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Abstract: The intensification of biological wastewater treatment requires the high usage of electric
energy, mainly for aeration processes. Publications on energy consumption have been mostly related
to municipal wastewater treatment plants (WWTPs). The aim of the research was to elaborate on
models for the estimation of energy consumption during dairy WWTP operation. These models
can be used for the optimization of electric energy consumption. The research was conducted in a
dairy WWTP, operating with dissolved air flotation (DAF) and an activated sludge system. Energy
consumption was measured with the help of three-phase network parameter transducers and a
supervisory control and data acquisition (SCADA) system. The obtained models provided accurate
predictions of DAF, biological treatment, and the overall WWTP energy consumption using chemical
oxygen demand (COD), sewage flow, and air temperature. Using the energy consumption of the
biological treatment as an independent variable, as well as air temperature, it is possible to estimate
the variability of the total electric energy consumption. During the summer period, an increase in
the organic load (expressed as COD) discharged into the biological treatment causes higher electric
energy consumption in the whole dairy WWTP. Hence, it is recommended to increase the efficiency
of the removal of organic pollutants in the DAF process. An application for the estimation of energy
consumption was created.

Keywords: dairy wastewater treatment plant; electric energy consumption; modeling; DAF process;
activated sludge system

1. Introduction

Sewage and sludge treatment processes are inextricably linked to electric energy consumption.
The intensification of biological wastewater treatment has a positive impact on the natural environment,
but requires the high usage of electric energy, mainly for aeration processes. The increased production
in dairy plants, observed since Poland’s accession to the European Union, has resulted in an increase
in the quantity of dairy sewage and pollutant load. A steady increase in the volume of processed milk
has also been observed. Between 2000 and 2016, annual milk production increased from 11,552 hm3 to
12,867 hm3, while the global amount of sewage from the dairy sector reached 28.1 hm3 in 2016 [1].

The characteristics of dairy sewage differ significantly from typical municipal wastewater.
The values of pollution indicators, measured by biochemical oxygen demand (BOD5) and chemical
oxygen demand (COD), range from 4 to as much as 10 times higher than in municipal wastewater [2,3].
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Dairy wastewater is also characterized by a high concentration of phosphorus. Due to the high
concentration of pollutants and strict requirements regarding the quality of treated wastewater,
the amount of energy used is much higher in comparison with municipal sewage. Energy consumption
is also influenced by the high variability of sewage composition and quantity over time [4,5]. Both the
volume flow rate and the pollutant load from dairy wastewater treatment plants (WWTPs) depend on
the production profile, which may often change daily [6]. About 90% of organic contaminants in dairy
wastewater come from residual products washed out during the operation of cleaning-in-place (CIP)
stations [7].

In Polish dairy WWTPs, the dominant method of biological wastewater treatment is the aerobic
process with activated sludge. The technology of anaerobic treatment is rarely used, however,
many food industries use this process for wastewater pre-treatment, before discharging it into municipal
WWTPs [8]. According to Dębowski et al. [9], the most commonly used anaerobic reactors are upflow
anaerobic sludge blankets (UASBs) and expanded granular sludge beds (EGSBs). Their advantage is
the possibility of obtaining biogas and producing heat and electricity. However, the investment costs
are high, and maintenance requires highly qualified staff. These technologies are cost-efficient for large
WWTPs. Most dairy WWTPs in Poland, including the one analyzed, operate with aerobic systems.

Previous research by the authors has confirmed that the consumption of electric energy in dairy
WWTPs is mainly caused by the aeration processes in activated sludge chambers, averaging tanks, and
excess sludge stabilization chambers [10,11]. The same is observed in municipal WWTPs [12,13]. Publications
on the energy intensity of wastewater treatment are mostly related to municipal WWTPs [14,15].
The given indicators concern entire WWTPs, without division into individual processes. The amount
of energy per unit of wastewater volume is the most common indicator given as a result of analysis [16].
Large differences in energy consumption are caused by applying technologically different facilities,
hydraulics, and pollutant loads. There is a clear downward trend in unit energy consumption as
the capacity of the WWTPs increases. The highest values are characterized by objects operating
with classical activated sludge technology, with intensive aeration. Municipal WWTPs in most cases
consume less than 1 kWh per m3 of treated wastewater [17].

