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Abstract: In the multi-chiller of the air conditioning system, the optimal chiller loading (OCL) is an
important research topic. This research is to find the appropriate partial load ratio (PLR) for each
chiller in order to minimize the total energy consumption of the multi-chiller under the system cooling
load (CL) requirements. However, this optimization problem has not been well studied. In this paper,
in order to solve the OCL problem, we propose an improved fruit fly optimization algorithm (IFOA).
A linear generation mechanism is developed to uniformly generate candidate solutions, and a new
dynamic search radius method is employed to balance the local and global search ability of IFOA.
To empirically evaluate the performance of the proposed IFOA, a number of comparative experiments
are conducted on three well-known cases. The experimental results show that IFOA found 14 optimal
values (the optimal values among all algorithms) under a total of 17 CLs in three cases, and the ratio
of the optimal values found was 82.4%, which was the highest among all algorithms. In addition,
the mean value of all objective functions of IFOA is smaller and the standard deviation is equal to or
close to 0, which proves that the algorithm has high stability. It can be concluded that IFOA is an
ideal method to solve the OCL problem.

Keywords: optimal chiller loading; energy conservation; fruit fly optimization algorithm

1. Introduction

To maintain comfort level of an indoor life during hot and humid weather, many people rely
on air-conditioning systems. Thus, air-conditioning systems are used in large quantities, and their
energy consumption for the supply of CL accounts for more than 30% of the total power generation [1].
In air-conditioning systems, the multi-chiller system is the main energy-consumption equipment. If the
chillers are improperly managed, the energy consumption of the chiller will be increased significantly.
Because the multi-chiller system is composed of chillers of different design capacities and performance
feature, the optimal load distribution of each chiller can obtain minimum energy consumption when
meeting CL demand [2]. Therefore, for the part load ratios of all chillers, it is a valuable research topic
to find their optimal combination by using optimization methods.

Recently, significant efforts have been made in applying evolutionary optimization algorithms
to solve the OCL problem, such as the Lagrangian method (LM) [3], branch and bound (B&B) [4],
genetic algorithm (GA) [5,6], simulated annealing (SA) [7,8], particle swarm optimization (PSO) [1,9],
evolution strategy (ES) [10], gradient method (GM) [11], generalized reduced gradient (GRG) [12],
differential evolution (DE) [13,14], improved firefly algorithm (IFA) [15], differential search (DS) [16],
neural networks model with particle swarm optimization (NNPSO) [17], cuckoo search algorithm
using a differential operator (DCSA) [18], general algebraic modeling system (GAMS) [19,20],
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teaching–learning-based optimization (TLBO) [21], exchange market algorithm (EMA) [22], improved
grasshopper optimization algorithm (CGOA) [23], improved invasive weed optimization (EIWO) [24],
improved artificial fish swarm algorithm (VAFSA) [25], information gap decision theory (IGDT) [26],
Q-learning method [27], and distributed chaotic estimation of distribution algorithm (DCEDA) [28].
Among them, DCEDA has achieved the best results to date.

The fruit fly optimization algorithm (FOA, also known as canonical FOA) is a new swarm
intelligence optimization algorithm, proposed by Pan [29] in 2011. FOA was inspired by the foraging
behavior of fruit fly swarms, and the optimization is performed based on competition and cooperation
among fruit flies. The FOA has many advantages, i.e., a simple principle and few adjustment
parameters, and can be realized easily. At the same time, it has a very high convergence speed.
In view of this, FOA has been applied successfully in many fields [30–41]. The existing literature has
demonstrated that FOA is competitive compared with GA, PSO, SA, and other heuristic algorithms.
However, there is no literature using FOA in solving OCL problems currently. Hence, in our work,
to solve the OCL problem, an improved fruit fly optimization algorithm is proposed.

The rest of this paper is organized as follows. Section 1 gives a brief introduction. Section 2
provides a description of the multi-chiller system. Section 3 introduces the canonical FOA and
analyzes its disadvantages. The improved FOA, which uses the dynamic search radius method,
is introduced in Section 4. Section 5 presents the implementation of IFOA on solving OCL problem.
In Section 6, empirical comparative results on three well-known cases are presented and discussed.
Finally, the conclusions are given in Section 7 and the future work is prospected.

2. Problem Description

Due to the large demand for cooling in massive buildings, the multi-chiller system is generally
used. Figure 1 depicts the structure of a typical multi-chiller decoupled system. It consists of a primary
side (chiller side) and a secondary side (load side) [2]. On the primary side, multiple chillers are
connected to the distributed system in series or parallel. The system allocates different loads to each
chiller by controlling the supply and return water flow because each chiller has different capacities.
On the secondary side, the cold water flowing into the cooling coil can be adjusted by a two-way valve
according to load changes.Energies 2020, 13, x FOR PEER REVIEW 3 of 18 
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The multi-chiller system is designed to meet peak loads, but most of the time, the chiller operates
at partial load ratio. PLRi can be calculated using Equation (1) [2]. Here, CLi represents the ith chiller
CL, and RTi represents its design capacity (RT). Equation (1) is the expression of the meaning of PLR,
but we do not use Equation (1) to calculate the value of PLR. The value of PLR is obtained through the
IFOA iterative optimization proposed in the paper. Obviously, the value range of the PLR should be in
the range [0,1], but when PLR is small, the chiller is prone to surge, thus, the manufacturer recommends
that the PLR of each chiller should be greater than or equal to 30%, as shown in Equation (2). Here ONi
is the state of the ith chiller. When ONi = 1, it is on; when ONi = 0, it is off. In a multi-chiller system,
in order to minimize energy consumption, one or several chillers are allowed to not start up, that is,
their PLR is 0. Equation (2) is the constraint condition that the OCL problem must satisfy:

