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Abstract: In Europe, more and more data on building energy use will be collected in the future as
a result of the energy performance of buildings directive (EPBD), issued by the European Union.
Moreover, both at European level and globally it became evident that the real energy performance of
new buildings and the existing building stock needs to be documented better. Such documentation
can, for example, be done with data-driven methods based on mathematical and statistical approaches.
Even though the methods to extract energy performance characteristics of buildings are numerous,
they are of varying reliability and often associated with a significant amount of human labour,
making them hard to apply on a large scale. A classical approach to identify certain thermal
performance parameters is the energy signature method. In this study, an automatised, nonlinear and
smooth approach to the well-known energy signature is proposed, to quantify key thermal building
performance parameters. The research specifically aims at describing the linear and nonlinear heat
usage dependency on outdoor temperature, wind and solar irradiation. To make the model scalable,
we realised it so that it only needs the daily average heat use of buildings, the outdoor temperature,
the wind speed and the global solar irradiation. The results of applying the proposed method on heat
consumption data from 16 different and randomly selected Danish occupied houses are analysed.

Keywords: thermal building performance; data-driven energy performance documentation and
screening; energy signature; occupants effect on heat consumption

1. Introduction

Today, the building stock suffers from low energy efficiency and significant discrepancies between
anticipated and actual heat consumption known as the performance gap. The performance gap has
been documented in several studies, see, e.g., in [1,2]. In [3], it is stated that only 3% of the building
stock in the EU has energy label A, which corresponds to the level of new buildings. Additionally, the
reliability of the energy labels has been proven to be limited. In a report from 2018 by the Danish Energy
Agency it was stated that 20 to 30% of the Danish building energy labels were wrong. This corresponds
to between 12,000 and 18,000 energy labels that specific year.

The energy efficiency directive (EED) of the European Union (EU) [4] states that all member states
are responsible for the installation of individual energy meters, including heat meters, on all buildings
to the extent that it is technically possible and economically feasible. Furthermore, the new energy
performance of buildings directive (EPBD) lists several requirements to boost the national renovation
strategies [5]. These initiatives are established in order to increase the energy efficiency of the EU
building stock. With the current data collection requirements and the new EPBD, the relevancy of

Energies 2020, 13, 3866; doi:10.3390/en13153866 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-2500-9055
https://orcid.org/0000-0001-5456-2576
https://orcid.org/0000-0002-6179-5228
https://orcid.org/0000-0003-0690-3713
http://dx.doi.org/10.3390/en13153866
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/15/3866?type=check_update&version=3


Energies 2020, 13, 3866 2 of 23

data-driven methods for the screening and documentation of the thermal performance of buildings
has become more relevant than ever.

Several dynamic modelling approaches used for energy performance evaluation of buildings can
be mentioned. That is from pure deterministic white-box models such as TRNSYS, Modelica, IDA
ICE, EnergyPlus or ESP-r models [6–10], to fully statistical black-box models such as artificial neural
networks. The estimated energy performance of buildings based on deterministic white-box models is
based on a number of assumptions which may or may not match reality. Typically, this is because the
evaluations are done before the building is built and several parameters, which can affect the energy
consumption, are unknown at the time. This is one of several possible reasons for the performance
gap in the building stock [11]. On the other hand, the black-box models are often used for prediction,
control and clustering, rather than system identification due to its lack of interpretability. Additionally,
as black-box models are data-driven models, they can only be applied after the building is build and
data are collected. One exception is if black-box models are applied on simulated data obtained from
white-box models. A review of different black-box approaches used for building energy consumption
and performance estimation can be found in [12].

A third category of models is the grey-box models. These kinds of models are a hybrid of the
previously mentioned white and black-box models. Examples of grey-box models are physics-based
stochastic differential equations [13,14], and autoregressive moving-average models with exogenous
inputs (ARMAX models) for time series data [15]. The ARMAX model can be explained in physical
terms. First, by formulating a thermal lumped resistance capacity (RC) model, and subsequently by
deriving the corresponding ARMAX representation as done in, e.g., [16,17]. However, the MA term in
the ARMAX model is often omitted, and the ARX models are used instead, see, for example, [18,19].

Other approaches in the literature utilise time varying parameters estimation related to the thermal
building performance. For example, in [20] each parameter of interest is treated as time-varying states
found by multivariate kernel estimation. This method is one of the key influences of this study.

In general, it can be said that the category of supervised machine learning techniques (such as
grey-box models) can be used for building performance parameter estimation, prediction and control,
whereas unsupervised techniques (such as black-box techniques) are suitable for prediction and control
only, as the physical interpretability of the model parameters is lacking.

A shared commonality of most of the dynamical data-driven methods used for building
performance estimation is that they require human interaction for model selection and validation as
described in [17]. For large-scale assessment of building performance the before mentioned methods
are therefore currently not feasible.

Alternatively, simpler quasi-stationary models have been proposed in the literature.
One quasi-stationary approach to quantify thermal performance of buildings is the energy signature
method, which has been studied and applied for decades. A few of the early examples can be found
in [21–23] with the earliest known, dated all the way back to 1951 [24].

The dominating principle of the methods is to apply linear regression on, e.g., outdoor temperature
measurements in order to explain the heat consumption of a building. Consequently, information on,
e.g., the heat transfer coefficient can be extracted form the estimated model.

In one of the simplest energy signature models found in [25], the heat consumption is described as
a linear function of the outdoor temperature during the heating period, i.e., by a slope and an intercept,
where the slope represents the heat loss coefficient of the building. During the weather-independent
period, the heat consumption is modelled as a constant for buildings without cooling and heat recovery.
The change point for the weather dependent period (heating period) to the weather independent period
is described by the base temperature. The base temperature is the outdoor temperature at which the
building is in thermal balance. For a fixed value of the base temperature, the energy signature is similar
to the well-known degree-day method, see, e.g., in [26,27]. As the energy signature operates in two
distinctive modes during the weather-dependent and the weather-independent periods, respectively,
it is a regime model with two regimes, where Tb0 determines the instantaneous change between them.
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In the ASHRAE Guideline 14-2002—Measurement of Energy and Demand Savings [25], seven
different energy signature models are proposed depending on different factors concerning heating,
cooling and heat recovery systems.

Common for all the methods in the ASHRAE Guideline is that the heat usage is a function of the
outdoor temperature alone, contrary to, e.g., [22,28].

In [28], it was found that the heat loss coefficient is fairly insensitive (±5%) to solar gain and
electricity use. The estimated base temperature was more sensitive to these two factors. As both
electricity and solar gain are additive terms to the heat demand (i.e., a functional offset), this seems
like a reasonable finding.

More recent studies, like those in [29,30], show that the energy signature method is still used
in research. However, only minor advances on the technique have been reported since the earliest
applications of the method. For example, in [29] a energy signature model for determining the
domestic hot water production and heat loss due to hot water circulation is proposed. Additionally,
only night-time data were used to reduce effects such as solar irradiation. To the best of our knowledge,
the actual energy signature model in the literature is typically kept linear, which is likely to result in
significant biases of the estimated building physical parameters.