It is important to state that although there are many publications describing energy consumption,
only a few of them go so far as to state the actual equations for energy usage, based on
online measurement [18–21]. Yu et al. [18] modeled the energy intensity of municipal WWTPs,
using semi-parametric quantum regression in Bayesian terms. The data were used to develop a model
of electric energy consumption and to formulate conclusions allowing for optimization. It was shown
that electric energy consumption, in relation to the unit of removed load, is closely correlated to sewage
temperature. Models proposed by [13,22] require online measurements of COD and air temperature to
obtain predicted values of energy consumption.

Analyzing the state of the art, it was found that it is necessary to use advanced real-time electric
energy measuring systems to determine and improve energy efficiency. There is a lack of uniform and
widely accepted procedures for determining the energy efficiency of municipal and industrial WWTPs.
The need to optimize the electric energy consumption in dairy WWTPs has become a prerequisite for
carrying out research and modeling processes.

The aim of the research was to elaborate on models for energy consumption estimation during the
operation of dairy WWTPs, which could then be used by operators and designers for the optimization
of electric energy consumption during particular processes.

2. Materials and Methods

2.1. Study Site

The Bielmlek dairy WWTP (52.756199 N, 23.173387 E) has applied sequence batch reactors (SBRs)
during biological treatment since 2012. The project parameters were an average sewage flow of
750 m3d−1 and a 11,500 person equivalent (PE). The average daily flow during the research period was
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653 m3d−1 (301 ÷ 1154 m3d−1). The value of BOD5 changed from 1067 to 2240 mgO2 dm−3, while that
of COD varied from 1429 to 2945 mg O2 dm−3. The concentration of total nitrogen (Ntot) fluctuated
within the range of 32 ÷ 64 mg N dm−3, while the concentration of total phosphorus (Ptot) was from 5
to 24 mg P dm−3.

The sewage treatment process has two phases: physical and biological. After the sieve and grit
chamber, wastewater is discharged into an averaging tank. The next step is dissolved air flotation
(DAF), supported by adding coagulants and flocculant. After biological treatment with two SBRs,
sewage is discharged into the Biała river. Excess sewage sludge generated in the process is subjected to
aerobic stabilization and mechanical dewatering and is finally used as fertilizer. The total installed
power of the dairy WWTP is 234.7 kW while the DAF treatment is 19.3 kW and the biological treatment
is 104.5 kW. Figure 1 shows a diagram of the Bielmlek dairy WWTP and sampling points.
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Figure 1. Scheme of the dairy wastewater treatment plant (WWTP) (facilities and sampling points):
1—raw sewage, 2—screen and pumping station, 3—sand trap, 4—averaging tank, 5—dissolved air
flotation (DAF), 6—sequence batch reactors (SBRs), 7—treated sewage; 8—excess and flotation sludge
for treatment; I, II, III—sampling points.

2.2. Electric Energy Measuring Methods

Three-phase network parameter transducers installed within the plant were used to measure
energy consumption. The current transformers sent signals, which were then received by the
transducers. Precise measurement was possible thanks to current transformers connected to every
single electric device within the plant. A supervisory control and data acquisition system (SCADA)
collected the information from the current transformers and showed the results online; it also archived
and processed the data.

2.3. Sampling of Sewage and Analytical Procedures

Measurements of 95 series were performed. Each series included measurements of sewage
parameters from sampling points I, II, and III (Figure 1). The measurements were taken over 30 months.
The following basic parameters of wastewater were monitored: BOD5, COD, Ntot, and Ptot. Sewage
quantity and meteorological conditions were also monitored. The performed analysis allowed for the
creation of a database containing the following parameters:

• T—air temperature,
• LBOD5, LCOD, LNtot, LPtot—pollutant (BOD5, COD, Ntot, and Ptot) loads after the averaging tank

(point I),
• LDAF.BOD5, LDAF.COD, LDAF.Ntot, LDAF.Ptot—pollutant loads after DAF treatment (point II),
• LBIO.BOD5, LBIO.COD, LBIO.Ntot, LBIO.Ptot—pollutant loads after biological treatment in SBRs

(point III).
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Determinations were conducted in a certified laboratory (Hamilton, Poland) in accordance with
the procedures set out by the Polish Maritime Economy and Inland Navigation Minister [23] and the
American Public Health Association [24].

2.4. Modeling of Electric Energy Consumption

It was found that the total electric energy consumption (ETOT) was significantly affected by the
electric energy consumption during biological treatment ( EBIO), and the electric energy consumption
during the DAF process (EDAF).