PLRi =
CLi
RTi

(1)

PLRi =

{
rand(0.3, 1) i f ONi = 1

0 i f ONi = 0
(2)

For a given wet-bulb temperature, the power consumption (P) of a centrifugal chiller is a convex
function of its PLR [6]. Pi is expressed as a polynomial of PLRi, as shown in Equation (3):

Pi =


c1i + c2i·PLRi + c3i·PLRi

2 i f ONi = 1 (used by case 1)
c1i + c2i·PLRi + c3i·PLRi

2 + c4i·PLRi
3 i f ONi = 1 (uesed by case 2 and case 3)

0 i f ONi = 0
(3)

Here, c1i, c2i, c3i, c4i are constants, representing the coefficients of the ith chiller KW-PLR
curve, respectively.

Cases 1, 2, and 3 correspond to the case study with six, four, and three chillers in Section 6, respectively.
Finding the minimum value of the total energy consumption is the objective function of the OCL

problem in the multi-chiller system, as given in Equation (4):

J = min

 n∑
i=1

Pi

 (4)

where Pi represents the ith chiller power consumption and n is the total number of chillers.
The sum of the CLs generated by all the chillers in the multi-chiller system should not be less than

the system CL demand. This constraint must be satisfied, and can be denoted using Equation (5):

n∑
i=1

PLRi·RTi ≥ CL (5)

Under the condition of satisfying CL requirements, if the total energy consumption of all chillers
is minimized, then the performance of multi-chiller system is the best [15]. The functional objective
of the OCL problem is to minimize the total energy consumption of multi-chiller, that is, the value
of J obtained in Equation (4) is the minimum. The constraints of the OCL problem are Equation (2)
and (5), that is, the PLR of each chiller must be greater than or equal to 0.3, and the CL generated by
multi-chiller must satisfy the system CL demand. The solution to the OCL problem is the appropriate
PLR value for each chiller in a multi-chiller.
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3. Canonical FOA and Analysis

3.1. Canonical FOA Overview

Canonical FOA is the basic version of FOA proposed by Pan in 2011. In order to show the difference
from the various FOA versions improved later, we generally call it “canonical FOA”. The canonical
FOA adopts a global random search strategy based on swarm. In each generation, there are two phases
of osphresis and vision foraging. In the osphresis foraging phase, each individual in the fruit fly swarm
searches randomly around swarm, and then finds the maximum smell concentration of the individual
after evaluating the new location. In the vision foraging phase, all individuals fly to the location where
smell concentration is maximum. The canonical FOA has four steps.

Step 1. Initialization.
Set parameters such as the population size (PS), the maximum number of iterations (Itermax),

the random fly direction and distance zone of fruit fly (FR), and the fruit fly swarm location range
(LR). The location of fruit fly individual in the swarm is given by its corresponding two-dimensional
coordinates (X, Y), whose initial location is defined by Equation (6):{

X_axis = rand(LR)
Y_axis = rand(LR)

(6)

Here the function of rand(LR) is to get a number arbitrarily within the range of the positions of
the fruit fly swarm.

Step 2. Osphresis foraging phase.
Step 2.1. Using the osphresis organ, fruit fly individuals search randomly around the swarm.

Each individual is given a flight direction and distance randomly. The new location of the individual is
computed by Equation (7): {

Xi = X_axis + rand(FR)
Yi = Y_axis + rand(FR)

(7)

Here the function of rand(FR) is to get a number arbitrarily within the fly range of the fruit fly.
Step 2.2. The distance (DISTi) between the individual and the origin is calculated using Equation (8)

due to the exact location of the food being unknown. Then, the smell concentration judgment value
(Si) of a fruit fly individual is computed by Equation (9), which is the reciprocal of the distance:

DISTi =
√

Xi2 + Yi2 (8)

Si = 1/DISTi (9)

Step 2.3. The smell concentration (Smelli) of each fruit fly individual in the swarm is calculated by
Equation (10), that is, Si is substituted into the fitness function (or smell concentration judgment function):

Smelli = f itness(Si) (10)

Step 2.4. Find the fruit fly with the best smell concentration in the swarm and record its smell
concentration and corresponding location, as shown in Equation (11):

[bestSmell, bestIndex] = min(Smell) (11)

Step 3. Vision foraging phase.
The best smell concentration value and corresponding fruit fly location are maintained by

Equations (12) and (13), respectively, and other fruit flies will use vision to fly toward that location:

Smellbest = bestSmell (12)
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{
X_axis = X(bestIndex)
Y_axis = Y(bestIndex)

(13)

Step 4. Repeat steps 2 and 3 until Iter reaches Itermax.

