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Abstract: The lithium-ion battery is a complicated non-linear system with multi electrochemical
processes including mass and charge conservations as well as electrochemical kinetics. The calculation
process of the electrochemical model depends on an in-depth understanding of the physicochemical
characteristics and parameters, which can be costly and time-consuming. We investigated the
electrochemical modeling, reduction, and identification methods of the lithium-ion battery from
the electrode-level to the system-level. A reduced 9th order linear model was proposed using
electrode-level physicochemical modeling and the cell-level mathematical reduction method.
The data-driven predictor-based subspace identification algorithm was presented for the estimation
of lithium-ion battery model in the system-level. The effectiveness of the proposed modeling and
identification methods was validated in an experimental study based on LiFePO4 cells. The accuracy
and dynamic characteristics of the identified model were found to be much more likely related to the
operating State of Charge (SOC) range. Experimental results showed that the proposed methods
perform well with high precision and good robustness in the SOC range of 90% to 10%, and the
tracking error increases significantly within higher (100–90%) or lower (10–0%) SOC ranges. Moreover,
to achieve an optimal balance between high-precision and low complexity, statistical analysis revealed
that the 6th, 3rd, and 5th order battery model is the optimal choice in the SOC range of 90% to 100%,
90% to 10%, and 10% to 0%, respectively.

Keywords: lithium-ion battery; electrochemical model; model reduction; system identification

1. Introduction

The lithium-ion battery is currently one of the most promising energy storage devices due to
its high energy density, high power density, and long cycle life performance, and has been widely
used in many fields, such as electric vehicles, energy storage, and industrial electronics [1]. In order to
ensure the safe, reliable, and efficient operation of lithium-ion batteries, researchers need to understand
the electrochemical and thermodynamic characteristics of the battery, which is usually costly and
time-consuming through experimental and model-based approaches [2]. In addition, the performance
of the battery can be strongly affected by operation conditions. These facts increase the difficulties in
building the battery model and reducing computational complexity in applications with high real-time
requirements. From an application-oriented perspective, the battery model needs to be simple and
easy to calculate, while still being complex enough to provide valid and accurate results. This creates a
problem where the models are often either too simplified and approximated to provide high-precision
analysis or too complicated for low-complexity processing. However, little research to date has focused
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on the model reduction and optimization with the goal of achieving a balance between high-precision
and low-complexity for real-time applications.

Multi-type models of the lithium-ion battery have been developed to study different issues, such
as thermal behavior, inner polarization, microstructure, and capacity fading [2]. Moreover, many
model-based techniques have been extensively applied to application-oriented researches, in particular
with regard to evaluating the overall performance of lithium-ion batteries. At present, battery models
can be divided into three categories: the equivalent-circuit models (ECM), the empirical models, and
the electrochemical models.

The ECMs are the most used battery models and they mainly focus on capturing the input-to-output
behavior of batteries using different lumped resistor–capacitor (RC) circuits. The parameters of the
ECMs are usually obtained through system-identification approaches based on circuit theory. Many
kinds of ECM topologies have been proposed, including the series RC circuit model [3,4], the parallel RC
circuit model [5], the runtime-based circuit model [6,7], and the impendence-based circuit model [8,9].
The structures of ECMs are usually quite simple, and they have been widely applied in real-time
applications. However, the parameters of ECMs have little connection with the electrochemical
parameters of the battery. As a result, little physical insight into the physicochemical processes of
battery can be inferred from the ECMs.

The empirical models belong to the category of data-based modeling approaches. They build the
battery models based entirely on the experimental data instead of physicochemical theory. Many kinds
of empirical models have been proposed using different techniques, such as statistical analysis [10,11],
support vector [12], big data [13,14], and deep neural networks [15,16]. The empirical battery
models mainly deal with the battery properties that related to capacity [17], State-of-Charge [18]
and State-of-Health [19,20]. When using empirical-based approaches, researchers do not need to
have a deep understanding of the electrochemical processes, which makes the empirical models
easily implemented in practice. However, a common disadvantage of the empirical models is that
experimental data are always needed; they are applicable only for the modeled experiment under a
particular operating condition. Therefore, empirical models are not able to predict beyond a particular
operating range.

The electrochemical models are also known as the first-principle models. The electrochemical
model was originally developed by Doyle et al. based on the theories of porous electrodes and
concentrated solutions [21]. Electrochemical models are usually coupled with many physicochemical
processes including mass and charge conservations as well as the electrochemical kinetics. In addition,
electrochemical models usually consist of a series of partial differential equations, (PDEs), which make
them computationally expensive. Recently, many reduced-order electrochemical models [22–25] have
been proposed for different purpose, including State-of-Charge estimation [25], aging prediction [26,27],
optimal charging control [28,29], and the optimization of battery design [30]. Compared to the empirical
models and ECMs, the electrochemical models can achieve higher accuracy with clear physical meanings.
However, the calculation of the electrochemical model is a time-consuming process, and there are a large
number of electrochemical parameters that need to be predefined, which lead to the electrochemical
models being rarely used in real-time applications.

The goal of this research was two-fold. First, we aimed at proposing a reduced order model of
the lithium-ion battery using electrode-level electrochemical modeling and cell-level mathematical
reduction methods. The second goal was to present an easily implemented data-driven predictor-based
subspace identification algorithm for the estimation of the battery model in the system-level.
In particular, aimed to show that the accuracy and dynamic characteristics of the identified LiFePO4

battery model were related to the operating State of Charge (SOC) range; statistical analysis revealed
that 6th, 3rd, and 5th order battery model is the optimal choice in the SOC range of 90% to 100%, 90%
to 10%, and 10% to 0%, respectively. Models presented in this paper can be used for the model-based
estimation of the lithium-ion battery in real-time applications.
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This paper is organized as follows. Section 2 introduces the electrode-level electrochemical
model of the lithium-ion battery. Section 3 surveys the cell-level model reduction methods. Section 4
outlines the methods and experiments for the system-level model identification. In Section 5 the model
validation tests as well as the statistical analysis of the test results are presented. Sections 6 and 7
contain the discussion and conclusions, respectively.