Motivation

For many of the above-mentioned energy signature methods, it is assumed that the transition from
a weather-dependent heat consumption to a weather-independent heat consumption is instantaneous
at a specific outdoor temperature. However, this simplification does not match reality. Therefore,
we propose an advancement of the traditional energy signature models by formulating it as a smooth
nonlinear model, from which the transition period can be determined. Furthermore, by reformulating
the traditional energy signature model as a smooth, i.e., fully differentiable, model, the estimation
procedure can be made more efficient, and more advanced modelling approaches, which require full
differentiability, can be applied.

As several weather phenomenons, such as wind and long-wave radiation, have nonlinear impacts
on the energy consumption, new model formulations of, specifically, the heating period are proposed
to get reliable building physical estimates. Five models of increasing complexity are proposed and the
model accuracy is documented.

For occupied buildings, a major source of the variation in the heat consumption is related to the
occupants [31]. The effects are related to personal preferences to the indoor environment and the
occupants’ understanding of the building and its systems [32]. Therefore, the non-modelled effects
on the heat consumption (e.g., window openings, changing temperature set points, etc.) are part of
the model errors. We utilise this fact to form a method to quantify the occupants’ effect on the heat
consumption, based on the model residuals.

The overall aim of this work is to establish a robust and scalable method for thermal energy
performance estimation. The focus in this article is on buildings without secondary heat sources
(e.g., wood stoves), cooling and heat recovery systems. However, it would be possible to extend the
models to include mechanical cooling and heat recovery.

2. Method

2.1. Heat Consumption Models

The energy signature models introduced in the introduction share one common feature. Namely,
that the transition from one regime to the next happens instantaneously, as seen in, for example, the
ASHRAE Guideline 14 [25]. Thus, the mathematical model of the heat consumption Φheat can be
expressed as

Φheat = max[ f (·), g(·)] , (1)
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where f (·) is a function describing the heat consumption during periods with heat demand, and g(·)
is a function describing the heat consumption during periods without heat demand. The dot notation
is a placeholder for any explanatory variable use in the functions. This will typically be the outdoor
temperature, but can equally well be wind speed, solar irradiation or other driving forces.

For buildings without cooling or heat recovery systems, such as those investigated in this study, a
constant heat consumption model during periods without a heat demand is suggested in the ASHRAE
Guideline 14. Throughout this study, the heat consumption model for periods without a heat demand,
g(·), is therefore defined as

g = Φ0 + e , (2)

where Φ0 is the constant daily base heat load related to for example system heat losses, and e ∼ N(0, σ2)

is independent and identically normal distributed noise with mean zero and variance σ2.
For periods with a heating demand, i.e., a weather-dependent heat consumption, the heat

consumption can be derived from the heat balance

Φheat −Φtr + Φsol + Φint −Φvent + Φmass + Φlatent = 0 , (3)

where Φheat is the heat consumption, Φtr is the transmission loss, Φsol is the solar gain, Φint is the
internal heat gains, Φvent is the ventilation loss, Φmass is the release of thermal energy stored in the
thermal mass and Φlatent is the energy absorption and release due to evaporation and condensation in
the thermal zone.

For daily averaged heat consumption and weather data, as used in this study, the heat exchange
with the internal thermal mass (e.g., building structures and furniture) and the latent heat exchange
can be neglected [22,29]. Furthermore, by lumping Φsol, Φint and Φvent into the new parameter Φx,
and using the simplification that Φtr only consists of transmission loss to the outdoor air, the following
relation can be obtained,

Φheat = UA (Ti − Ta)−Φx

= UA (Ti −Φx(UA)−1 − Ta) for Ta < Ti ,
(4)

where UA is the heat loss coefficient, Ti is the indoor temperature and Ta is the ambient outdoor
temperature. Furthermore, as Φheat only can take non-negative values for buildings without cooling,
the formulation is only valid during periods with a heat demand.

Due to the fact that some heat balance contributions contained in Φx, as well as the indoor
temperature Ti, are troublesome to measure, the base temperature Tb0 can be introduced and estimated
directly from data. The base temperature is the outdoor temperature at which the building is in thermal
balance and is defined as

Tb0 = Ti −
Φx

UA
, (5)

for Φ0 = 0 in Equations (1) and (2).
By substituting Ti −Φx(UA)−1 in Equation (4) with Tb0 from Equation (5), the energy signature

in Equation (6) is obtained. This formulation will act as the basis for the model proposals in the
following section.

Φheat = UA (Tb0 − Ta) for Ta < Tb , (6)

where Tb is the base temperature for an arbitrary base heat load, i.e., for Φ0 ≥ 0, which is described
further in the following section.

2.1.1. Heat Consumption Models for Periods with Heat Demand

In this section, five weather-dependent heat consumption models are presented. Each of
the models represents a model candidate for the function f (·) in Equation (1). The five model
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candidates increase in complexity, and each of the model advancements builds on the previous model.
The simplest model is f0, and the most complex model is f4.

f0: Fixed Base Temperature

For daily averaged input values and a fixed value of the base temperature, Equation (6) can be
directly related to the commonly known heating degree days (HDD) method as HDD = Tb − Ta,
and Tb is the base temperature for an arbitrary base heat load, i.e., for Φ0 ≥ 0. This is in contrast to the
base temperature Tb0 found in Equation (5), where Φ0 is assumed to be zero.

Often, Tb is stated as a fixed value in building standards or conventions. Using a fixed base
temperature, Equation (6) can be formulated as the first and simplest formulation of the function f (·)
found in Equation (1):

f0 = UA (Tb − Ta) + Φ0 + e , (7)

where Tb is a fixed constant corresponding to the Danish base temperature of 17 ◦C [33],
and e ∼ N(0, σ2) is the normal distributed system and observation noise with zero mean and variance
σ2. The system noise can be related to multiple effects, for example, the missing description of
convection and infiltration, solar gain, varying indoor temperature and thermal inertia. However, the
latter has previously been stated as negligible for daily averaged data.

To obtain Equation (7), it is furthermore used that

Tb = Tb0 −
Φ0

UA
, (8)

which results in the term, Φ0, in Equation (7).

f1: Free Base Temperature

Instead of relying on an assumed base temperature as in Equation (7), it can be estimated directly
from data as it is typically done for the energy signature models.

By substitution of Tb in Equation (7) with Tb0 −Φ0(UA)−1, the second model, f1, is obtained,

f1 = UA (Tb0 − Ta) + e , (9)

where Tb0 is assumed to be constant. Furthermore, Tb0 → Ti for Φx(UA−1) → 0. Hence, Tb0 will
approach the mean indoor temperature for poorly insulated buildings with small unmodelled heat
balance contributions.