3.2. Disadvantages of Canonical FOA

By analyzing the canonical FOA algorithm, two disadvantages of FOA can be summarized
as follows.

(1) Nonuniform generation of candidate solutions

Shan et al. [42] first substituted Equation (7) into Equation (8). In Equation (8), X_axis and Y_axis
are constants, and rand(FR) is a variable. Then they used the counter-proof method to prove that
for the given fruit fly position coordinates X and Y, the taste concentration judgment value Si does
not follow a uniform distribution. Usually, Si is the solution to the optimization problem. Obviously,
the candidate solutions cannot be generated uniformly, that is, FOA loses the ability to search uniformly
in the solution space.

(2) Poor search ability

The search radius of the fruit fly is its range of flight (FR). When the FR is large, the search
range of fruit fly is large, and the global search ability of FOA is strong, while when the FR is small,
the search range of fruit fly is small, and the local search ability of FOA is strong. In the canonical FOA,
FR is a fixed value, which cannot better balance the global search ability and local search ability of
the algorithm.

4. Improved FOA Algorithm Based on Dynamic Search Radius

To overcome the first disadvantage summarized above, we should first find the cause of the
disadvantage. An analysis of Equations (6)–(9) found that the location of an individual can be
represented by two-dimensional coordinates, and the candidate solution is the reciprocal of the distance
between individual location and the origin. The candidate solutions generated by FOA are nonlinear,
thus, they fail to follow the uniform distribution.

Inspired by the reference literature [42], for FOA, we can change the non-linear of the candidate
solution generation mechanism into a linear one, that is, the location of the individual is represented
by one-dimensional coordinates, and we no longer calculate the reciprocal of the distance between
individuals and the origin. Thus, the original equations have been modified. That is, Equations (6), (7),
(9), and (13) are changed into Equations (14)–(17), respectively, and Equation (8) is deleted.

The advantage of using this linear generation mechanism is that candidate solutions can be
generated uniformly in the solution space, so that the swarm has the ability to search the global
optimal solution:

X_axis = rand(LR) (14)

Xi = X_axis + rand(FR) (15)

X_axis = X(bestIndex) (16)

Si = Xi (17)

For the second disadvantage mentioned above, this paper proposes a new dynamic search radius
method that changes the search radius by the iteration number, as shown in Figure 2. Therefore,
the search radius can cover the entire solution space in early iterations, which gives the algorithm a
good global search capability. In later iterations, the search radius becomes very small when the swarm
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location is close to the best solution, which guarantees that the algorithm will have a good local search
capability. The search radius r can be obtained by Equation (18):

r = (rmax − rmin)·exp
(
−10Iter2

Itermax2

)
+ rmin (18)

where rmin is the minimum search radius, rmax is the maximum search radius, Itermax is the maximum
number of iterations, and Iter is the number of iterations.Energies 2020, 13, x FOR PEER REVIEW 6 of 18 
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A good initial swarm location can make the algorithm converge faster. Therefore, in the improved
FOA, a population is generated randomly, and then, the location of the optimal individual is selected as
the initial swarm location instead of the location generated according to Equation (14). The improved
FOA algorithm based on the dynamic search radius is called IFOA. Algorithm 1 shows the main
structure of IFOA.
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Algorithm 1. Improved fruit fly optimization algorithm (IFOA) algorithm

Parameters: PS, Itermax, rmax, rmin
Output: Solution X*
//Initialization
Set PS, Itermax, rmax, rmin
For i = 1, 2, . . . , PS

Xi = rand(LR)/ /Generate the locations of PS individuals
Si = Xi
Smelli = f itness(Si)

[bestSmell, bestIndex] = min(Smell)
Endfor
X_axis = X(bestIndex)//Set swarm location
Iter = 0, X* = X_axis
Repeat

r = (rmax − rmin)·exp
(
−10Iter2

Itermax2

)
+ rmin

//Osphresis foraging phase
For i = 1, 2, . . . , PS

Xi = X_axis + r·rand()
Si = Xi
Smelli = f itness(Si)

[bestSmell, bestIndex] = min(Smell)
Endfor
//Vision foraging phase
if Smellbest > bestSmell then

Smellbest = bestSmell
X_axis = X(bestIndex)

Iter = Iter + 1
Until Iter == Itermax

5. Implementation of IFOA on OCL Problem

When using IFOA to solve the OCL problem, each individual in the fruit fly swarm corresponds
to a solution in the problem. Taking a multi-chiller composed of three chillers as an example, the PLR
value of each chiller is represented by a decimal code value, and the encoded values of the three
chillers constitute a fruit fly individual, as shown in Figure 3, where each PLR value must satisfy the
constraints given by Equation (2).
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Figure 3. Encoding of fruit fly individual.