Statistical inference, regarding energy consumption during various treatment stages, was based
on regression methods. For all modeling procedures, residual analysis was performed to confirm the
validity of linear fits. The inference was conducted according to the following scheme (the selected
method of analysis is given in brackets):

• modeling of ETOT was carried out based on EBIO and T (the least squares linear regression);
• a qualitative analysis of LDAF.BOD5, LDAF.Ntot, LDAF.Ptot, and Q was carried out. LDAF.COD was used

as an independent variable (quantile and quantile segmented regression methods);
• modeling of EBIO was carried out based on the LDAF.COD and T (the least squares linear regression

method);
• a qualitative analysis of LDAF.COD was carried out based on LCOD (quantile regression and

segmented quantile regression methods);
• modeling of EDAF was carried out based on Q (the least squares linear regression method).

The qualitative analysis was performed using quantile regression [25]. This method is
recommended for the analysis of data from biological systems with complex interactions [26]. Based on
nonlinear quantile regression [27], a segmented quantile regression was performed to better fit the
data:

y = a + b× x + c×max(x− d, 0) (1)

where y—dependent variable; x—independent variable; a—intercept; b—slope; c—slope modifier; and
d—value of x, where slope changes by the modifier.

A nonlinear model of the form (1) can be rewritten for different values of an independent variable:

y =

a + b× x x < d

(a− cd) + (b + c) × x x ≥ d
. (2)

Numerical analysis was performed in the R environment [28], version 3.5.2. The following
additional packages were used in the analysis besides the basic ones supplied with the environment:
quantreg version 5.38 for quantile regression [29]; RColorBrewer version 1.1.2 for graphical presentation
of the obtained models [30]; and lattice version 0.20.38 for graphical presentation of the obtained
models [31].

3. Results

3.1. Total Electric Energy Consumption

ETOT depends on EBIO and T. The standard least squares regression analysis revealed the following
model:

ETOT = 681.084 + 0.993× EBIO − 24.036× T + 0.024× EBIO × T. (3)

A graphical representation of model (3) is presented in Figure 2.
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Figure 2. Graphical representation of model (3)—ETOT.

The obtained model, presented in Figure 2 as a surface in three dimensions, is characterized by:
a very good linear fit with a high coefficient of determination (adjusted for multiplicity) R2 = 0.912,
a proper residual structure (no significant deviation from normality and homoscedasticity), overall
statistical significance (p-value < 10−15), and statistically significant coefficients (p-value < 10−4).
A characteristic element of the model (3) is the interaction term EBIO × T, which can be interpreted as
an element changing the ratio of ETOT depending on EBIO and T. This interpretation is presented in
Equations (4) and (5).

ETOT = 681.084 + (0.993 + 0.024× T) × EBIO − 24.036× T (4)

ETOT = 681.084 + 0.993× EBIO + (−24.036 + 0.024× EBIO) × T (5)

A graphical representation of model (4) is presented in Figure 3.
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Figure 3 is a two-dimensional representation of the three-dimensional Figure 2, so it does not
show temperature fluctuations. The green lines were obtained by inserting the value of T into the
Equation (3). The points and lines should follow themselves in order to follow the plane in Figure 2.
The energy consumption was measured at a variable outside temperature, which slightly distorted
Figure 3. The plane shown in Figure 3 is twisted as coded in the Equation (3). Temperature lines
intersect at EBIO = 1001.5 kWh·d−1. This specific value presents the value of EBIO, which, for this
twisted plane, is parallel to the temperature axis. It means that ETOT is constant there. If we skip the
temperature axis, like in Figure 3, then this point presents the intersection of temperature lines.

The model clearly shows that as the temperature increased, the share of the biological part (EBIO)
in total electric energy consumption (ETOT) rose. This was due to a decrease in oxygen solubility
in wastewater as the air temperature increases. During the summer months, while a reduction in
oxygen solubility can be observed, the energy requirement for wastewater aeration is higher when
compared with ETOT. After exceeding the limit amount of energy taken for biological treatment
(EBIO = 1001.5 kWh·d−1), the opposite phenomenon occurs. The same conclusion can be drawn directly
from Figure 2. The twisting of the plane representing Equation (3) means that if the temperature
increases, so does the linear coefficient of EBIO, and total energy usage is more sensitive to changes in
EBIO.

3.2. Electric Energy Consumption during Biological Treatment

The amount of energy used in the process of biological treatment with activated sludge should
be dependent on the input of pollutant loads and the air temperature T. However, when examining
the relationships between these parameters, only T and LDAF.COD are completely independent of each
other. This can be explained by the operation of the averaging tank and DAF process. It results in
the averaging of sewage parameters discharged for biological treatment. Using quantile regression,
a description of the sewage parameters correlation was made in the form of appropriate models for the
quantiles τ = 0.9 and τ = 0.1. LDAF.COD was the independent variable in all models. This variable was
chosen because of measurement simplicity. To ensure that every dependent variable was greater than
0, the segmented model for τ = 0.1 was used. The obtained models are presented in Figure 4.