2. Electrode-Level Modeling of Lithium-Ion Battery

In this section, the electrochemical fundamentals of lithium-ion batteries are introduced, and the
electrode-level electrochemical modeling process is then studied. Symbols employed are listed below
in Nomenclature. It should be noted that this research is based on the ideal assumption that we do not
consider the side reactions, and we mainly focus on the main reactions within the lithium-ion battery,
i.e., the lithium insertion/extraction reactions.

2.1. Governing Equations

Figure 1 shows a schematic diagram of the lithium-ion battery with three main domains: a
negative electrode (width δn), a separator (width δsep), and a positive electrode (width δp). We can
treat the lithium-ion battery as a one-dimensional model on electrode-level from the negative electrode
(x = 0) to the positive electrode (x = L). During discharge, lithium ions diffuse to the surface of the
active material particles in the negative electrode and migrate to the positive electrode through the
electrolyte via diffusion and ionic conduction. Meanwhile, electrons are released through the external
circuit to supply power to the load. The exact opposite process happens during charge.
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Figure 1. Schematic of the lithium-ion battery.

To start, we summarize the four PDEs governing the charge and discharge dynamics of the
lithium-ion battery in Equations (1) to (8). The governing equations were first developed by Doyle [21]
and have been widely applied in many research studies [22–25]. They mainly describe the charge and
species conservation both in the solid and electrolyte phases.

Conservation of species in solid phase:

∂cs

∂t
=

Ds

r2
∂
∂r

(
r2 ∂cs

∂r

)
, r ∈ (0, Rs), (1)
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with the boundary condition:

∂cs

∂r

∣∣∣∣∣
r=0

= 0, Ds
∂cs
∂r

∣∣∣∣
r=Rs

= −
jLi

asF = −
jLiRs
3εsF . (2)

Conservation of species in electrolyte phase:

εe
∂ce

∂t
= De f f

e
∂2ce

∂x2 +
(1− t0

+)

F
jLi, x ∈ (0, L), (3)

with the boundary condition:
∂ce

∂x

∣∣∣∣∣
x=0

=
∂ce

∂x

∣∣∣∣∣
x=L

= 0. (4)

Conservation of charge in solid phase:

δeff ∂
2φs

∂x2 − jLi = 0, x ∈ (0, L). (5)

with the boundary condition: 
∂φs
∂x

∣∣∣∣
x=δn

=
∂φs
∂x

∣∣∣∣
x=δn+δsep

= 0,

−δ
e f f
n

∂φs
∂x

∣∣∣∣
x=0

= δ
e f f
p

∂φs
∂x

∣∣∣∣
x=L

= I
A .

(6)

Conservation of charge in electrolyte phase:

κe f f ∂
2φe

∂x2 + κ
e f f
d
∂2 ln ce

∂x2 + jLi = 0, x ∈ (0, L). (7)

with the boundary condition:
∂φe
∂x

∣∣∣∣
x=0

=
∂φe
∂x

∣∣∣∣
x=L

= 0,(
κe f f ∂φe

∂x + κ
e f f
d

∂ ln ce
∂x

)∣∣∣∣∣
x=δn

=
(
κe f f ∂φe

∂x + κ
e f f
d

∂ ln ce
∂x2

)∣∣∣∣∣
x=δn+δsep

.
(8)

The four PDEs are coupled by the Butler–Volmer equation [31], which describes the reaction
kinetics at the solid/electrolyte interface:

jLi = asi0
[
exp

(
αaF
RT

η
)
− exp

(
−αcF
RT

η
)]

, forx ∈ (0, L), (9)

where symbols and their meanings are listed below in Nomenclature.
The overpotential η is defined as:

η = φs −φe −U, forx ∈ (0, L), (10)

where U is the thermodynamic equilibrium potential. Based on Equation (10), we obtain:{
φs(0, t) = η

∣∣∣
x=0 + φe

∣∣∣
x=0 + U|x=0 , ηn + φe,n + Un,

φs(L, t) = η
∣∣∣
x=L + φe

∣∣∣
x=L + U|x=L , ηp + φe,p + Up.

(11)

The voltage across the cell terminals is determined by:

V(t) = φs(L, t) −φs(0, t) −R f I(t)/A, (12)

where Rf is the contact resistance.
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According to Equations (11) and (12), we can rewrite the terminal voltage in Equation (12) as
follows:

V = (Up −Un) + (ηp − ηn) + (φe,p −φe,n) −R f I(t)/A, (13)

where Up and Un are the equilibrium potential of positive and negative electrode, respectively.

2.2. Simplification of Model Parameters

In this subsection, we mainly focus on the simplification of the electrochemical parameters by
neglecting the non-uniform distribution of cs, ce, and jLi. According to Equations (5) and (6), we obtain: δn jLi

n,avg =
∫ δn

0

(
δe f f∂2φs/∂x2

)
dx = I/A,

δp jLi
p,avg = −

∫ L
δn+δsep

(
δe f f∂2φs/∂x2

)
dx = −I/A,

(14)

where jLi
n,avg and jLi

p,avg are the volume-averaged reaction current density in the negative and positive
solid phase, respectively. Furthermore, we replace the real values of the reaction current density with
the volume-average ones:  jLi

n = jLi
n,avg = I/(Aδn),

jLi
p = jLi

p,avg = −I/
(
Aδp

)
.

(15)

Suppose that cs,e is evenly distributed along the x-axes, then ∂2 ln ce/∂x2 = 0, and Equation (7)
can be simplified as follows: {

κe f f∂2φe,n/∂x2
n + jLi

n = 0,
κe f f∂2φe,p/∂x2

p + jLi
p = 0.

