or minimum. The selection of x follows

X∗ = argx∈smax f (x) (19)

2.2.3. Details of Implementation

The dataset were randomly split into a training set and test set through the cross-validation.
The iteration process of our proposed ensemble algorithm is shown in Figure 3.
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The first step is to randomly generate initialization points based on the number and range of
XGBoost hyperparameters. The next step is to input the initialization parameters into the Gaussian
Process and modify them. Then we use the extract function to select the combined parameters to be
evaluated from the modified Gaussian process. If the error of the newly chosen combined parameters
meets the target requirements, the algorithm execution is terminated, and the corresponding combined
parameters are output. We use this set of parameters to obtain the trained classifier and evaluate the
classifier through the test set. If the target requirements are not met, modify the Gaussian Process until
the set conditions are satisfied.

3. Performance Measure

Not only does the generalization performance evaluation of this lithology classifier requires an
effective and feasible experimental estimation method, but also a standard to measure the generalization
ability of the model, which is the performance measurement. The performance of each task was
measured using different metrics, which depends on the task. When comparing the capabilities of
varying lithology classifiers, different performance metrics often leads to different judgment results.

In order to more comprehensively evaluate the effect of performance of our model, we used
the following metrics: accuracy, confusion matrix, precision, recall, F1-score, and the area under the
receiver operating characteristic curve.

The accuracy, given by Equation (20), measures the percentage of the correct classification by
comparing the predicted classes with those classified by the manual method.

1
N

N∑
i=1

I( f (xi) = yi) (20)

where f (xi) is the predicted lithology classes of test samples and yi is the correct classification of this
sample. If f (xi) = y then I = 1, otherwise I = 0.
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According to the combination of exact lithology classes and algorithm prediction classes, the sample
is divided into four cases: true positive (TP), false positive (FP), true negative (TN), and false
negative (FN).

The recall is defined in Equation (21).

recall =
TP

TP + FN
(21)

The recall indicates that the percentage of true positive samples that are classified as positive.
The precision is defined in Equation (22).

precision =
TP

TP + FP
(22)

The precision measures the proportion of actual positive samples among the samples that are
predicted to be positive.

The F1 score is the harmonic mean of Recall and Precision. The F1 score can be calculated as:

F1 =
2TP

2TP + FP + FN
(23)

Receiver Operating Characteristics (ROC) curve is used to evaluate generalization performance,
and the area of the curve is AUC. The ROC curve is acquired by the true positive rate (TPR) and the
false positive rate (FPR) at assorted discrimination levels [29]. The TPR and FPR can be written as (24)
and (25).

TPR =
TP

TP + FN
(24)

FPR =
FP

TN + FP
(25)

The AUC value varies from 0.5 to 1, and there are different standards in various situations.
In medical diagnosis, a very high AUC (0.95 or higher) is usually required, while other domains
consider that 0.7 AUC value has a strong effect [30].

4. Results and Discussion

This section comprehensively evaluates the lithology identification results of the XGBoost
combined with BO. At first, the search process and BO results of the best parameters value set for
XGBoost are presented. Furthermore, the evaluation matrix that contains accuracy, confusion matrix,
precision, recall, F1-score and AUC is assessed over the model trained with the best hyperparameter in
XGBoost classifier. Finally, we compare our studies with previous academics’ studies in two areas
using the same data.

4.1. Tuning Process

The optimum parameter settings used in BO for XGBoost model selection are shown in Table 2.
The Number of estimators were randomly chosen in the interval [10, 100]. The Max depth was

randomly chosen in the interval [1, 20]. The Learning rate was chosen from a uniform distribution
ranging from 1 × 10−3 to 5 × 10−1. The Subsample was randomly chosen in the interval [0.1, 1]. The Min
child weight was randomly chosen in the interval [1, 10]. The Gamma was randomly chosen in the
interval [0.1, 0.6]. The Colsample bytree was randomly chosen in the interval [0.5, 1]. The Reg alpha
was chosen from a uniform distribution ranging from 1 × 10−5 to 1 × 10−2. The objective function is
accuracy. Moreover, the max eval of the optimization function is set as 300. We use the data from DGF
and HGF to determine the parameters for each gas field. The tuned optimum parameters are shown in
Table 2.
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Table 2. Tuned parameters for XGBoost and tuned optimum parameter value in the DFG and HGF.