Model f1 in Equation (9), as well as model f0 in Equation (7), simply assumes that the heat
consumption solely is a function of the temperature difference between in- and outside. The solar
irradiation, the heat convection of the envelope, the air exchange between the building and the
outside and the long-wave radiation heat loss are therefore not considered in the models. Therefore,
the estimated UA values with this simplistic model may result in weather-biased parameters estimates.
For example, for a particularly windy and cold heating season, the UA value will be overestimated
by applying Equation (9). Likewise, a sunny transition period between the weather-dependent and
weather-independent season results in an overestimated UA value. Therefore, the model definition is
not reliable for estimating thermophysical parameters of buildings [22]. In the following, a number of
model extensions are proposed to overcome this bias.

f2: Convection and Infiltration

Wind has two main effects on the heat consumption. Increased wind will increase the external
convection on the building facade and the infiltration rate, i.e., the unintended air exchange between
inside and outside. Moreover, the infiltration depends on both wind speed and thermal stack effects.
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The literature provides several empirical formulas for describing the convection and infiltration, see,
for example, in [22,34].

For simple quasi-stationary models like those presented in this study, we aim for a simplified
formulation of the combined wind effect on the heat consumption. Therefore, we propose that the
convection and infiltration due to wind speed can be treated as proportional to the temperature
difference between in- and outside. Equation (9) can therefore be extended to

f2 = (UA0 + Ws UAW) (Tb0 − Ta) + e , (10)

where Ws is the wind speed, UA0 is the heat loss coefficient for wind speeds equal to zero and UAW is
the additional heat loss due to the wind.

With the base temperature as defined in Equation (5), Φx becomes

Φx = (UA0 + Ws UAW) (Ti − Tb0) . (11)

f3: Solar Gain

The solar gain can be characterised by the product of global solar irradiation Ig and a constant
solar transmission coefficient gA. The previous model in Equation (10) can therefore be extended with
an explicit solar gain term, such that

f3 = (UA0 + Ws UAW) (Tb0 − Ta)− gA Ig + e . (12)

If the gA value has a high dependence on, for example, time-of-year, the model can be extended
further by modelling the relationship between the time-of-year and the solar gain. An approach for
that can be found in [14].

f4: Thermal Long Wave Radiation

Another contribution to the heat loss is the long-wave radiation between the building surfaces
and its surroundings.

Assuming that the building is only exposed to two different surrounding temperatures—the
temperature of the sky Tsky, and the temperature of the remaining surroundings Tsur both measured
in kelvin—the long-wave radiation Φrad can be expressed as

Φrad = γ1(T4
sky − T4

surf) + γ2(T4
sur − T4

surf) , (13)

where Tsurf is the temperature in kelvin of the outer building envelope, and the γs are the product of the
emissivities of the surfaces, the surface areas, the view factors and the Stefan–Boltzmann constant [35].
The γs are assumed constant even though, for example, vegetation might change the view factor to the
sky during the year.

In order to keep the model simple and applicable, the unknown temperatures of the outer building
envelope (Tsurf) and the near surroundings of the building (Tsur) are assumed to be equal to the ambient
outdoor temperature Ta. Equation (13) therefore becomes

Φrad = γ1(T4
sky − T4

a ) . (14)

The final model, f4, can now be expressed as

f4 = (UA0 + Ws UAW) (Tb0 − Ta)− gA Ig + γ1(T4
sky − T4

a ) + e . (15)

In the proposed models for the function f (·) in Equations (1) ( f0, f1, f2, f3 and f4) two different
formulations of the heat transmission through the building envelope have been proposed. First as
a wind independent parameter (UA) in f0 and f1, and since as a wind-dependent function (UA0 +
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Ws UAW) in f2, f3 and f4. For generalisability, the heat transmission through the building envelope
will in the remaining part of this article be denoted as UA, despite the fact that it might or might not
be a function of the wind speed.

2.2. Smooth Maximum Approximation with LogSumExp

No matter which mathematical representations are used to model the heat consumption by
Equation (1), the function is not fully differentiable as it has an instantaneous change point where f (·)
becomes g(·). Besides potential optimisation issues with a non-differentiable function, for example, if
the optimiser relies on automatic differentiation, a sudden change between the two regimes is a rough
simplification for models like the energy signature, which typically use daily averaged data. Instead
we propose a smooth transition between the two regimes, f (·) and g(·).

In this section, we explain the theory behind the smooth maximum function, LogSumExp, as an
alternative to the maximum function used in Equation (1). Furthermore, we show how it can be used to
quantify the transition period between two regimes, e.g., the transition from the weather-dependent
heat consumption regime, f (·), to the weather-independent heat consumption regime, g(·).

The LogSumExp (LSE) function is a smooth maximum approximation function often used in
machine learning and in artificial neural networks. It is defined as

LSE(y) = LSE(y1, y2, . . . , yn)

= log [exp(y1) + exp(y2) + . . . + exp(yn)] ,
(16)

where y is a series of values from y1 to yn.
In essence, the inner part of the log operator in Equation (16) amplifies the differences between

the individual values of y exponentially. For a large value of y, such as y1 � y2, . . . , yn, we get that
∑n

i=1 exp(yi) ≈ exp(y1). In order to get back to the original domain, we take the logarithm of the sum.
It can therefore be said that Equation (16) approximates the maximum of the values in y:

LSE(y1, y2, . . . , yn) ≈ max(y1, y2, . . . , yn) . (17)

By applying the chain rule for differentiation, the partial derivative of Equation (16) can be shown
to be the softmax function,

∂

∂yi
LSE(y1, y2, . . . , yn) =

exp(yi)

∑n
j=1 exp(yj)

, (18)

which essentially is the multivariate version of the logistic function [36].
With n = 2 and by differentiating Equation (16) with respect to y1, we get

∂

∂y1
LSE(y1, y2) =

exp(y1)

∑2
j=1 exp(yj)

. (19)

By further defining y1 = x and y2 = 0, the standard logistic function is obtained,

∂

∂x
LSE(x, 0) =

exp(x)
exp(x) + 1︸ ︷︷ ︸
The standard

logistic function

, (20)

and the complimentary logistic function is obtained by differentiating with respect to y2 = 0.
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For y1 and y2 in Equation (19), being the two functions f (x) and g(x) of zeroth or first order,
and by introducing the logistic growth rate k, Equation (19) can be rewritten as

∂

∂ f (x)
LSE( f (x), g(x)) = f ′(x)

exp( f (x) k)
exp( f (x) k) + exp(g(x) k)︸ ︷︷ ︸

The logistic function

. (21)

Equation (21) thereby describes a smooth transition between the slope of f (x) and g(x), and the
indefinite integral shown in Equation (22), can approximate Equation (1) with a smooth transition
between the two functions. Figure 1 shows a visualisation of Equations (21) and (22).