(16)

According to Equations (15) and (16), and the boundary conditions in Equation (8), we can obtain: φe,n(xn) = φe,n(0) − x2
nI/

(
2Aκe f f δn

)
,

φe,p(xp) = φe,p(0) + x2
pI/

(
2Aκe f f δp

)
− xpI/Aκe f f .

(17)

In Equation (17), xn = x, xp = x− δsp. φe,n and φe,p are the electrical potential in the negative and
positive electrolyte phase, respectively.

Since the electric potential is equal at both ends of the separator, it yields the following:

φe,p(0) = φe,n(δsp) = φe,n(0) − Iδ2
sp/

(
2Aκe f f δn

)
≈ φe,n(0) − Iδn/

(
2Aκe f f

)
− Iδsep/

(
Aκe f f

)
. (18)

Based on Equations (17) and (18), we can approximate that:

φe,p −φe,n = φe,p(xp)
∣∣∣
xp=L−δsp

− φe,n(xn)
∣∣∣
xn=0 = −I

(
δn + 2δsep + δp

)
/
(
2Aκe f f

)
. (19)

Furthermore, according to Equations (9) and (14), we can obtain: jLi
n = I

Aδn
= as,ni0,n

[
exp

(
αaF
RT ηn

)
− exp

(
−αcF
RT ηn

)]
,

jLi
p = −I

Aδp
= as,pi0,p

[
exp

(
αaF
RT ηp

)
− exp

(
−αcF
RT ηp

)]
,

(20)

where αa and αc are the anodic and cathodic transfer coefficient, respectively. Assuming that αa = αc =

α = 0.5, ηp and ηn can be approximated as:
ηn = RT ln

(
ξn +

√
ξ2

n + 1
)
/(αF),

ηp = RT ln
(
ξp +

√
ξ2

p + 1
)
/(αF),

(21)

where ξp = −I/
(
2Aδpas,pi0,p

)
, ξn = I/(2Aδnas,ni0,n).
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Finally, according to Equations (19) and (21), the terminal voltage in Equation (13) can be calculated
by:

V(t) =
(
Up(cs,p) −Un(cs,n)

)
+

RT
αF

ln


ξp +

√
ξ2

p + 1

ξn +
√
ξ2

n + 1

− I
(
δn + 2δsep + δp

)
/
(
2Aκe f f

)
−R f I/A. (22)

In Equation (22), Up and Un can be considered as functions of the li-ion concentration in the
solid phase.

3. Cell-level Model Reduction

The coupled governing partial differential equations (PDEs) in Equations (1) to (8) are complex
and difficult to calculate, which makes their use in control-oriented applications impractical. In this
section, our goal is to find a low-dimensional approximation for the nonlinear electrochemical model
using cell-level mathematical theories including discretization and linearization methods.

3.1. Model Discretization

The cell terminal voltage in Equation (22) mainly describes the steady-state behavior of the cell; it
can be written as a function of current I, concentration of lithium-ion in solid phase cs,p and cs,n. In
this subsection, we aim to build the transient-state model of the cell in the state-space form. In the
state-space model structure, the li-ion concentration in both the solid and electrolyte phase are modeled
as the state vectors, which are highly correlated with the transient characteristics of the lithium-ion cell.
Therefore, the emphasis of this subsection is on the transient modelling of the li-ion concentration.

Comparing Equation (7) with (16), we can find that Equation (16) fails to model the influence of ce

on electrical potential, which may result in the loss of model information and accuracy. Alexander et
al. [32] give an approximate solution to Equation (7) that involves the effects of ce, then Equation (19)
can be approximated by:

φe,p −φe,n = RTβ
(
ln ce,p − ln ce,n

)
/F− I

(
δn + 2δsep + δp

)
/2Aκe f f , (23)

where R is the gas constant, T is the temperature in Kelvin, F is the Faraday’s constant, and β is a
constant. Consequently, the terminal voltage of the cell in Equation (22) can be rewritten as:

V(t) =
(
Up(cs,p) −Un(cs,n)

)
+ RT

αF ln

 ξp+
√
ξ2

p+1

ξn+
√
ξ2

n+1

+ RTβ(ln ce,p−ln ce,n)
F −

I(δn+2δsep+δp)
2Aκe f f −

R f I
A . (24)

Equation (24) gives the output equation of the state-space model of the lithium-ion cell. The next
goal is to establish the equation of state with respect to state vectors including cs,p, cs,n, ce,p, and ce,n.

Volume integration of Equation (1) yields:

∂cs,avg

∂t
=

1
Vs

∫
∂cs

∂t
dVs =

1
Vs

∫ [
Ds

r2
∂
∂r

(
r2 ∂cs

∂r

)]
dVs, (25)

where Vs = 4πR3
s /3, dVs = 4πr2dr, subscript avg means volume-average. Further, substituting

Equations (2) and (15) into Equation (25) yields: ∂cs,n,avg/∂t = −I/(δnAεs,nF),
∂cs,p,avg/∂t = I/

(
δpAεs,pF

)
,

(26)

where cs,n,avg and cs,p,avg are the volume-averaged li-ion concentration in negative and positive solid
phase, respectively.
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However, input/output data are sampled in discrete form in real applications. We can rewrite
Equation (26) in the discrete form as: cs,n,avg(k + 1) = cs,n,avg(k) − ∆tI(k)/(δnAεs,nF),

cs,p,avg(k + 1) = cs,p,avg(k) + ∆tI(k)/
(
δpAεs,pF

)
,

(27)

where ∆t is the sampling period. It can be shown that the li-ion concentration decreases in the negative
solid phase during discharge (i.e., I(k) > 0), while it increases in the positive solid phase, which is
consistent with the electrochemical reaction process.