Step 1. Initialization.
First determine the center of a good fruit fly swarm. Randomly generate an initial swarm of fruit

fly composed of PS fruit fly individuals, calculate the energy consumption of each chiller according to
Equation (3), and then obtain the total energy consumption of multi-chiller system by Equation (4).
The energy consumption of all PS multi-chiller systems is calculated accordingly. After substituting the
PLR values of the three chillers into Equation (5), the total cooling output is obtained and compared
with the CL demand of the system. The value of the fitness function of the multi-chiller that satisfy
the constraints is equal to its energy consumption value, and the value of the fitness function of the
multi-chiller that does not satisfy the constraints is given a larger penalty value. Find the fruit fly with
the smallest fitness function value in the swarm, and take the position of this fruit fly as the center
position X_axis of the swarm.
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Taking Figure 3 as an example, the data of the three chillers are in Ref. [6], and their rated cooling
capacity is 800RT. The calculation process is as follows:

• P1 = 100.95 + 818.61 × 0.6588 − 973.43 × (0.6588)2 + 788.55 × (0.6588)3 = 443.235317 KW,
• P2 = 481.473064 KW, P3 = 478.487741 KW,
• J = P1 + P2 + P3 = 1403.196121 KW,
• 0.6588 × 800 + 0.8589 × 800 + 0.8823 × 800 = 1920RT, 1920RT = CL.

Step 2. Osphresis foraging phase.
Find the search radius r according to Equation (18), then use the equation Xi = X_axis + r·rand() to

find the position of the fruit fly, and a swarm of PS fruit fly individuals is generated according to this
method. Next, calculate the total energy consumption, total cooling output, and fitness function values
of the multi-chiller separately. The calculation method is the same as Step 1.

Step 3. Vision foraging phase.
Find the fruit fly with the smallest fitness function value in the swarm, and take the position of

this fruit fly as the center position X_axis of the swarm.
Step 4. Repeat steps 2 and 3 until Iter reaches Itermax.
After the iteration is terminated, the coding of the fruit fly individual with the smallest fitness

function value is the solution to the OCL problem.

6. Simulation Results

6.1. Cases Used in Experiments

In the experiments, three well-known cases are selected to verify the performance of IFOA in
solving the OCL problem.

6.1.1. Case with Six Chillers

Case 1 is based on the multi-chiller system of a semiconductor plant located in Hsinchu Science
Garden (Taiwan), and was originally proposed by Ref. [6]. It consists of six chiller units. Among them,
the capacity of four units is 1280RT, and the other two units are 1250RT. Table 1 lists the chiller data for
the first case that can be used in Equation (3).

Table 1. Chiller data in case 1.

Chiller c1i c2i c3i Capacity (RT)

1 399.345 −122.12 770.46 1280
2 287.116 80.04 700.48 1280
3 −120.505 1525.99 −502.14 1280
4 −19.121 898.76 −98.15 1280
5 −95.029 1202.39 −352.16 1250
6 191.750 224.86 524.04 1250

6.1.2. Case with Four Chillers

Case 2 is based on the multi-chiller system in a hotel located in Taipei, and was originally proposed
by Ref. [3]. It consists of four chiller units, among which two units have the capacity of 450RT, and two
units have the capacity of 1000RT. Table 2 lists the chiller data for the second case that can be used in
Equation (3).
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Table 2. Chiller data in case 2.

Chiller c1i c2i c3i c4i Capacity (RT)

1 104.09 166.57 −430.13 512.53 450
2 −67.15 1177.79 −2174.53 1456.53 450
3 384.71 −779.13 1151.42 −63.20 1000
4 541.63 413.48 −3626.50 4021.41 1000

6.1.3. Cases with Three Chillers

The multi-chiller system in Case 3 is also a semiconductor factory located in Hsinchu Science
Garden, which uses three chillers with a design capacity of 800RT [6]. Table 3 lists the chiller data for
the third case that can be used in Equation (3).

Table 3. Chiller data in case 3.

Chiller c1i c2i c3i c4i Capacity (RT)

1 100.95 818.61 −973.43 788.55 800
2 66.598 606.34 −380.58 275.95 800
3 130.09 304.50 14.377 99.80 800

6.2. Results and Analysis

The IFOA algorithm was implemented in the Visual Studio 2010 environment using C++ and
run on the Intel Core i5–9300H 2.40 GHz PC. IFOA was run 30 times independently considering that
unexpected situations may occur. The maximum, minimum, mean, and standard deviation were
calculated from 30 optimal objective function values to comprehensively evaluate the IFOA algorithm’s
ability to solve the OCL problem.

The optimal results of IFOA (the minimum of 30 optimal objective function values) are compared
with those of some algorithms. We bold the optimal value of the algorithms and the reduction in
energy consumption of IFOA.

IFOA has four control parameters, and their setting values are shown in Table 4.

Table 4. Parameter setting values of IFOA.