LSE( f (x), g(x)) = log [exp( f (x) k) + exp(g(x) k)] k−1︸ ︷︷ ︸
Smooth approximation of max[ f (x), g(x)]

. (22)

−
1.

0
−

0.
5

0.
0

F
'(x

)
F

(x
)

Transition Interval

0.
0

2.
5

5.
0

f(x) = −x

g(x) = 0

Logistic function,
Eq. (21)

LogSumExp,
Eq. (22)

lb, Eq. (24)

ub, Eq. (25)

Figure 1. Conceptual diagram of transition interval definition. The thick black and red lines in the
lower plot show the smooth maximum approximation of f (x) = −x and g(x) = 0 obtained by the
LogSumExp function. The upper plot shows the slope (i.e., the logistic function) of the LogSumExp
function. From the logistic function the start and end of the transition interval between f (x) and g(x)
is obtained by ub (upper bound) and lb (lower bound) indicated by the horizontal dotted lines and the
intersection with the logistic function.

2.3. Transition Interval

As Equation (22) approaches f (x) and g(x) asymptotically, it is not possible to define a finite
interval where the transition between the two functions occurs.

Instead, the transition interval can be defined and found by solving for x in Equation (23), where
f (x) < g(x) for x → ∞.

lb < f ′(x)
exp( f (x) k)

exp( f (x) k) + exp(g(x) k)
< ub , (23)

where lb (lower bound) and ub (upper bound) is

lb = f ′(x) + p(g′(x)− f ′(x)) and (24)

ub = f ′(x) + (1− p)(g′(x)− f ′(x)) where p ∈ [0, 1] . (25)



Energies 2020, 13, 3866 9 of 23

The upper plot in Figure 1 shows the logistic function from Equation (21) (i.e., the slope of the
LogSumExp function), and the lower plot shows the corresponding smooth maximum function from
Equation (22) (i.e., the LogSumExp function). In the specific plot, f (x) = −x, g(x) = 0 and k = 1.
Furthermore, p in Equations (24) and (25) is chosen to be 0.1, and remains so for the rest of this study.
The red part of the curves shows the transition between f ′(x) and g′(x) as well as f (x) and g(x) in the
upper and lower plot, respectively.

2.4. Heat Consumption Modelling with LogSumExp

In Section 2.1, a number of model candidates for the functions f (·) and g(·) in the energy signature
formulation in Equation (1) were proposed. In addition to that, an alternative to the max function in
Equation (1), which determines if the building is in a heat demand regime or and not, is described
in Sections 2.2.

To estimate the heat consumption during periods with and without a heat demand,
the LogSumExp function in Equation (22) is combined with one of the models for weather-dependent
heat consumption f0 to f4 found in Section 2.1.1, and the model of the weather-independent heat
consumption g in Equation (2).

In Table 1, all five full models candidates are stated. Each model is named correspondingly to the
specific function, f0, f1, f2, f3 or f4, it uses. Model M0 therefore consists of the two functions f0 and g,
model M1 consists of the two functions f1 and g, and so on.

Table 1. Overview of full models. The model names are stated in the leftmost column as M0, M1
up to M4. The bullets (•) indicate if the given inputs are included in the specific model. Model M0
distinguishes itself from the remaining models, as the base temperature Tb is fixed at 17 ◦C.

Name Functions Input Model Formulation

f (·) g(·) Ta Ws Ig Tsky Φheat = LSE[ f (·), g(·)]

M0 f0 g • – – – Φheat = LSE[UA (Tb − Ta) + Φ0, Φ0] + e

M1 f1 g • – – – Φheat = LSE[UA (Tb0 − Ta), Φ0] + e

M2 f2 g • • – – Φheat = LSE[(UA0 + Ws UAW) (Tb0 − Ta), Φ0] + e

M3 f3 g • • • – Φheat = LSE[(UA0 + Ws UAW) (Tb0 − Ta)− gA Ig, Φ0] + e

M4 f4 g • • • • Φheat = LSE[(UA0 + Ws UAW) (Tb0 − Ta)− gA Ig + γ1(T4
sky − T4

a ), Φ0] + e

For any of the models in Table 1, the transition period can be obtained as described in Section 2.3.
With p = 0.1, the building is considered to operate in the transition phase between regime f (·) and
g(·), when the slope of Equation (22) deviates more than 10 % and less than 90 % from the slope of
f (·). For deviations of more than 90 %, the slope of Equation (22) starts to approach the slope of g(·),
which in this study is zero by definition.

2.5. Unmodelled Dynamics

Until now, the models in Table 1 have treated the base temperature Tb0 as constant. This is of
course a crude simplification as it both describes the actual indoor temperature and the unmodelled
heat balance contributions as seen in Equation (5). However, instead of including measurements of
the indoor temperature and explicitly modelling all of the heat balance contributions, we propose a
method where the time-varying base temperature is derived from the time ordered sequence of model
residuals {et}.

In Section 2.1, it is argued that the heat exchange with the thermal mass as well as the latent heat
exchange can be neglected, by using daily averaged heat consumption and weather data. Furthermore,
heat exchange to the ground is assumed to be neglectable, and the weather’s influence on the heat
consumption is assumed to be described by one of the models in Table 1. Under these assumptions,
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Φx contained in Tb0 must be related to the building usage, which mainly is the sum of ventilation heat
losses and internal heat gains, such as metabolism, electrical power and domestic hot water usage.

If the above-mentioned assumptions are not violated and the base temperature Tb0 is truly
constant as assumed in the models in Table 1, the model errors will be identically distributed and
mutually independent, i.e., the errors will not be autocorrelated.

If, on the other hand, the above-mentioned assumptions are not violated, but the base temperature
Tb0 is varying over time, the sequences of errors will be autocorrelated (i.e., correlated over time) and
reflect the unmodelled dynamics. As a consequence of the above-mentioned assumptions, the model
errors contain information on the variation of Tb0 , and therefore on Ti and Φx in Equation (5).

To model the time-dependent base temperature, Tb0,t, the following model is suggested,

Tb0,t = Tb0 + ∆Tb0,t + εt , (26)

where Tb0 is the constant base temperature estimated by one of the models in Table 1, ∆Tb0,t is the
deviation from Tb0 at time t and εt is the independent and identically distributed noise with mean zero.

The model errors et are the sum of system noise and observation noise. Following the arguments
and assumptions presented in the beginning of this section, the system noise is a result of the
time-varying base temperature, which in the models in Table 1 is treated as constant. The model errors,
et, can therefore be described as

et = ∆Tb0,t UA︸ ︷︷ ︸
System noise

+ εt , (27)

where ∆Tb0,t UA is the time-varying heat gain (or heat loss for negative values) required to maintain
the heat balance, and εt is the observation noise.