Substituting Equations (4) and (15) into the volume integration of Equation (3) yields:
∂ce,n,avg
∂t =

De f f
e,n

δnεe,n

(
∇xce,n

∣∣∣
x=δn

)
+

(
(1−t0

+)

δnεe,nFA

)
I,

∂ce,p,avg
∂t = −

De f f
e,p

δpεe,p

(
∇xce,p

∣∣∣
x=δsp

)
−

(
(1−t0

+)

δpεe,pFA

)
I.

(28)

Similarly, we rewrite Equation (28) in the discrete form, and the negative electrolyte phase yields:

ce,n,avg(k + 1) = ce,n,avg(k) +

∆tDe f f
e,n

δnεe,n

[(∇xce,n
∣∣∣
x=δn

)
(k)

]
+(1− t0

+)∆tI(k)/(δnεe,nFA), (29)

where ce,n,avg is the volume-averaged li-ion concentration in negative electrolyte phase, ∇xce,n is the
gradient of ce,n in the x-direction, and ∇x denotes the vector differential operator, ∇xce,n = ∂ce,n/∂x.

The positive electrolyte phase yields:

ce,p,avg(k + 1) = ce,p,avg(k) −

∆tDe f f
e,p

δpεe,p

[(∇xce,p
∣∣∣
x=δsp

)
(k)

]
−(1− t0

+)∆tI(k)/
(
δpεe,pFA

)
, (30)

where ce,p,avg is the volume-averaged li-ion concentration in positive electrolyte phase and ∇xce,p is the
gradient of ce,p in the x-direction, ∇xce,p = ∂ce,p/∂x.

Due to the hysteresis of lithium-ion migration in the electrolyte phase, the values of ∇xce,n and
∇xce,p at time k + 1 are not only affected by reaction current I(k), but also related to their own values the
at time k. Therefore, ∇xce,n and ∇xce,p can be approximated by:

(
∇xce,n(x)

∣∣∣
x=δn

)
(k + 1) , f1

((
∇xce,n(x)

∣∣∣
x=δn

)
(k), ∆t

)
+ f2(I(k)),(

∇xce,p(x)
∣∣∣
x=δsp

)
(k + 1) , f3

((
∇xce,p(x)

∣∣∣
x=δsp

)
(k), ∆t

)
+ f4(I(k)).

(31)

Finally, according to Equations (24), (27), and (29)–(31), we can rewrite the reduced order
lithium-ion battery model in discretized state-space form as:{

xk+1 = f (xk, uk),
yout,k = g(xk, uk),

(32)

In Equation (32), uk is the input matrix, uk = I(k), yout,k is the output matrix, yout,k = V(k), xk is
the state vector:

xk = [x1(k), x2(k), x3(k), x4(k), x5(k), x6(k), x7(k), x8(k), x9(k)]
T

=
[
cs,n,avg(k), cs,p,avg(k), ce,n,avg(k), ce,p,avg(k),

(
∇xce,n,avg(x)

∣∣∣
x=δn

)
(k),(

∇xce,p,avg(x)
∣∣∣
x=δsp

)
(k),

(
φe,p −φe,n

)
(k),

(
ηp − ηn

)
(k),

(
Up −Un

)
(k)

]T
,

(33)
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g(xk, uk) is the output equation:

g(xk, uk) =
(
φe,p −φe,n

)
(k) +

(
ηp − ηn

)
(k + 1) +

(
Up −Un

)
(k) −R f I(k)/A

= x7(k) + x8(k) + x9(k) −R f I(k)/A,
(34)

f (xk, uk) is the state equation:

xk+1 = f (xk, uk) =

x1(k + 1) = cs,n,avg(k + 1) = cs,n,avg(k) − ∆tI(k)/(δnAεs,nF) , x1(k) −C1I(k),
x2(k + 1) = cs,p,avg(k + 1) = cs,p,avg(k) + ∆tI(k)/

(
δpAεs,pF

)
, x2(k) + C2I(k),

x3(k + 1) = ce,n,avg(k + 1) = ce,n,avg(k) + ∆tDe f f
e,n

[(
∇xce,n,avg(x)

∣∣∣
x=δn

)
(k)

]
/(δnεe,n) + (1− t0

+)∆tI(k)/(δnεe,nFA)

, x3(k) + C3x5(k) + C4I(k),

x4(k + 1) = ce,p,avg(k + 1) = ce,p,avg(k) − ∆tDe f f
e,p

[(
∇xce,p,avg(x)

∣∣∣
x=δsp

)
(k)

]
/
(
δpεe,p

)
− (1− t0

+)∆tI(k)/
(
δpεe,pFA

)
, x4(k) + C5x6(k) −C6I(k),

x5(k + 1) =
(
∇xce,n,avg(x)

∣∣∣
x=δn

)
(k + 1) , f1(x5(k)) + f2(I(k)),

x6(k + 1) =
(
∇xce,p,avg(x)

∣∣∣
x=δsp

)
(k + 1) , f3(x6(k)) + f4(I(k)),

x7(k + 1) =
(
φe,p −φe,n

)
(k + 1) = RTβ

(
ln ce,p,avg(k) − ln ce,n,avg(k)

)
/F− I(k)

(
δn + 2δsep + δp

)
/
(
2Aκe f f

)
, f5(x4(k)) − f6(x3(k)) −C7I(k),

x8(k + 1) =
(
ηp − ηn

)
(k + 1) = RT ln

[(
ξp +

√
ξ2

p + 1
)
/
(
ξn +

√
ξ2

n + 1
)]

/(αF) , f7(I(k)),

x9(k + 1) =
(
Up −Un

)
(k + 1) = Up

(
cs,p,avg(k)

)
−Un(cs,n,avg) , f8(x2(k)) − f9(x1(k)).

(35)

where, C1, C2, C3, C4, C5, C6, and C7 are all constants.