Tuned Parameters Search Range Optimum Value in the DGF Optimum Value in the HGF

Number of estimators 10–1000 978 18
Max depth 1–20 18 10

Learning rate 1 × 10−3–5 × −1 0.08 0.14
Subsample 0.1–1 0.93 0.77

Min child weight 1–10 3.9 1
Gamma 0.1–0.6 0.35 0.11

Colsample bytree 0.5–1 0.51 0.52
Reg alpha 1 × 10−5–1 × 10−2 0.003 0.008

To appraise the efficiency of the proposed approach, consider four levels for each one of the
eight parameters. The grid search technique generates 48 = 65,536 candidate settings, while the
BO generations require 300 model evaluations, representing 0.45% of the budget of the grid search
technique. In order to reflect the Bayesian Optimization process more intuitively, taking HGF data as
an example, the XGBoost algorithm parameters tuning process by BO are shown in Figure 4.

BO makes full use of the previous sample point’s information during parameters tuning process.
The eight parameters find their optimum value with relatively fewer iterations. The search range of
Max Depth is relatively uniform, due to a narrow range of parameters. The first half of the search
range of the Number of Estimators is relatively dispersed, while the last half is more concentrated.
The search range of Learning Rate is mainly from 0 to 0.3. Moreover, the search range of subsample is
mainly from 0.8 to 1, while that of Min Child Weight is from 0 to 0.5. The search range of Gamma is
relatively uniform, while that of Colsample bytree mainly focuses between 0.5 and 0.7. The search in
the boundary is less for Reg alpha. Generally, Bo initiates each parameter in the whole range. After
acquiring more feedbacks from objective function as times goes by, the search range mainly focuses on
the possible optimum range. Although it will search in the whole space, it is not as frequent as before.
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4.2. Evaluation Matrix

To acquire both steady and reliable results, learning dataset has been divided into a training set
and test set using cross-validation, and then take the average of 10 independent runs as the final results.
Then we averaged the scores, including precision, recall and F1-score to evaluate the performances
of the model. Tables 3 and 4 show the scores of each lithology class for the model in the DGF and
HGF, respectively.

Table 3. Performance matrix of each lithology class for 5-fold-cross-validation averaged over ten runs
in the DGF.

Class Precision Recall F1 Score

PS 0.802 0.789 0.800
CS 0.603 0.648 0.622
FS 0.985 0.737 0.843
M 0.799 0.923 0.854

MS 0.711 0.809 0.760
C 0.999 0.935 0.961
S 0.992 0.928 0.954

CR 1 0.920 0.955
avg 0.861 0.836 0.843

Tables 3 and 4 present the mean for precision, recall and F1 produced by XGBoost combined with
BO in the DGF and HGF, respectively. Overall, the results of HGF show better performance compared
with DGF. This may be related to the lithology categories. Although the geological conditions of the
two gas fields are similar, compared with the DGF, the HGF dataset does not have CR class instances,
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which may increase the risk of misclassification of lithology in the DGF. In addition, the classification of
lithology C is the best in both gas fields. The main reason is that the lithology of C has a significant gap
compared with other lithologies. At the same time, the CS lithology classification effect is the worst in
the DGF, but has better performance in the HGF. This may be because the number of CS samples in the
HGF is about twice that of DGF, and the XGBoost algorithm can learn more features in the samples,
thus, enhancing the accuracy of the results.

Table 4. Performance matrix of each lithology class for 5-fold-cross-validation averaged over ten runs
in the HGF.

Class Precision Recall F1 Score

PS 0.862 0.919 0.889
CS 0.893 0.900 0.887
FS 0.894 0.875 0.897
M 0.936 0.932 0.934

MS 0.909 0.867 0.888
C 0.982 0.979 0.969
S 0.976 0.816 0.888

avg 0.922 0.898 0.908

Figure 5 presents the confusion matrix of the lithologic classes by XGBoost combined with BO in
the DGF and HGF. Compared predicted classes with true exact classed by confusion matrix, it can
demonstrate the misclassified lithology types.Energies 2020, 13, x 12 of 16 
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test dataset.

In the case of the DGF test set, the accuracy of M, C, and CR is highest, which probably because
the lithology difference is significant compared with others. Four percent of M were misclassified as
CR, due to the deposition environment of lake sediments. The type of M is carbonate-like mud, which
contains a portion of CaCO3, resulting in misclassification of CR. Besides, there is more probability
of misclassification between PS, CS, FS, MS, and S. It is likely that the grain sizes of sandstone are
challenging to determine, and human error is involved in the interpretation of lithology.