Symbol Meaning Value

PS
population size of Case 1 200

population size of Case 2 and Case 3 50

Itermax maximum number of iterations 5000
rmin minimum value of search radius 0.00001
rmax maximum value of search radius 1.0

6.2.1. Comparisons of the First Case Experiment

Table 5 summarizes the comparison of the optimal values of IFOA and TLBO [21], Two Stage
DE [14], and DCEDA [28]. As can be seen from the table, (1) when CL is 6858, 6477, and 6096, IFOA is
equal to Two Stage DE and DCEDA; (2) when CL is 5717, 5334, IFOA saves 116.16 KW and 81.337 KW
more than Two Stage DE and 0.517 KW and 0.043 KW more than DCEDA. It is particularly emphasized
here that we added the strikethrough to the optimal values 3838.2079 and 3507.269 obtained by Two
Stage DE, because these two values are wrong. Taking the optimal value of 3838.2079 as an example,
let us restore its calculation process:

• P1 = 399.345 − 122.12 × 0.843243 + 770.46 × (0.843243)2 = 844.210495 KW,
• P2 = 287.116 + 80.04 × 0.783222 + 700.48 × (0.783222)2 = 779.505229 KW,
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• P3 = −120.505 + 1525.99 × 0.000000 – 502.14 × (0.000000)2 = −120.505 KW,
• P4 = 781.488298 KW, P5 = 755.200502 KW, P6 = 798.313427 KW,

• J =
6∑

i=1
Pi = 3838.212951 KW.

Table 5. The energy conservation of IFOA compared with teaching–learning-based optimization
(TLBO), Two Stage differential evolution (DE) and distributed chaotic estimation of distribution
algorithm (DCEDA) in case 1.

CL(RT) Chiller TLBO [21] Two Stage DE [14] DCEDA [28] IFOA Energy Saving/KW

i PLRi
Power

(KW) (A) PLRi
Power

(KW) (B) PLRi
Power

(KW) (C) PLRi
Power

(KW) (D) D-A D-B D-C

6858(90%) 1 0.8186 4738.54 0.81273 4738.575 0.8126 4738.58 0.8127 4738.575 0.035 0 0
2 0.7523 0.749554 0.7489 0.7496
3 1.0000 1.000000 1.0000 1.0000
4 1.0000 1.000000 1.0000 1.0000
5 1.0000 1.000000 1.0000 1.0000
6 0.8297 0.838621 0.8395 0.8386

6477(85%) 1 0.727731 4421.65 0.720409 4421.6486 0.7280 4421.65 0.7279 4421.649 0 0 0
2 0.656132 0.634290 0.6564 0.6561
3 1.000000 1.000000 1.0000 1.0000
4 1.000000 1.000000 1.0000 1.0000
5 1.000000 1.000000 1.0000 1.0000
6 0.716524 0.746387 0.7160 0.7164

6096(80%) 1 0.6431 4143.64 0.642368 4143.7064 0.6431 4143.71 0.6427 4143.706 0.066 0 0
2 0.5621 0.562711 0.5622 0.5628
3 1.0000 0.999999 1.0000 1.0000
4 1.0000 0.999999 1.0000 1.0000
5 1.0000 0.999999 1.0000 1.0000
6 0.5946 0.594798 0.5946 0.5944

5717(75%) 1 0.55765 3904.70 0.843243 3838.2079 0.0000 3843.07 0.0000 3842.553 −62.147 −116.16 −0.517
2 0.46918 0.783222 0.7144 0.7150
3 0.99995 0.000000 1.0000 1.0000
4 1.00000 0.999999 1.0000 1.0000
5 1.00000 0.999999 1.0000 1.0000
6 0.47250 0.882499 0.7941 0.7934

5334(70%) 1 0.64179 3642.51 0.758176 3507.269 0.0000 3546.48 0.0000 3546.437 −96.073 −81.337 −0.043
2 0.66219 0.689668 0.5831 0.5835
3 0.33009 0.000000 1.0000 1.0000
4 0.99059 1.000000 1.0000 1.0000
5 0.99900 1.000000 1.0000 1.0000
6 0.58047 0.760606 0.6221 0.6217

The PLR value here retains six digits after the decimal point, and the PLR is a double type variable
in the actual program, thus, the accuracy is reduced, resulting in a slight error in the calculation result.
In other words, the J value obtained in the actual program is 3838.2079. In addition, we noticed that
the value of PLR3 is 0.000000, that is, the third chiller is off, and its energy consumption should be
0. But Two Stage DE substitutes 0.000000 into the equation and obtains a value of −120.505. That is,
the energy consumption of the third chiller is −120.505 KW, which is obviously unreasonable, and its
actual optimal value should be 3958.7129 KW (3838.2079 + 120.505 = 3958.7129); (3) when CL is 6477,
IFOA is equal to TLBO; when CL is 6858 and 6096, TLBO saves 0.035 KW and 0.066 KW more than
IFOA; when CL is 5717 and 5334, IFOA saves 62.147 KW and 96.073 KW more than TLBO. Figure 4 is a
histogram representation of the results in Case 1.