3.2. Model Linearization

The proposed reduced-order model in Equation (32) is still extraordinarily complex due to
the involved nonlinear equations. In this subsection, our goal is to linearize the reduced-order
battery model in Equation (32). As such, we employ the small-signal analysis method to remove the
nonlinearities of the battery model. The basic principle of the small-signal analysis method is to expand
a nonlinear function into Taylor series, and retain only the constant and the first-order term of the
series, which lead to a linear approximation of the nonlinear equation. More specifically, a nonlinear
function y = f (x) can be approximated by:

y = f (x) ≈ f (x) + d f /dx
∣∣∣
x=x(x− x), (36)

where x denotes the equilibrium working point and (x− x) represents a small variation in x around x
with (x− x)� 1.

Similarly, for a nonlinear system y = f (x1, x2) which consists of two input variables x1 and x2, a
linear approximation can be given by: y = f (x) ≈ f (x1, x2) + K1(x1 − x1) + K2(x2 − x2),

K1 = ∂ f /∂x1
∣∣∣
x1=x1

, K2 = ∂ f /∂x2
∣∣∣
x2=x2

. (37)

A similar linearization process can be employed when the number of variables is larger than two.
The linearization of function f1(x5(k)) + f2(I(k)) using small-signal analysis method yields:

x5(k + 1) = y = y + K1(x5(k) − x5(k)) + K2
(
I(k) − I(k)

)
, (38)

When a lithium-ion cell operates at the equilibrium point, the reaction current j = I = 0. In this
case, li-ions are stored in the solid electrode with very few remaining in the electrolyte; therefore, we
can approximate that ce,n,avg = 0, so that y = x5(k + 1) = x5(k) = 0. Consequently, Equation (38) can
be simplified as:

x5(k + 1) = K1x5(k) + K2I(k), (39)
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where K1 = d f1(x5(k))/dx5(k)
∣∣∣
x5(k)

,K2 = d f2(I(k))/dI(k)
∣∣∣
I(k)=0.

Similar linearization results can be obtained for the nonlinear function with zero equilibrium
variables (i.e., f 3, f 4, f 5, f 6, f 7).

For the functions with non-zero variables (i.e., f 8, f 9), the linearization process yields:

x9(k + 1) = y + K9(x2(k) − x2(k)) + K10(x1(k) − x1(k)) = K9x2(k) + K10x1(k) + E(k), (40)

with: 
K9 = d f8(x2(k))/dx2(k)

∣∣∣
x2(k)=cs,p,avg(k)

,

K10 = −d f9(x1(k))/dx1(k)
∣∣∣
x1(k)=cs,n,avg(k)

,

E(k) = Up −Un −K9cs,p,avg(k) −K10cs,n,avg(k),

(41)

where cs,p,avg(k) and cs,n,avg are the volume-averaged li-ion concentration at the equilibrium point, and
they are non-zero constant. E(k) is a non-zero constant which denotes the equilibrium inner potential.

Finally, the battery model in Equation (32) can be linearized as a 9th order model:{
xk+1 = Axk + Buk,
yk = Cxk + Duk,

(42)

where uk is the input current sequence, yk is the output voltage sequence, yk = V(k) − E(k), and A is
the system matrix consists of constant:

A =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 C3 0 0 0 0
0 0 0 1 0 C5 0 0 0
0 0 0 0 K1 0 0 0 0
0 0 0 0 0 K3 0 0 0
0 0 K6 K5 0 0 0 0 0
0 0 0 0 0 0 0 0 0

K10 K9 0 0 0 0 0 0 0


, (43)

B is the input matrix consists of constant:

B =
[
−C1 C2 C4 −C6 K2 K4 −C7 K8 0

]T
, (44)

C is the observation matrix:

C =
[

0 0 0 0 0 0 1 1 1
]
, (45)

D is the feed-through matrix:
D =

[
−R f /A

]
. (46)

4. System-Level Model Identification

The linearized 9th order model in Equation (42) shows that there are numerous unknown
parameters that need to be predetermined. Theoretically, the model parameters (i.e., the values of
A, B, C, D) can be obtained from battery tests. However, the determination of these parameters is a
non-trivial task. It is always the case that one must make empirical guesses about many parameters,
which makes the model unsatisfactory. In this section, we aim to provide a complete and easily
implementable parameter identification algorithm for the 9th order battery model in Equation (42) and
to explore the relationship between model order and accuracy.
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4.1. Subspace Identification Algorithm

Conventionally, a system is modeled by a transfer function, and is identified using optimization
methods such as nonlinear least-squares. Subspace identification methods offer an alternative solution
based on the state-space model structure. Subspace identification methods are non-iterative procedures
and can achieve a globally optimal solution while avoid local minima problems [33], which makes the
algorithm particularly suitable for the identification of complex systems like lithium-ion battery models.

Rewrite Equation (42) in the predictor form:{
x̂k+1 = Ãx̂k + B̃uk + Kyk,

yk = Cx̂k + Duk + ek,
(47)

where Ã = A − KC, B̃ = B − KD. Further, we define the system order denoted by n, a past window
denoted by p, a future window denoted by f, where n ≤ f ≤ p.

Based on the input and output sequence over a given time, we define the following stacked
matrices: 

yk−p,p = [yk−p, yk−p+1, · · · , yk−1]
T,

yk, f = [yk, yk+1, · · · , yk+ f−1]
T,

Y =
[

yp, · · · , yN−1
]
,

Yp =
[

y0,p, · · · , yN−p,p

]
.

(48)

Similarly, we can define the vectors uk−p,p, uk, f , U, Up in the same way.

Suppose that Ã j = 0 for all j ≥ p, we rewrite the state equation of the system in Equation (47) as

Γ̃x̂k = Γ̃L uk−p,p + Γ̃K yk−p,p. (49)

Γ̃L and Γ̃K are defined as follows:

Γ̃L =


Ξ̃(uk−p) Ξ̃(uk−p+1) · · · Ξ̃(uk−p+ f−1) · · · Ξ̃(uk−1)

0 Ξ̃(uk−p) · · · Ξ̃(uk−p+ f−2) · · · Ξ̃(uk−2)

...
. . . . . .