Overall, for the HGF test set, the accuracy of M, and C classes is higher than 90%. Especially the
accuracy rate of class C is up to 100%. This may have been caused by the quite different lithology
properties in C and M compared to other classes. Mistakes are also mainly concentrated in sandstone
classes. Although there are significant variance between M and other lithologies, it still has 6% of M
misclassified as PS. This is likely because the leaning sample is imbalanced, the PS classes have the
highest proportion in the HGF. There is no misclassification in the DGF since the number of samples in
M and PS is very close.
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In order to evaluate the generalization performance of the proposed algorithm, the ROC curve is
used here to evaluate the expected generalization performance, as shown in Figure 6.
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Figure 6. ROC curves for the lithology identification based on the XGB combined with BO in the DGF
and HGF; AUC, area under the ROC curve.

XGBoost can be used to calculate the TPR and FPR of the lithology to be tested at various
thresholds, thereby drawing a ROC curve. In this way, a total of eight ROC curves can be drawn
in the DGF, and seven ROC curves in the HGF. The ROC curves of each gas field are averaged to
obtain the final ROC curves and AUC values corresponding to the gas field. The diagonal line in the
figure corresponds to the random guess model, that is, the AUC value is 0.5, and the AUC value of 1
represents the ideal model. The AUC of HGF is 0.987, and the AUC of DGF is 0.968. The performance
of HGF is better than DGF, and both are greater than 0.95. The proposed algorithm has a strong
generalization ability in these two gas fields.

Figure 7 shows the point plots comparing the results found for lithology identification with
those available in references. The dataset of this article is the same as the references. Xie et al. used
five machine learning methods to identify lithology and concluded that the Gradient Tree Boosting,
which belonged to the ensemble learning method for formation lithology identification had the best
performance [19]. Saporetti et al. combined the Gradient Tree Boosting with a differential evolution to
identify lithology [31].
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The scatter plot represents the average value of the calculated results. It can be seen from
Figure 7 that the three evaluation indexes of precision, recall and F1 score of the proposed method
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are significantly greater than those of the references. In the DGF, there is little difference between the
three indicators in the reference. The proposed method has a significant improvement effect on the
results of precision, the performance improvement is significantly higher than the others, and the recall
improvement is relatively minimal. In the HGF, the increase of precision and recall is similar, and both
are higher than the F1 score. The three indexes have significant improvements in the HGF. Precision
and Recall have the biggest improvements, and they are much closer to each other. Compared with
DGF, the improvement of our proposed model is much more significant, which probably because the
sample dataset is more enough in the HGF and our model can extract more features. The improvement
of lithology identification accuracy can promote the accuracy of our geological model effectively.
Based on geological model, it is better and more precise to calculate the geological reserves. With more
accurate lithology identification, it is better to optimize well placement and perforating location, as well
as obtain higher drilling encountering rate and higher production.

5. Conclusions

In this study, in order to simplify the data-driven pipeline for formation lithology classification,
we investigated the use of the BO in search of the optimal hyperparameters of the XGBoost classifier
based on well log data. To acquire both steady and reliable results, learning dataset has been divided
into a training set and test set using cross-validation, and then take the average of 10 independent runs
as the final results.

In addition, we comprehensively evaluated the performance of the proposed classifier. The AUC
values of the test sets of the DGF and HGF fields are 0.968 and 0.987, respectively, indicating that the
proposed method has very high generalization performance. The averaged results of Precision, Recall,
and F1 score of our method are respectively 5.9%, 5.7%, 6.15% greater than those of GTB, while 4.85%,
5.7%, 3.25% higher than those of GTB-DE.

Furthermore, the proposed classifier can assist the geologist to accurately and efficiently identify
the formation lithology. Specialists can make use of the XGBoost model to analyze a large amount of
well log data during geological exploration, such as the estimation of fracture density, the prediction of
reservoir permeability and the calculation of porosity, which can improve the data analysis efficiency
in petroleum geology.
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Abbreviations

XGBoost Extreme Gradient Boosting
BO Bayesian Optimization
AUC Rceiver operating characteristic curve
GTB-DE Gradient Tree Boosting-Differential Evolution
PCA Principal component analysis
ANN Artificial neural networks
SVM Support vector machine
RF Random Forest
DGF Daniudi gas field
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HGF Hangjinqi gas field
AC Acoustic log
CAL Caliper log
GR Gamma ray log
LLD Deep latero log
LLS Shallow latero log
DEN Density log
Q1 The first quartiles
Q3 The third quartiles
IQR The interquartile range
LIF Lower Inner Fence
UIF Upper Inner Fence
CR Carbonate rock
C Coarse sandstone
PS Pebbly sandstone
CS Coarse sandstone
MS Medium sandstone
FS Fine sandstone
S Siltstone
M Mudstone
TP True positive
FP False positive
TN True negative
FN False negative
ROC Receiver operating characteristics
TPR True positive rate
FPR False positive rate
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