The optimal value of IFOA is the minimum value of the objective function obtained by running
it 30 times independently. To further evaluate the stability of the algorithm, Table 6 summarizes the
maximum, minimum, mean, and standard deviation of the optimal objective function values got by
IFOA and DCEDA after 30 independent runs. Measure the stability of the algorithm by first comparing
the mean, and if the mean is equal, compare the standard deviation. It can be seen from Table 6
that under all five CLs, the mean and standard deviation of IFOA are smaller compared to DCEDA.
Therefore, we can conclude that the stability of IFOA in case 1 is better than DCEDA. In addition,
we also give the running time of the algorithm in Table 6, which is the average time of 30 independent
runs. It can be seen from the table that CPU time of IFOA and DCEDA is about 0.7 s for all five CLs.
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Table 6. Results of objective function in 30 runs in case 1.

Optimization
Method

Load CL
(RT)

Power (KW) Standard
Deviation

CPU Time (s)
Max Min Mean

IFOA 6858(90%) 4738.577 4738.575 4738.576 7.746 × 10−4 0.74
DCEDA 6858(90%) 4739.08 4738.58 4738.66 0.113 0.73

IFOA 6477(85%) 4421.651 4421.649 4421.649 5.477 × 10−4 0.73
DCEDA 6477(85%) 4422.83 4421.65 4421.78 0.232 0.71

IFOA 6096(80%) 4143.708 4143.706 4143.707 6.325 × 10−4 0.72
DCEDA 6096(80%) 4144.31 4143.71 4143.78 0.116 0.70

IFOA 5717(75%) 3844.036 3842.553 3842.652 3.947 × 10−1 0.68
DCEDA 5717(75%) 3845.16 3842.55 3842.85 0.557 0.68

IFOA 5334(70%) 3546.438 3546.437 3546.437 5.477 × 10−4 0.68
DCEDA 5334(70%) 3562.39 3546.44 3547.09 2.338 0.66

6.2.2. Comparisons of the Second Case Experiment

Table 7 summarizes the optimal values of IFOA and TLBO [21], Two Stage DE [14], and DCEDA [28].
As can be seen from the table, (1) when CL is 1160, IFOA saves energy by 0.02 KW more than DCEDA,
otherwise the two are equal; (2) when the CL is 2320, 1740, 1450, and 1160, respectively, IFOA saves
energy by 0.073 KW, 10.679 KW, 0.043 KW, and 0.004 KW compared to Two Stage DE. In other
cases, the two are equal. It is particularly emphasized here that we added the strikethrough to the
optimal values 942.059, 752.963, and 583.938 obtained by Two Stage DE. The reason is the same as in
Case 1. Their actual optimal values should be 1009.209 KW (942.059 + 67.15 = 1009.209), 820.113 KW
(752.96 + 67.15 = 820.113), and 651.074 KW (583.938 + 67.136 = 651.074); (3) when the CL is 2610,
IFOA is equal to TLBO; when the CL is 1740, TLBO saves 1.35 KW more than IFOA; when the CL is 2320,
2030, 1450, and 1160, respectively, IFOA saves energy by 0.04 KW, 0.65 KW, 87.32 KW, and 205.77 KW
compared to TLBO. Figure 5 is a histogram representation of the results in Case 2.
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Table 7. The energy conservation of IFOA compared with TLBO, Two Stage DE, and DCEDA in case 2.

CL(RT) Chiller TLBO [21] Two Stage DE [14] DCEDA [28] IFOA Energy Saving/KW

i PLRi
Power

(KW) (A) PLRi
Power

(KW) (B) PLRi
Power

(KW) (C) PLRi
Power

(KW) (D) D-A D-B D-C

2610(90%) 1 0.992 1857.3 0.990491 1857.297 0.9909 1857.30 0.9908 1857.30 0 0 0
2 0.908 0.905503 0.9059 0.9059
3 1.000 1.000000 1.0000 1.0000
4 0.755 0.756791 0.7564 0.7565

2320(80%) 1 0.82570 1455.70 0.822981 1455.733 0.8291 1455.66 0.8289 1455.66 −0.04 −0.073 0
2 0.80305 0.801856 0.8055 0.8055
3 0.89931 0.885369 0.8965 0.8966
4 0.68776 0.685549 0.6879 0.6879

2030(70%) 1 0.72446 1178.79 0.725289 1178.138 0.7262 1178.14 0.7262 1178.14 −0.65 0 0
2 0.76312 0.739752 0.7402 0.7402
3 0.71095 0.722185 0.7215 0.7216
4 0.64959 0.648549 0.6486 0.6485

1740(60%) 1 0.60049 997.18 0.745135 942.059 0.6034 998.53 0.6036 998.53 1.35 −10.679 0
2 0.65995 0.000000 0.6577 0.6576
3 0.55975 0.748647 0.5648 0.5648
4 0.60999 0.656017 0.6077 0.6077

1450(50%) 1 0.5995 907.39 0.599201 752.963 0.6069 820.07 0.6068 820.07 −87.32 −0.043 0
2 0.3555 0.000000 0.0000 0.0000
3 0.4395 0.571431 0.5683 0.5683
4 0.57992 0.656017 0.6086 0.6087

1160(40%) 1 0.32975 856.84 0.000000 583.938 0.0000 651.09 0.0000 651.07 −205.77 −0.004 −0.02
2 0.32025 0.000012 0.0000 0.0000
3 0.32982 0.556082 0.5569 0.5551
4 0.53625 0.603912 0.6031 0.6049
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Table 8 summarizes the maximum, minimum, mean, and standard deviation of the optimal
objective function values got by IFOA and DCEDA after 30 independent runs. As seen from Table 8,
in all six CLs, the mean values of the optimal objective function values of IFOA are equal to the
minimum values, and the standard deviations are 0; this result proves that the stability of IFOA in
Case 2 outperforms that of DCEDA. In addition, the average running times of the algorithms are given
in Table 8. As can be seen from the table, the CPU time of the algorithm decreases with the decrease of
CL. The CPU time of IFOA and DCEDA is approximately equal.
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Table 8. Results of objective function in 30 runs in case 2.