...
. . .

...
0 · · · 0 Ξ̃(uk−p) · · · Ξ̃(uk− f )

, (50)

Γ̃K =


Ξ̃(yk−p) Ξ̃(yk−p+1) · · · Ξ̃(yk−p+ f−1) · · · Ξ̃(yk−1)

0 Ξ̃(yk−p) · · · Ξ̃(yk−p+ f−2) · · · Ξ̃(yk−2)

...
. . . . . .

...
. . .

...
0 · · · 0 Ξ̃(yk−p) · · · Ξ̃(yk− f )

, (51)

where Ξ̃(uk−i) = CÃi−1B̃ for i > 0, Ξ̃(uk−i) = D for i = 0, and Ξ̃(yk−i) = CÃi−1K for i > 0.
Similarly, with the assumption that Ã j = 0 for all j ≥ p, the output equation of the system in

Equation (47) can be approximated as:

yk|k−1,··· ,k−p =

p∑
i=0

Ξ̃(uk−i)uk−i +

p∑
i=1

Ξ̃(yk−i)yk−i + ek = Ξ̃ϕk + ek. (52)

where Ξ̃ ,
[
Ξ̃(uk−p) · · · Ξ̃(uk) Ξ̃(yk−p) · · · Ξ̃(yk−1)

]
, and it is known as the Markov Matrix; ϕk is the

input/output matrix ϕk =
[

uT
k−p,p, uT

k , yT
k−p,p

]
.

Finally, based on the above discrete and iterative processing of state-space systems, the detailed
steps of predictor-based subspace identification (PBSID) algorithm [34,35] are summarized in Table 1.
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Table 1. Detailed scheme of the predictor-based subspace identification (PBSID) algorithm.

Step Detailed Scheme of PBSID Algorithm

Step 1
First, sample the input and output sequence uk and yk;
Second, set the initial value of n, p, f, and the weight matrix W, require n ≤ f ≤ p;
Third, construct the matrices Y, Yp, U, Up given by Equation (48).

Step 2
First, construct the matrix Ψ, Ψ =

[
U

T
p UTY

T
y−p,p

]T
;

Second, solve the linear regression problem in Equation (52) using the least square method,
then estimate the value of Ξ̃, Ξ̃ = YΨ†.

Step 3

First, build the matrices Γ̃L and Γ̃K given by Equations (50) and (51);
Second, calculate ˆΓX = W

(
Γ̃L Up + Γ̃K Yp

)
given by Equation (49), and estimate the state

sequence through singular value decomposition (SVD) of ˆΓX :

ˆΓX =
[

Un U⊥
][ ∑

n 0
0

∑ ][
Vn
V⊥

]
;

Third, determine the system order n through detecting a big gap between the singular values,
and calculate the state sequence: X̂ =

∑1/2
n Vn.

Step 4

First, estimate the system matrix C and D through solving the following least squares problem:

min
C,D

 1
N

N−1∑
k=0

‖yk −Cxk −Duk‖
2
2

;

Second, estimate the system matrix A, B, and K in the same way:

min
A,B,K

 1
N

N−1∑
k=0

‖x̂k+1 − (Axk + Buk + Kek)‖
2
2

.

4.2. Identification Experiments

The test bench in Figure 2 was used in order to identify the parameters of the battery model.
It consists of a high precision battery test system for single cell test (BT2000, Arbin Instruments,
College Station, TX, USA), a high voltage battery test system for the battery module test (BTS2000,
Techpow Electric Co., Xiangyang, China), a thermal chamber for temperature control (HLT2005P, Hardy
Technology Co., Chongqing, China), and a computer for user-machine interface and data analysis.
In addition, a set of lithium iron phosphate cells were selected for testing and validation (LiFePO4,
11Ah, Lishen Battery Co., Ltd., Tianjin, China). The detailed parameters of the LiFePO4 cells are shown
in Table 2.
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Table 2. Parameters of the LiFePO4 cells for testing.

Capacity Rated Voltage Voltage Range Charge
Temperature

Discharge
Temperature Specific Energy Density

11 Ah 3.2 V 2.5 V–3.65 V 0–45 ◦C −20 ◦C–60 ◦C 115 Wh/kg

Based on the 9th order battery model and the PBSID algorithm proposed above, the accuracy
of the model will only be affected by the test method. In order to obtain a battery model with high
accuracy, we expect that the test method can continuously excite most of the dynamic characteristics
of the LiFePO4 cells. In this research, the hybrid pulse tests at different SOC points were performed
based on methods described in our previous paper [36]. The current profile of the battery identification
test procedure consists of -6 A continuous discharge and hybrid pulse test, separated by 1800-s rest
(Figure 3a). More specifically, -6 A continuous discharge was employed to make the battery be tested at
fixed SOC points including 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, and 5%. In addition,
the hybrid pulse test is a kind of pseudo-random charge and discharge sequence which was used to test
the dynamic properties of the batteries. The hybrid pulse test has a wide frequency band, which can
capture more detailed information of battery dynamics. After performing one set of identification test
profile, we repeated it until the battery voltage reached the 2.5 V cut-off voltage. The corresponding
variation in the battery voltage of the samples over time is shown in Figure 3b. The above tests were
conducted at 25 ◦C.
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4.3. Identification Results

In this subsection, the data sets of hybrid pulse tests at different SOC points were used to obtain
the input and output sequence for the identification experiments. According to the 9th battery model
in Equation (42), the collected current data were used as input sequence uk, and the voltage data were
used as output sequence yk. Before identification, we set the model order n = 9, and the initial values
f = p = 9 in the PBSID algorithm.