The equations describing the obtained models are presented in Table 1.
EBIO should depend on sewage parameters and T. Taking into account the information presented

in Table 1, LDAF.COD and T were the independent parameters used for describing EBIO. The following
model was estimated by a linear least squares analysis:

EBIO = 370.521 + 0.345× LDAF.COD − 7.744× T + 0.018× LDAF.COD × T. (6)

Equation (6) is presented in Figure 5.

Table 1. The obtained models.

Parameter Equations Conditions

Q
{

222.337 + 0.331× LDAF.COD
507.627 + 0.409× LDAF.COD

τ = 0.1
τ = 0.9

LDAF.BOD

{
25.415 + 0.431× LDAF.COD
46.046 + 0.757× LDAF.COD

τ = 0.1
τ = 0.9

LDAF.Ntot


1.031 + 0.009× LDAF.COD
−159.964 + 1.135× LDAF.COD

4.507 + 0.094× LDAF.COD

τ = 0.1; LDAF.COD < 1544.635
τ = 0.1; LDAF.COD < 1544.635

τ = 0.9

LDAF.Ptot


0.633 + 0.002× LDAF.COD
−9.319 + 0.011× LDAF.COD
5.060 + 0.011× LDAF.COD

τ = 0.1; LDAF.COD < 1060.207
τ = 0.1; LDAF.COD ≥ 1060.207

τ = 0.9
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The obtained model, presented graphically as a surface in three-dimensions in Figure 5,
is characterized by: a good linear fit, with an acceptable coefficient of determination (adjusted
for multiplicity) R2 = 0.723; a proper residual structure (no significant deviation from normality
and homoscedasticity); overall statistical significance (p-value < 10−15); and statistically significant
coefficients (p-value < 10−4), except the one for T (p-value = 0.04), which is at the border of significance.
The coefficient was retained in the model due to the presence and significance of the interaction term
LDAF.COD × T. Using the interaction term, as temperature-based change of COD, we obtained the load
coefficient Equation (7).

EBIO = 370.521 + (0.345 + 0.018× T) × LDAF.COD − 7.744× T (7)

Equation (7) is presented in Figure 6.
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Figure 6 is a two-dimensional representation of the three-dimensional Figure 5, so it does not
show temperature fluctuations (as Figures 2 and 3 do). Temperature lines intersect at LDAF.COD =

430.222 kg·d−1. For this specific load value, EBIO is constant and does not vary with temperature.
Changing LDAF.COD around this value changes the nature of sensitivity of EBIO to temperature variations.

As T increases, the impact of LDAF.COD on the electric energy consumption of the biological
part (EBIO) in a treatment plant increases. Exceeding the load value, LDAF.COD = 430.222 kgd−1,
results in a reversal of the nature of EBIO’s dependence on LDAF.COD in relation to T. For loads smaller
than LDAF.COD = 430.222 kgd−1, a decreasing temperature results in an increase in electric energy
consumption; for larger loads, it results in a reduction of electric energy consumption.

LDAF.COD should depend on LCOD. Using the quantile regression, a description of this dependence
was made in the form of appropriate models for the quantiles τ = 0.9 and τ = 0.1. The obtained
models are presented in a set of Equations (8).

LDAF.COD =


59.955 + 0.246× LCOD

−197.414 + 0.543× LCOD

11.490 + 0.802× LCOD

τ = 0.1; LCOD < 866.855

τ = 0.1; LCOD ≥ 866.855

τ = 0.9

(8)

Equation (8) is presented in Figure 7.
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Energy consumption during the DAF process depends on sewage flow (Q). The standard least
squares regression analysis revealed the following model (9):

EDAF = 13.969 + 0.030×Q. (9)

The obtained model, presented graphically in Figure 8, is characterized by: a relatively good
linear fit with a coefficient of determination (adjusted for multiplicity) R2 = 0.559; a proper residual
structure; no significant deviation from normality and homoscedasticity; overall statistical significance
(p-value < 10−15); and statistically significant coefficients (p-value < 10−4). Equation (9) is presented in
Figure 8.
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4. Final Modeling Scheme and Discussion

The obtained database made it possible to present energy consumption models during the DAF
process and biological treatment. Despite the fact that biological treatment is only one part of the entire
wastewater treatment process, it was possible to describe the variability of the total electric energy
consumption on its basis. This is due to the fact that the activated sludge technology generates the
highest energy consumption [17]. According to Bisak et al. [32] and Panaitescu et al. [33], the share of
aeration systems in total electric energy consumption in sewage treatment plants ranges from 46 to 69
percent. In the case of industrial WWTPs, this share is even higher [17].