The unknown function ∆Tb0,t can be found by kernel estimation. Kernel estimation is a
nonparametric technique used to determine hidden nonlinear functional relations. The kernel estimate
is shown to be equal to the local weighted least squares estimate in [37]. Therefore, the time-varying
model parameters β̂t are obtained by

β̂t = arg min
β

1
N

N

∑
i=1

wti (eti − Xi β)2 , (28)

where N is the number of observations, i refers to the i th vector element or matrix row, et is the model
error, X is the design matrix of a first-order polynomial with time t as the explanatory variable, β is the
model parameters and wti is the kernel weights. The kernel weights are defined by

wti =
K[h−1(ti − t)]

1
N ∑N

i=1 K[h−1(ti − t)]
, (29)

where K is the Epanechnikov kernel [38] with bandwidth h. The bandwidth is found by leave-one-out
cross validation as described in [37].

The N-by-2 matrix βt contains a set of two parameters (slope and intercept) for each of the time
steps. The time-varying term ∆Tb0,t in Equation (27) is therefore

∆Tb0,t =
diag

(
X β>t

)
UA

, (30)

where diag
(
X β>t

)
is the diagonal of the N-by-N matrix X β>t . The term diag

(
X β>t

)
is the remaining

time-varying heat balance contribution to obtain thermal balance, which will be named ∆Φx,t.
Equation (30) therefore becomes

∆Tb0,t =
∆Φx,t

UA
. (31)
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Using the estimate from Equation (31), the corrected and time-varying estimate of Tb0,t in
Equation (26) is obtained.

2.6. Thermal Performance Evaluation

By substituting Tb0 in Equation (26) with Equation (5), the expression below is obtained.

Tb0,t = Ti −
Φx

UA
+ ∆Tb0,t + εt , (32)

where ∆Tb0,t can be expressed by ∆Φx,t/UA, such that

Tb0,t = Ti −
Φx + ∆Φx,t

UA
+ εt

= Ti −
Φx,t

UA
+ εt .

(33)

The term Φx is therefore the mean user-related heat gain needed to obtain thermal balance, ∆Φx,t

is the time-dependent variation around the mean and Φx,t is the sum of Φx and ∆Φx,t.
The models in Table 1 can provide an estimate of UA, and Equation (26) can provide an estimate

of Tb0,t. However, both Ti and Φx,t in Equation (33) remain unknown. Therefore, we are not able to
distinguish the indoor temperature (Ti ) from the user related heat gain (Φx,t). However, by rearranging
Equation (33) and using the actual base temperature Tb,t instead of Tb0,t, the user related heat gain can
be expressed as

Φx,t = UA (Ti − Tb,t) + εt . (34)

By substituting Ti with a given design indoor temperature, the resulting heat gain related to
the building use and its occupants can be estimated by Equation (34). The estimate of Φx,t can
now be compared with the sum of heat gains related to metabolism, electricity consumption and
ventilation losses from an energy performance calculation. It is further discussed in Section 4, how
the heat consumption potentially can be separated into user-, weather- and building envelope-related
heat consumption. It should, however, be noticed that the results are only valid for days with
weather-dependent heat consumption.

3. Case Study

3.1. Data

Sixteen randomly selected houses in Sønderborg in Southern Denmark have been used as a
demonstration case. The built year of the houses ranges from 1937 to 1996, and the heated floor
area from 86 to 173 m2. All houses are heated by district heating only, i.e., there is no additional and
unmeasured heat sources in the houses except from internal gains. Finally, four of the houses have
night-setback on the temperature set point.

The only measurement used from the houses is the total heat consumption provided by
Sønderborg Fjernvarme — a consumer-owned district heating company in Sønderborg. In addition,
outdoor temperature, wind speed and global solar irradiation are measured at the district heating
plant, which is within 10 km of the houses.

The sky temperature used in model M4 is obtained from the freely available reanalysis data set
ERA5-Land provided by the Copernicus Climate Change Service [39]. The full documentation on the
ERA5-Land can be found in [40].

The heat consumption was measured every 10th minute, and the weather data were obtained on
hourly basis. In the analyses, only daily averaged values are used from a period from 2 January 2009
to 1 May 2011.

The original heat consumption data consist of both domestic hot water consumption and space
heating. Before the analyses carried out in this study, the hot water consumption has been separated
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from the space heating by means of kernel smoothing as described and done in [41]. Therefore,
the estimated space heating has been used, rather than the total heat consumption.

3.2. Software

Each of the models have been set up in Template Model Builder (TMB) (version 1.7.16) [42] and
fitted with the global optimisation algorithm, Multi-Level Single-Linkage (MLSL), alongside the local
optimisation algorithm Limited-memory Broyden–Fletcher–Goldfarb–Shanno Algorithm (L-BFGS).
The optimisation algorithms used are implemented in the R package for nonlinear optimisation,
R Interface to NLopt (nloptr) (version 1.2.1) [43]. Version 3.5.1 of R [44] has been used throughout
the study.

Despite the choice of software used in this study, the models can be estimated by using a broad
range of simpler optimisers and other software.

3.3. Model Validation

All models presented in Table 1 were fitted and validated by means of a five-fold cross-validation
where the hyperparameter k in Equation (22) was tuned. The training and validation data were splitted
randomly in a 80/20 ratio. The root mean squared error (RMSE) on the validation set is shown in the
slope chart in Figure 2.

0.
2

0.
3

0.
4

0.
6

R
M

S
E

 [k
W

]

M0 M1 M2 M3 M4

●

●
●

● ●

Mean

House 6

Figure 2. Slope chart of root mean squared error (RMSE) of models M0–M4 tested on 16 houses.
The RMSE is based on a 20 % cross-validation data set. Notice that the logarithmic scale is used,
meaning that the slopes between the points indicates the relative change in RMSE.

The corresponding RMSE for each house is indicated as a grey or black dot. The red line indicates
the mean RMSE across all 16 houses and the black line indicates House 6 which we will study in
details. Notice that the RMSE is plotted on a logarithmic scale, i.e., the slopes of the lines between the
points express the relative change in model error.

A general model improvement is seen when the simplest model, M0, is extended by including
the base temperature as a free parameter as done in model M1.

Models M2 and M3 are the model extensions, which include wind and solar irradiation,
respectively. For both models we see a decrease in the RMSE, meaning that both wind and solar
irradiation have a significant effect on the heat consumption. However, including solar gain has the
largest positive effect on the model errors when the models are evaluated in this successive manner.
This is also referred to as type I partition [45].

Finally, the heat loss related to long-wave radiation (M4) does not affect any of the model
predictions. The parameter γ1 in Equation (15) is simply estimated as such a low and insignificant
value that it does not affect the RMSE.

3.4. Residuals

In Figure 3, the residual analysis plot for House 6 is illustrated. Each row consists of three plots:
the model residuals of a given model, the fit of its extension and the residuals after the model extension.
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Figure 3. Forward model selection for House 6. The figure shows the effect of a particular model
extension, starting with the model residuals of Model M0 in the top-left corner. The figure is read
row-wise and each row represents a model extension. The model formulations of the model names in
the top-left corner of the individual plot can be found in Table 1. Notice that the x-axis of the residuals
plots changes depending on the model extension.
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In the top-left plot in Figure 3, the residuals are shown for model M0. From the plot, a series of
systematic errors from approximately 8 to 17 ◦C and a negative trend in the residuals are observed.