When analyzing the identification results, we used the Bode diagrams in the frequency domain
instead of parametric displays in the time domain as the main analysis method. The main reason is
that the identified A, B, C, and D matrices contain a large number of elements, which are not suitable
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for intuitive analysis and comparison. Figure 4 shows the Bode diagrams of the identified 9th battery
model at different SOC points. The identification results suggest that the dynamic properties of the
tested LiFePO4 batteries vary across different SOC points and show high consistency in the SOC range
of 10% to 90%. In contrast, we found significant differences in dynamic properties when the batteries
were tested at 95% and 5% SOC points. Therefore, we can conclude that the dynamic characteristics of
the LiFePO4 batteries will be significantly different when the SOC is high or low.
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using the PBSID algorithm.

In Figure 5, the singular values of matrix ˆΓX are given using the PBSID-based model identification.
As expected, the singular values of PBSID-based identification show clear gaps after the first three
larger values in the SOC range of 10% to 90%. The fourth and subsequent values are less relevant
during identification, since their contributions are small compared with the noise, which suggest the
3rd model may achieve a better balance between high-precision and low-complexity in a wide SOC
range of 10% to 90%.Energies 2020, 13, 3791 33 of 23 
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Furthermore, the singular values of matrix ˆΓX at 5% and 95% SOC points are given in Figure 6.
The results of the PBSID-based identification suggest that 5th order model is the preferred choice for a
battery model at 5% SOC point (Figure 6a). In a similar way, we can infer that the 6th order model is a
better choice for a battery model at 95% SOC point (Figure 6b).
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5. Model Validation

To investigate the effectiveness and robustness of the proposed PBSID algorithm, two different
model-based validation experiments were conducted in electric vehicle applications. The experiments
were carried out on a new cell in the same group and included two different input current input
sequences: the hybrid pulse test and the real-time UDDS driving cycle test. Our validation method is
highly effective and less expensive than other options currently available.

The validation results were analyzed in time domains, which consists of the computation of
tracking error and Variance-Accounted-For (VAF) on a data set that different from the data set used for
determining the model. The VAF resembles the percentage of the output variation that is estimated by
the model. The VAF is defined as:

VAF(yk, ŷk) =

(
1−

var(yk − ŷk)

var(yk)

)
× 100%, (53)

where yk is the measured output voltage, ŷk denotes the estimated output voltage obtained by the
identified model, and var() denotes the variance of a quasi-stationary signal.

5.1. Experimental Validation

For the hybrid pulse validation experiment, the tracking error at each sampling point and the
upper envelope bound was plotted to depict the model quality (Figure 7a). The corresponding SOC
variation of the samples over time and the measured voltage output are also shown in Figure 7b,c,
respectively. It can be observed that in the SOC range of 90% to 5%, the tracking error upper envelope
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varies from 0.88% to 2.99% with good robustness and high accuracy. In addition, within the entire range
of SOC from 100% to 0%, the calculated value of the VAF is 96.11%, and the maximum tracking error is
6.40%. Importantly, the experiment results also show that the tracking error increases significantly
within higher (100–90%) or lower (5–0%) SOC range.
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The second experiment deals with the model validation in Urban Dynamometer Driving Schedule
(UDDS)driving cycle. The tracking error at each sampling point was plotted to depict the model quality
(Figure 8a). In addition, the current profile of the UDDS driving cycle test is shown in Figure 8b, and the
corresponding measured voltage output response is also plotted in Figure 8c. It can be observed that
the tracking errors remain less than 2.83% in the SOC range of 100% to 3% and increase significantly in
the lower SOC range (SOC < 3%). In addition, within the entire range of SOC from 100% to 0%, the
calculated value of the VAF is 94.12%, and the maximum tracking error is 5.77%. The experiment results
also show that the identified 9th order battery model can achieve high-precision in the UDDS driving
cycle. Therefore, we can conclude that the PBSID algorithm performs very well with high precision
and good robustness under random high rate charging and discharging experimental conditions.
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5.2. Statistical Analysis

The above tests show that the accuracy and dynamic characteristics of the model are related to
the operating SOC range of the battery. In real-time applications, the higher the order of the battery
model, the lower computational efficiency will be. To strike a balance between the model order and
computation complexity, a series of model identification experiments were carried out based on the
same data set of hybrid pulse test. During the identification experiments, the model order n was set to
vary from 2 to 9 in the PBSID algorithm so as to obtain the nth order battery model. All the identified
models were validated in the same UDDS driving cycle, and their performance was then evaluated
by investigating the vector-plots of tracking errors (Figure 9). In addition, to address the question of
whether the accuracy of the model depends on the operating SOC range, we used a boxplot graph to
analyze the distribution of the tracking errors in the SOC range of 90% to 100% (Figure 10a), 50% to
90% (Figure 10b), 10% to 50% (Figure 10c), and 0 to 10% (Figure 10d), respectively. It can be observed
that the distribution of the tracking errors vary depending on the model order and the operating SOC
range. Meanwhile, the identification results demonstrate a significant variation of dynamic properties
as well as model parameters across different SOC working points. The comparison plots in Figures 9
and 10 reveal that the model order should be further reduced to achieve an optimal balance between
high-precision and low-complexity. Therefore, it is important to choose and appropriate model order
according to the operating SOC ranges in real-time applications.

As shown in Figure 10a, the boxplots are used to visually show the distribution of the tracking
errors and skewness by displaying the data percentiles and averages in the SOC range of 90% to 100%.
Each boxplot provides a visual summary of the tracking errors including five main percentiles (the 5%,
15%, 50%, 85%, and 95% percentile), outliers (the minimums, maximums, 1% and 99% percentile) the
mean value. As expected, the 95% and 50% percentiles decrease until the 6th order model. After the
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6th order model, the dispersion of the data set and signs of skewness show a high level of consistency,
which suggests the 6th order battery model is the optimal choice in the SOC range of 90% to 100%.
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In a similar way, we can conclude that the 3rd order battery model is the optimal choice in the wide
SOC range of 10% to 90% (Figure 10b,c), and the 5th order battery model is optimal in the SOC range
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of 0% to 10% (Figure 10d). These results agree well with the findings of the singular values analysis in
Section 4.3, which can achieve an optimal balance between high-precision and low-complexity.