Optimization
Method

Load CL
(RT)

Power (KW) Standard
Deviation

CPU Time (s)
Max Min Mean

IFOA 2610(90%) 1857.299 1857.299 1857.299 0 0.68
DCEDA 2610(90%) 1858.62 1857.30 1857.43 0.314 0.67

IFOA 2320(80%) 1455.665 1455.665 1455.665 0 0.66
DCEDA 2320(80%) 1457.41 1455.66 1455.77 0.283 0.67

IFOA 2030(70%) 1178.137 1178.137 1178.137 0 0.65
DCEDA 2030(70%) 1178.72 1178.14 1178.20 0.096 0.64

IFOA 1740(60%) 998.533 998.533 998.533 0 0.63
DCEDA 1740(60%) 1000.56 998.53 998.61 0.627 0.62

IFOA 1450(50%) 820.073 820.073 820.073 0 0.55
DCEDA 1450(50%) 822.36 820.07 820.24 0.463 0.54

IFOA 1160(40%) 651.072 651.072 651.072 0 0.47
DCEDA 1160(40%) 656.72 651.09 651.35 1.708 0.48

6.2.3. Comparisons of the Third Case Experiment

Table 9 summarizes the comparison of the optimal values of IFOA and TLBO [21], Two Stage
DE [14], and DCEDA [28]. It can be seen from the table, (1) IFOA is equal to Two Stage DE and DCEDA
under all six CLs; (2) when CL is 2160, 1680, 1440, 1200, and 960, respectively, IFOA saves energy by
0.01 KW, 0.02 KW, 100.95 KW, 100.945 KW, and 100.951 KW compared to TLBO, otherwise the two are
equal. Figure 6 is a histogram representation of the results in Case 3.

Table 9. The energy conservation of IFOA compared with TLBO, Two Stage DE and DCEDA in case 3.

CL(RT) Chiller TLBO [21] Two Stage DE [14] DCEDA [28] IFOA Energy Saving/KW

i PLRi
Power

(KW) (A) PLRi
Power

(KW) (B) PLRi
Power

(KW) (C) PLRi
Power

(KW) (D) D-A D-B D-C

2160(90%) 1 0.725 1583.82 0.7253 1583.81 0.7265 1583.81 0.7254 1583.81 −0.01 0 0
2 0.975 0.9747 0.9735 0.9746
3 1.000 1.0000 1.0000 1.0000

1920(80%) 1 0.66 1403.20 0.6591 1403.20 0.6609 1403.20 0.6588 1403.20 0 0 0
2 0.86 0.8585 0.8557 0.8589
3 0.88 0.8824 0.8834 0.8823

1680(70%) 1 0.59415 1244.34 0.5961 1244.32 0.5942 1244.32 0.5959 1244.32 −0.02 0 0
2 0.74365 0.7447 0.7455 0.7453
3 0.76220 0.7591 0.7603 0.7588

1440(60%) 1 0.000 1094.55 0.0000 993.60 0.0000 993.60 0.0000 993.60 −100.95 0 0
2 0.885 0.8855 0.8858 0.8854
3 0.915 0.9145 0.9142 0.9146

1200(50%) 1 0.000 933.275 0.0000 832.33 0.0000 832.33 0.0000 832.33 −100.945 0 0
2 0.743 0.7435 0.7425 0.7431
3 0.757 0.7565 0.7575 0.7569

960(40%) 1 0.00 793.201 0.0000 692.25 0.0000 692.25 0.0000 692.25 −100.951 0 0
2 0.57 0.5699 0.5683 0.5700
3 0.63 0.6301 0.6317 0.6300

Table 10 summarizes the maximum, minimum, mean, and standard deviation of the optimal
objective function values obtained by IFOA and DCEDA after 30 independent runs. As seen from
Table 10, in all six CLs, the mean values of the optimal objective function values got by IFOA equal the
minimum values, and the standard deviations are 0; this result proves that the stability of IFOA in
Case 3 outperforms that of DCEDA. In addition, the average running times of the algorithms are given
in Table 10. As can be seen from the table, the CPU time spent by IFOA and DCEDA is around 0.1 s for
all six CLs.
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Table 10. Results of objective function in 30 runs in case 3.