The negative trend in the residuals is diminished after the model M0 is extended to model M1
(top-right). However, the systematic errors are still present. The systematic error means that both
models M0 and M1 are not capable of describing the heat consumption during the transition period.

Last, in the residuals for temperatures below 8.0 ◦C, a slight concave trend is seen for both M0
(top-left) and M1 (top-right). These patterns indicate that the heat consumption is not only a function
of the outdoor temperature.

In the second row of plots to the left, the residuals of model M1 are shown as a function of the
wind speed. The red dashed line indicates that model M1 tends to underestimate the heat consumption
for wind speeds above 2.5 m/s and overestimate the heat consumption for wind speeds below 2.5 m/s.
Modelling the wind-dependent heat loss with model M2, the tendency disappear as seen in the
right-most plot in the second row.

In the third row of plots to the left, the model residuals of M2 are compared to the global solar
irradiation. In this case, we see a negative linear trend in the residuals. This means that for days with
high levels of solar irradiation, model M2 tends to overestimates the heat consumption, simply because
the model does not include the effect of solar irradiation. After implementing the solar gain in model
M3, the residuals flattens out.

It is seen that the solar irradiation explains a lot of the variance in the transition period around
5–15 ◦C (third row, second column). In contrast to this, we see that the wind speed in the M2 model
(second row, second column) mainly explains the variance in the lower outdoor temperature range.
As the heat loss due to wind is proportional to the outdoor temperature, and due to the fact that the
daily mean outdoor temperature is correlated with the solar irradiation, this is a reasonable result.

Additionally, the figure shows the residuals of model M3 as a function of the outdoor temperature
in row four, column three. Compared to the residuals of the previous models, we now see
that the systematic error in the transition period disappears. Only a changing variance between
weather-dependent and weather-independent days is seen. Therefore, the solar gain seems to be the
main reason for the heating system turning on and off in the transition period.

In the last row of plots, the effect of long-wave radiation between the building and its surroundings
is shown. As expected, based on the unaffected RMSE in Figure 2, the residuals remain unaffected.

It is now shown that the model residuals of model M3 (and model M4 for that matter) are
independent of the outdoor temperature, wind speed, solar irradiation and the sky temperature.
However, a clear time dependence in the residuals is found in Figure 4 (grey lines). As argued for in
Section 2.5, this is likely related to time-correlated occupants’ behaviour.

In Figure 4, the black line shows the time-varying heat gain needed to maintain thermal balance at
all time, which is obtained as ∆Φx,t = diag

(
X β>t

)
as described in Section 2.5. Based on the estimate of

∆Φx,t, the time-varying base temperature Tb,t is found and shown as the red line. The dotted sections
of the red and black lines indicate periods without a heat demand. During these periods, the estimate
is not valid.

3.5. Parameter Sensitivity

It is now demonstrated how the model with outdoor temperature, global solar irradiation and
wind speed as explanatory variables can describe the actual energy use of the buildings rather accurate.
In this section, we will investigate how two of the common parameters across all models (UA and the
base temperature Tb) are affected by the different model formulations found in Table 1.

In Figure 5 (left), the estimated UA value for each house and model is shown. The UA value is
the estimated heat loss coefficient under influence of the mean wind speed (2.5 m/s) observed in the
measurement period. In the plot to the right, the estimated base temperatures are shown for all the
houses and models.
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Figure 4. Plot of residuals (et), time-varying heat balance contribution (∆Φx,t), constant base
temperature (Tb) and time-varying base temperature (Tb,t). The figure shows how the time-varying
heat balance contribution, ∆Φx,t, is estimated from the model residuals from model M3 applied on data
from House 6. From the estimate of ∆Φx,t, the time-varying base temperature is estimated.
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Figure 5. Slope chart of UA value (left) and base temperature Tb (right) of models M0–M4 obtained
from 16 different houses. The left-side plot shows the UA values (i.e., the heat loss coefficients) under
wind speed conditions corresponding to the mean wind speed observed in the measurement period
(2.5 m/s). The right-side plot shows the base temperature obtained by the different models for each of
the 16 houses.

Going from model M0 to M1 gives rise to both increments and reductions in the estimate of UA
and Tb. It is therefore not possible to state any general bias by fixing Tb; it depends on the building
and the occupants.

Including the effects of the wind speed, as done in model M2, the estimated UA values increase
significantly and consistently for all houses. The effect on the base temperature Tb is more moderate
and reduces slightly. On the other hand, including solar gain in model M3 creates a small decrease in
the UA value, as well as in the base temperature.

The introduction of long-wave radiation does not affect UA nor Tb. With the proposed
implementation of long-wave radiation in model M4, it is completely irrelevant for the
heat consumption.

Going from the simplest reasonable model (M1) to the best model (M3) gives an average change
in the estimated UA value of +54% across all 16 buildings considered, with the smallest and largest
change of +26% and +84%, respectively.

The base temperature changes from M1 to M3 in average by −8%, with the smallest and largest
change of −1% and −11%, respectively .
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3.6. Thermal Performance Characterisation

Based on the finding in the previous sections, model M3 has proven to be the best model. In this
section, some of the results obtained from model M3 are presented in Table 2.

As an example, Table 2 shows that House 6 has a UA0 value of 115 W/K. The UA0 value
represents the heat loss coefficient under weather conditions with a wind speed of 0 m/s. Even though
House 6 has the smallest UA0 value estimated, the heat loss related to convection and infiltration
(UAW) is the fourth highest among the 16 houses. This might indicate that House 6 potentially has air
leakage issues.

Looking at the estimated UAW values, all houses seem to be significantly affected by the wind.
Furthermore, it is reasonable to believe that a high standard error (e.g., House 8) is a result of different
wind effects from different wind directions, or by the fact that people often open and close the windows.
Both scenarios will result in a high standard error.

Tb in Table 2 tells us at which outdoor temperature the house is in thermal balance given the
average weather conditions. The base temperature varies from 11.2 ◦C to 18.2 ◦C. A low value of
Tb can — as stated in the Section 2.1.1 — mean different things. Either the internal gains are high,
the indoor temperature low, the house is poorly insulated or some sort of combination. The opposite is
true for a high value of Tb.

The transition period Ttransition indicates the outdoor temperature range where the building is in
its transition phase. The spans indirectly indicate to which extent the heating system is affected by the
weather. That is, a narrow band tells that the building or the heating system is insensitive to changing
weather conditions, and visa versa.