6. Discussion

In this study, we showed that the lithium ion battery is a complicated non-linear electrochemical
system with multi physicochemical processes. The simplified electrochemical modeling analyses
suggest that the 9th order linear model structure can provide a comprehensive cell-level description of
the main electrochemical reaction processes with little loss in accuracy. In addition, it has also been
illustrated that the overall performance of 9th order battery model depends on not only electrolyte and
electrode materials, but also on the operation condition and choice of massive physical parameters.
Conversely, the calculation process of the model depends on an in-depth understanding of the
thermodynamic characteristics and physical parameters of the battery, which can be costly and
time-consuming with experimental methods. While not all the results were significant, the overall
direction of the investigation showed trends that could be helpful to further simplifying the battery
model from the electrode-level to the system-level.

Furthermore, the system-level experimental results of the LiFePO4 battery model identification
demonstrate a significant variation of dynamic properties as well as model parameters across different
SOC working points. Meanwhile, the validation experiments indicated that it is important to choose
the appropriate model order according to the operating SOC ranges. The boxplots of tracking errors
distribution suggested that the 6th, 3rd, and 5th order battery model is the optimal choice in the SOC
range of 90% to 100%, 90% to 10%, and 10% to 0%, respectively. Further data analysis showed that
increasing the model order after the optimal one barely improves the accuracy, possibly due to the
limited sampling precision and the additional white noise in the collected data sets. One limitation of
our research is that our data only refers to one kind of lithium ion battery (LiFePO4). Clearly, the data
sets of LiFePO4 batteries are not enough to make generalizations about all types of lithium ion batteries.
However, the innovative approaches proposed in our search are generic, and the same approaches can
used for conducting similar research on other types of lithium ion batteries.

In contrast to other research studies [22–26], we used the data-driven PBSID identification
algorithm instead of physicochemical parameter measurements to obtain the model parameters. This
difference mainly relates to the time-effective and application-oriented advantages involved in the
PBSID algorithm: it provides the researchers with the ability to identify battery model with multiple
inputs and multiple outputs and does not require any physicochemical related information.

In addition, it should be noted that the identification of the battery model was performed under
random high rate charging and discharging experimental conditions with wide SOC ranges. It is
expected that the accuracy of the identified models will improve considerably when applied on a
more realistic operating condition, such as cycle charge and discharge with 10–90% DOD (depth of
discharge) in EV and PHEV applications.

7. Conclusions

To summarize, in this paper we investigated the electrode-level modeling, cell-level model
reduction, and the system-level model identification of the lithium-ion battery. This work demonstrated
that the lithium-ion battery is a complicated electrochemical system with multi electrode-level
physicochemical processes such as the mass and charge conservations as well as the electrochemical
kinetics. We showed that it is possible to build a reduced 9th order battery model through cell-level
physicochemical and mathematical theories including the volume-average analysis method and
small-signal analysis method.

The system-level predictor-based subspace identification algorithm was presented and its
effectiveness for the estimation of lithium-ion battery model was shown. This data-driven identification
technique does not require any physicochemical processes related information, which makes
the proposed modeling and identification method generic and applicable to all type of batteries.
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The effectiveness and robustness of the proposed methods were shown in an experimental study, where
the algorithms were used on the data sets of hybrid pulse test and UDDS driving cycle test. It can be
concluded that the PBSID algorithm performs very well with high precision and good robustness.

A statistical study of the tracking error distribution in different SOC ranges was conducted based
on the identified battery models with different model orders. The comparison results revealed that the
model order should be further reduced to achieve an optimal balance between high-precision and
low-complexity. We showed that the 6th, 3rd, and 5th order battery model is the optimal choice in the
SOC range of 90% to 100%, 90% to 10%, and 10% to 0%, respectively. Future work in this subject will
involve the application of the proposed approaches to data from other types of lithium ion batteries.
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Nomenclature

cs concentration of Li-ion in solid phase (mol/cm3)
ce concentration of Li-ion in electrolyte phase (mol/cm3)
cs,e concentration of Li-ion at solid/electrolyte interface (mol/cm3)
Ds solid phase diffusion coefficient (cm2/s)

De f f
e electrolyte phase effective diffusion coefficient (cm2/s)

jLi reaction current density (A/cm2)
i0 exchange current density (A/cm2)
F Faraday’s constant (96487 C/mol)
R gas constant (8.3146 J/(K·mol))
Rs radius of solid active material particles (cm)
εs solid phase volume fraction
εe electrolyte phase volume fraction
t0
+ transference number of lithium ion with respect to the velocity of solvent

as active interfacial surface area (cm2)
δ reference conductivity of active material in solid phase (S/cm)
δeff effective conductivity of active material in solid phase (S/cm)
κ reference ionic conductivity in electrolyte phase (S/cm)
κeff effective ionic conductivity in electrolyte phase (S/cm)

κ
e f f
d

diffusional conductivity in electrolyte phase (S/cm)
A electrode plate area (cm2)
φs electrical potential in solid phase (V)
φe electrical potential in electrolyte phase (V)
η overpotential (V)
Up thermodynamic equilibrium potential of positive electrode (V)
Un thermodynamic equilibrium potential of negative electrode (V)
αa anodic transfer coefficient
αc cathodic transfer coefficient
Rf contact resistance (Ω·cm2)
δn negative electrode width (cm)
δsep separator width (cm)
δp positive electrode width (cm)
T absolute temperature (K)
avg subscript related to volume average
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