The obtained models describe the variability of energy consumption, in selected steps of dairy
WWTP operation, depending on chosen parameters (LDAF.COD, Q, and T). The influence of these
parameters on unit energy consumption has been confirmed by Longo et al. [12]. A clear downward
trend in unit energy consumption has been observed with an increase in the plant capacity [34]. LDAF.COD
is the parameter most reflecting energy consumption, as it contains information on wastewater flow
and pollutant concentration. The values of this parameter are comparable in WWTPs with different
capacities and design parameters. Yu et al. [18] have shown that the electric energy consumption
per unit of removed substance is strongly correlated to the sewage temperature. It was shown that
with an increasing content of organic substances, expressed as COD, in raw sewage, the unit energy
consumption of the process decreases.

The main modeling scheme based on the obtained results is presented in Figure 9.Energies 2020, 13, x FOR PEER REVIEW 10 of 13 
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Figure 9. The main modeling scheme: (A)—model for ETOT, (B)—model for EBIO , (C)—model for
LDAF.COD.

The interpretation of the results presented in Figure 9A–C leads to the following conclusions:

A. The increased electric energy consumption in the biological treatment process causes a decrease
in the temperature dependence of the total electric energy consumption. After exceeding the
value of EBIO = 1001.5 kWh·d−1, the reverse dependence can be observed, i.e., with increasing
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temperature, total energy consumption grows. Mamais et al. [19] have also reported an increase
in the electric energy consumption during summer periods. This is due to an increase of
endogenous respiration when the temperature rises.

B. Quantile regression models confirm the interdependence of wastewater parameters after
the DAF process. Due to the ease of measurement, LDAF.COD can be used to qualitatively
describe other wastewater parameters. Along with the increase in T, the influence of LDAF.COD
on electric energy consumption during biological treatment increases. When exceeding the
load LDAF.COD = 430.2 kg·d−1, the relationship between EBIO and LDAF.COD with respect to
temperature reverses. Lowering the air temperature increases energy consumption for smaller
loads, and decreases electric energy consumption for larger pollutant loads. According to
Niu et. al. [20], in order to reduce electric energy consumption, the pollutant load in the
wastewater discharged into biological treatment should be increased. The authors point out that
a properly loaded WWTP is characterized by lower energy consumption than an underloaded one.
Therefore, it is important to control the pollutant load discharged into the biological treatment,
depending on the air temperature. This can be realized by controlling the flotation efficiency.

C. The results of the qualitative analysis make it possible to predict the range of variability of
the LDAF.COD by measuring the COD parameter in the wastewater before the DAF process.
Parameters such as LCOD and LDAF.COD can be easily monitored during all of the treatment
processes. The COD parameter in raw sewage was also mentioned by Huang et al. [21] as being
important to the modeling of electric energy consumption. It is used to predict not only the
electric energy consumption but also the parameters of treated wastewater.

An application for simulation of electric energy consumption during dairy sewage treatment was
prepared on the basis of the presented modeling scheme (Figure 10).
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Figure 10. The personal computer (PC) application “Modeling of energy consumption”.

The initial parameters are COD in raw sewage, Q, and T. The application calculates ETOT, and the
share of EBIO and EDAF for the example’s data. The personal computer (PC) application can be used
for other dairy WWTPs applying DAF and activated sludge systems. However, the obtained results
would be less precise than in the case of the original object [35].

5. Conclusions

On the basis of the obtained research results, mathematical models have been developed. They can
be used to optimize electric energy consumption during dairy WWTP operation. The obtained models
describe the variability of electric energy consumption of a WWTP with high accuracy. The main
parameter determining the consumption of electric energy in the analyzed dairy WWTP is the load
of organic substances expressed as COD. The significant influence of air temperature was observed.
Using the parameter of electric energy consumption in the biological treatment as an independent
variable, together with air temperature, it is possible to estimate the variability of the total electric
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energy consumption. During summer periods, an increase in the load of organic substances expressed
as COD, during biological treatment, causes higher electric energy consumption in the whole dairy
WWTP. It is recommended to increase the efficiency of the removal of organic pollutants in the DAF
process, which will reduce the total electric energy consumption.
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