As we do not know the indoor temperature and the heat gains related to the building use, we are
not able to separate them. However, assuming that the indoor temperature is equal to the design
indoor temperature (e.g., 20 ◦C), we can estimate the remaining unobserved heat balance contributions
(Φx,t|Ti) needed to obtain thermal balance as described in Section 2.5. The mean and standard deviation
of the time-varying process Φx,t is stated in the two last columns of Table 2.

In Figure 6, the estimated U0 value and the wind-dependent increment of the U value
(UAW per m2 heated floor area) are plotted as a function of the construction year. The bars around the
dots indicate a 95 % confidence interval of the estimate.
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Figure 6. Plot of U0 and UW per heated floor area as function of construction year. The black dots
(left axis) show a clear increment in insulation level as the year of construction becomes more recent.
The red dots (right axis) show the sensitivity to wind, e.g., the level of air leakages.



Energies 2020, 13, 3866 17 of 23

Table 2. Estimated performance parameters for 16 houses in Denmark. The number in parentheses states the standard error of the parameters. U0 and UA0 are the
heat loss coefficients under wind-free conditions, and UAW is the wind-dependent increment in the UA value. Ttransition states the range of outdoor temperatures at
which the building is in transition from heating to non-heating period, given no wind and solar irradiation. Finally, Φx,t|Ti = 20 ◦C and σΦx,t state the mean and the
standard deviation, respectively, of the estimated time-varying heat balance contribution required to obtain thermal balance with an indoor temperature of 20 ◦C.

House Year Floor Area U0 UA0 UAW gA Φ0 Tb Ttransition Φx,t|Ti = 20 ◦C σΦx,t

[m2] [W/(K m2)] [W/K] [W/K per m/s] [m2] [W] [◦C] [◦C] [W] [W]

1 1970 151 1.25 (0.03) * 189 (4) * 58 (7) * 2.5 (0.3) * 676 (84) * 16.5 (0.5) 12.1–21.0 702 157
2 1969 163 1.25 (0.02) * 204 (4) * 39 (8) * 3.7 (0.3) * 340 (47) * 14.2 (0.4) * 9.5–18.9 1246 194
3 1963 140 1.28 (0.02) * 179 (2) * 32 (5) * 2.5 (0.1) * 141 (30) * 15.7 (0.2) * 11.9–19.5 810 103
4 1952 86 1.45 (0.03) * 125 (2) * 41 (5) * 1.5 (0.2) * 215 (19) * 12.8 (0.3) * 10.2–15.4 971 118
5 1966 111 1.54 (0.03) * 171 (3) * 61 (7) * 1.6 (0.2) * 110 (63) 16.6 (0.3) 9.6–23.6 643 155
6 1963 119 0.97 (0.02) * 115 (2) * 65 (6) * 2.8 (0.2) * 47 (19) * 13.3 (0.3) * 10.2–16.4 880 129
7 1947 119 2.17 (0.04) * 258 (5) * 72 (13) * 1.2 (0.4) * 6 (50) 13.5 (0.3) * 6.9–20.0 1810 243
8 1965 160 1.24 (0.04) * 199 (6) * 57 (14) * 2.2 (0.4) * 376 (45) * 12.6 (0.5) * 8.9–16.4 1569 258
9 1965 173 1.21 (0.02) * 210 (3) * 42 (6) * 1.2 (0.2) * 523 (62) * 18.2 (0.3) * 15.8–20.6 389 275
10 1996 135 0.90 (0.02) * 121 (2) * 51 (6) * 2.5 (0.2) * 106 (25) * 14.1 (0.4) * 10.2–18.0 786 193
11 1966 122 1.09 (0.04) * 133 (4) * 31 (11) * 1.2 (0.3) * 108 (46) * 14.7 (0.5) * 10.5–18.9 751 96
12 1975 136 1.05 (0.02) * 143 (2) * 31 (4) * 1.9 (0.1) * 644 (17) * 13.4 (0.3) * 11.3–15.4 1001 94
13 1937 86 2.67 (0.06) * 229 (5) * 92 (14) * 4.4 (0.4) * 45 (31) 11.2 (0.3) * 7.6–14.8 2227 431
14 1965 123 1.36 (0.02) * 167 (2) * 57 (6) * 2.4 (0.2) * 356 (22) * 14.1 (0.3) * 11.8–16.4 1068 203
15 1953 127 1.65 (0.03) * 209 (4) * 80 (10) * 3.1 (0.3) * 166 (35) * 13.0 (0.3) * 7.0–19.1 1593 210
16 1967 137 1.22 (0.02) * 167 (3) * 34 (7) * 1.3 (0.2) * 193 (26) * 13.5 (0.3) * 8.1–18.9 1137 143

H0 : U0 = 0 UA0 = 0 UAW = 0 gA = 0 Φ0 = 0 Tb = 17
Significance code ‘*’: p-value < 0.05.
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Regarding both U0 and UW, the figure shows that there is a negative trend in the estimates,
which indicates that the thermal performance has increased during the years. Despite the rather small
sample, it seems like there is a significant difference between houses build before 1961, which is the
year where the first energy frame came in force in Denmark, and after.

Even though the negative trend is present for the U0 and the UW values, the reduction of U0 for
the individual houses does not necessarily lead to a reduction in UW. An example of this is shown for
House 6, which has the lowest U0 value of the houses build between 1961 and 1980, but one of the
highest UW values in the same cluster.

4. Discussion

In Section 3, it is shown how a number of building parameters, related to its thermal performance
from heat consumption measurements and weather data, can be estimated. Making use of electricity
consumption data and separately measured space heating is strongly believed to improve the
models further.

However, for an estimation of the two most important thermal performance parameters in this
paper — the UA0 and UAW values — the inclusion of electricity and separately measured space heating
would most likely affect the estimates to a minor extent, as long as the daily average values are of
approximately equal magnitude for all weather conditions. This is because such heat gains are additive
terms in the model formulations. Therefore, to keep the models flexible and scalable, as few as possible
measurements are preferred, as long as they do not introduce a serious bias to the estimated model
parameters.

In Section 2.5, we have shown how it is possible to model the residuals and estimate the variation
in the base temperature needed to maintain thermal balance. Additionally, for a given design indoor
temperature, the time-varying heat balance contribution related to the building use is estimated.
In Table 2, the mean and the standard deviation of the heat balance contribution required to maintain
an indoor temperature of 20 ◦C are given for all 16 houses; in Figure 4, the variation is shown for
House 6.

From the investigation of the residuals of model M3 (Figure 3), there is no clear sign of any missing
effects, that is, a function of outdoor temperature, wind speed, global solar irradiation or long-wave
radiation. However, there is a correlation over time. Consequently, we have some time-dependent
dynamics which are not captured by the model.

For daily averaged values or longer, the dynamics related to the heat capacities of the building
should be averaged out sufficiently even though the long time constants often exceed 24 h [22].
Systematic errors such as those found in Figure 4 are suggested to consist of two main effects: changing
temperature set-points and ventilation rates. That is, both effects which are directly related to the
building use (occupant behaviour).