Optimization
Method

Load CL
(RT)

Power(KW) Standard
Deviation

CPU Time (s)
Max Min Mean

IFOA 2160(90%) 1583.807 1583.807 1583.807 0 0.13
DCEDA 2160(90%) 1585.24 1583.81 1583.98 0.295 0.12

IFOA 1920(80%) 1403.196 1403.196 1403.196 0 0.12
DCEDA 1920(80%) 1405.01 1403.20 1403.32 0.272 0.11

IFOA 1680(70%) 1244.325 1244.325 1244.325 0 0.12
DCEDA 1680(70%) 1244.83 1244.32 1244.37 0.087 0.11

IFOA 1440(60%) 993.602 993.602 993.602 0 0.10
DCEDA 1440(60%) 995.07 993.60 993.66 0.209 0.10

IFOA 1200(50%) 832.325 832.325 832.325 0 0.10
DCEDA 1200(50%) 834.30 832.33 832.42 0.316 0.10

IFOA 960(40%) 692.251 692.251 692.251 0 0.10
DCEDA 960(40%) 695.22 692.25 692.39 0.485 0.10

6.2.4. Results of Comparison of Three Case Experiments

Table 11 summarizes the results of the previous three case studies. As can be seen from the table,
in Cases 1, 2, and 3, the number of optimal values (the optimal values in all algorithms) found by
IFOA are 3, 5, and 6, respectively, and the ratio of the optimal values found is 60%, 83.3%, and 100%,
respectively. In three cases, of a total of 17 CLs, IFOA found a total of 14 optimal values; the ratio of the
optimal value found is 82.4%, and the ratio of the optimal value found in all algorithms is the highest.
In addition, in order to evaluate the stability of IFOA, by comparison with DCEDA, the average value
of all the objective function values of IFOA is smaller, and the standard deviation is close to or equal to
0. It can be concluded from the comparison of the above two aspects that IFOA is superior to other
comparison algorithms in solving OCL problems.
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Table 11. Statistics of the optimal results found by IFOA.

Number of Optimal Results Ratio of Optimal Result

Case 1 3 60% (3/5)
Case 2 5 83.3% (5/6)
Case 3 6 100% (6/6)
Total 14 82.4% (14/17)

7. Conclusions and Future Work

OCL is a crucial optimization problem in many realistic applications. However, this problem has
not been solved well. Therefore, an efficient optimization algorithm is urgently needed to solve the OCL
problem. In this study, in order to solve the OCL problem, in view of the two disadvantages of FOA,
we propose an improved FOA algorithm (IFOA). The main contributions of the research are summarized
as follows: (1) a mechanism for generating candidate solutions is developed. This mechanism changes
the generation of candidate solutions from nonlinear to linear, so that IFOA has the ability to search
uniformly in the solution space; (2) a new dynamic search radius method is proposed, which makes
the search radius change smoothly with the number of iterations. In the early iterations, the large
search radius gave IFOA global search ability. Then, as the number of iterations increases, the search
radius gradually decreases. In the later stage of the iteration, the position of the fruit fly swarm is close
to the optimal solution. At this time, a small search radius can enhance the local search ability of IFOA.

In order to verify the ability of IFOA to solve OCL problems, we selected three well-known cases
to our study. The experiment results show that IFOA has two advantages: (1) strong optimization
ability. The probability of IFOA finding the optimal solution is 82.4%, which is the highest among all
algorithms; (2) high stability. The mean value of all objective functions of IFOA is smaller and the
standard deviation is equal or close to 0. From the above two aspects, we can draw a conclusion that
the IFOA algorithm is a highly recommended effective algorithm for solving OCL problems, and it can
also be used in other optimization fields.

There are several opportunities for future research on optimization algorithms for the OCL problem.
First, the multi-chiller load balancing problem will be considered. Then, some new multi-objective
evolutionary optimization algorithms [43–50] can be used to solve the above OCL problems.
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Nomenclature

PLR partial load ratio Smellbest
the best smell concentration in vision
foraging phase

CL cooling load r the search radius
RT design capacity IFOA improved fruit fly optimization algorithm
ON the state of the chiller GA genetic algorithm
P power consumption SA simulated annealing
a

coefficients of the chiller KW-PLR curve

PSO particle swarm optimization
b GRG generalized reduced gradient
c DS differential search
d DCSA differential cuckoo search algorithm
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J
the total energy consumption of
multi-chiller system

LGM Lagrangian method
B&B branch and bound

n the total number of chillers ES evolution strategy
PS population size GM gradient method
Iter the number of iterations DE differential evolution
LR the fruit fly swarm location range IFA improved firefly algorithm

FR the flight range NNPSO
neural networks model with particle
swarm optimization

X horizontal coordinate GAMS general algebraic modeling system
Y vertical coordinate TLBO teaching-learning-based optimization

DIST
the distance between the individual and
the origin

EIWO improved invasive weed optimization
EMA exchange market algorithm

S the smell concentration judgment value CGOA
improved grasshopper
optimization algorithm

Smell the smell concentration VAFSA improved artificial fish swarm algorithm

bestSmell
the best smell concentration in osphresis
foraging phase

IGDT information gap decision theory

bestIndex location with the best smell concentration DCEDA
distributed chaotic estimation of
distribution algorithm
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