Besides estimating a number of important parameters that describe the thermal building
performance, the methods presented in this paper are seen as a potential stepping stone towards
an identification of the main reasons for the well-known performance gap in buildings. Namely,
the occupants, the weather conditions and the building envelope.

In general, to document the actual energy performance of a building under usage (including the
way the occupants affect this performance), a few design parameters, used as input for the calculation
of the building energy performance, are required. Those include the weather data (e.g., the design
reference year (DRY) weather data), the design indoor temperature, internal heat gains and ventilation
losses. The actual energy performance evaluation can then be used to illuminate the different reasons
causing the discrepancy between expected and realised energy use. In Figure 7, we illustrate the
apparent performance gap and the three possible causes of the discrepancy which is further described
in the following.
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Figure 7. Conceptual illustration of performance gap and three causes of the discrepancy. Points A–C
are further explained in the following list. Each column correspond to the total heat demand, and the
hatched part illustrates the user related heat heat contribution to the total demand.

A Unintended occupants’ related differences in the energy consumption can be estimated as the
difference between the estimated user-related heat gain Φx,t and the user-related heat gain
assumed in the design phase, Φ∗x,t.

Assuming that the indoor temperature is equal to the actual temperature, the user related heat
gain assumed in the design phase is

Φ∗x,t = Φ∗int −Φ∗vent , (35)

where Φ∗int and Φ∗vent are the anticipated internal heat gain (e.g., electricity and metabolism) the
design ventilation loss, respectively.

Based on Equation (34), the difference between the assumed heat gain caused by the occupants
and the actual heat gain (see A in Figure 7) can be estimated by

Φuser = UA0 (Ti − Tb,t)−Φ∗x,t

= Φx,t −Φ∗x,t ,
(36)

where Φx,t is the estimated actual heat gain related to the building use given Ti = T∗i and T∗i
is the anticipated design indoor temperature. UA0 is the heat loss coefficient under wind-free
conditions estimated by model M3 found in Table 1, and Tb0,t is the time-varying estimate of the
base temperature found as described in Section 2.5.

The higher Φx,t|Ti = T∗i is, the more occupant-related heat is required to bring the building in
thermal balance. This means, if Φx,t > Φuser, the internal heat gains are higher than expected
in the design phase, the ventilation loss is lower than expected in the design phase, the indoor
temperature is lower than the design temperature or a combination.

On the other hand, if Φx,t < Φuser the opposite is true.

In this scenario, it is assumed that ventilation and internal gains are independent of the weather.
In reality, this might be violated, and Equation (36) must by altered to account for that.
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B Weather-related differences in the energy use can be estimated by comparing the predicted
energy use with the actual weather conditions, and the predicted energy use with the outdoor
temperature, wind speed and global solar irradiation used in the design phase. Model M3 in
Table 1 is used for prediction.

C Building envelope-related differences in the energy use can be estimated as the difference between
the predicted energy use obtained using model M3 in Table 1 and the occupants and weather
corrected energy use obtained from points A and B, above.

The concept is further illustrated in Figure 7, but it still needs to be validated on either simulated
or actual building data. The method for estimating the occupants’ effect on the energy use may
eventually be refined as well, as this can cause significant changes in the model parameter estimates as
seen, e.g., in [46]. In this study, the occupancy rate was used as proxy for different buildings operation
modes. It was found that the energy signature (with only the ambient outdoor air temperature as
explanatory variable) resulted in significantly different model parameter estimates if the models were
estimated on occupied, unoccupied or both occupied and unoccupied data.

As the model is formulated as a fully differentiable model, contrary to the typical energy signature
model, it allows for more advanced estimation techniques. One natural model extension is to estimate
model M3 in Table 1 and the occupant-related heat gain Φx,t, simultaneously. This can be done by
formulating the model as a second-order state-space model, with the occupants’ related heat gain
∆Φx,t seen in Figure 4 (black line), as a mean-reverting hidden state.

Alternatively, the modelling approach presented in the paper can be estimated recursively,
such that the estimate of Φx,t is fed back into model M3 as an additional heat gain. A new realisation
of Φx,t can then be obtained, and the routine can be repeated until convergence.

5. Conclusions

This study has shown that the typical linear energy signature methods, found in the literature,
can be significantly improved by applying a nonlinear and smooth model formulation.

Only daily averaged values of heat consumption and measurements of outdoor temperature,
wind speed and global solar irradiation were used as model input. From that, several measures for
the thermal building performance were estimated, including heat loss coefficients, heat losses related
to convection and infiltration, solar transmittance, base heat load and transition periods. The use
of so few variables makes the proposed method highly scalable and easily automatised. This was
demonstrated on a study on 16 random selected single family houses.

It has been illustrated how the proposed model is more accurate in describing the variance and
nonlinearities in the heat consumption compared to a simple energy signature with only the outdoor
temperature as the explanatory variable.

Based on the model residuals, the heat gains related to the building usage were estimated
by means of nonparametric kernel estimation methods. The estimation of building usage-related
heat consumption paves the way for detailed building performance documentation and screening,
as outlined in the current energy performance of buildings directive (EPBD) [5]. For example,
the impact on energy use related to weather, building use and the building envelope itself can be
estimated separately.

The novel heat demand formulation using a smooth maximum function (LogSumExp)
does not only provide a way of estimating the transition period from weather-dependent to
weather-independent heat consumption. It also makes it possible to make more advanced models
as they are fully differentiable contrary to the traditional energy signature model. This was further
discussed in Section 4.
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In the future, three main issues should be addressed:

1. In the present paper, only 24 h average values were used with the argument that the effects of the
heat capacities were averaged out as stated in [22]. Several tests on parameter sensitivity could
be done with the input variables averaged over longer and shorter periods than 24 h.

Furthermore, the heat capacity could be modelled to account for potential dynamics related to
the heat capacities of the building. Residuals (et) with no cross-correlation with the differentiated
outdoor temperature (corr(et, Ta,t − Ta,t−1) ≈ 0) indicate that no thermal dynamics are left
unmodelled. However, autocorrelation in the residuals might still appear, which indicates time
correlated building use, e.g., the building use in one time step is correlated with the next.

2. In Figure 5, it was shown that the wind speed had a tremendous effect on the estimated heat loss
(UA value). Even though the model predictions improved and the parameters that describe the
wind sensitivity are significant for all 16 houses (see Table 2), it might be worth investigating other
ways of modelling the wind’s effect on the heat consumption. As the effects are highly dependent
on surroundings, building geometry and other unknown factors, it is suggested to model the
wind dependence by means of nonparametric methods such as kernel or splines estimation.

3. As the variance of the model residuals is highly dependent on the outdoor temperature, they are
seemingly heteroskedastic, i.e., not constant. The implication of heteroskedastic residuals is
that the standard errors of the model parameters are biased. To correct it, the model should
be formulated as a weighted least square problem where the weights are the inverse of the
error variance.
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