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Abstract: This article studies the exchange of self-produced renewable energy between prosumers
(and with pure end consumers), through the discrete trading of energy packages and proposes
a framework for optimizing this exchange. In order to mitigate the imbalances derived from
discrepancies between production and consumption and their respective forecasts, the simultaneous
continuous trading of instantaneous power quotas is proposed, giving rise to a time-ahead market
running in parallel with a real-time one. An energy management system (EMS) based on stochastic
model predictive control (SMPC) simultaneously determines the optimal bidding strategies for both
markets, as well as the optimal utilisation of any energy storage system (ESS). Simulations carried out
for a heterogeneous group of agents show that those with SMPC-EMS achieve savings of between 3%
and 15% in their energy operation economic result. The proposed structures allows the peer-to-peer
(P2P) energy trading between end users without ESS and constitute a viable alternative to avoid
deviation penalties in secondary regulation markets.

Keywords: energy trading; microgrids; peer to peer; stochastic; model predictive control; energy
management system; prosumers; continuous market; discrete market

1. Introduction

The growing presence of distributed energy resources (DER) makes more and more necessary a
change in the classical conception of energy markets. By giving end users the possibility of producing
their own energy, the figure of the prosumer appears as an additional role to the traditional ones of
pure producer and consumer. According to the latest annual forecast report [1] of the International
Energy Agency (IEA), energy from renewable sources will increase its penetration in the coming years,
from 26% share of global generation in 2019 to 30% in 2024. To do so, the agency estimates that the
renewable power installed worldwide will increase by 50% in that period. Moreover, it is expected that
almost 30% of this increase will be covered by distributed solar photovoltaic (PV) generation, which
implies the installation of between 300 and 400 GW (+250%) of additional power in the aforementioned
five-year period. PV installations owned by individuals, communities or industries will represent
an increasing percentage of the total installed distributed PV power. The availability of ownership
data varies greatly between countries, but taking the example of Germany, which has one of the most
developed renewable sectors in the world, it can be seen how in 2016 more than 42.5% of PV generation
capacity was owned by private individuals or farmers, while only 15.7% was owned by standard
power providers (the remaining being owned by industries, project planners or the business sector) [2].

While the primary objective of end users when installing DER is self-consumption, energy
surpluses might become common as the efficiency of the consumption equipment and the productivity
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of the generators improve. This surplus energy can be stored in different types of energy storage
systems (ESS) such as pumped hydro storage, hydrogen or batteries, etc., to be consumed later during
periods when production is lower than consumption. However, if the excess production exceeds the
storage capacity, a generation curtailment should be carried out in those instants when it does not
exist instantaneous consumption, which translates into energy waste. Currently, many states have
implemented legislative mechanisms to encourage renewable sources to account for an ever-increasing
proportion of the national annual electricity generation, and compel traditional distribution system
operators (DSO) to absorb excess renewable production and to compensate the end user for this
surplus. To have DSO as the only alternative to which to sell the excess production poses a problem
for DER owners, since it leaves to its total discretion (possibly forced also by public administrations)
the determination of the main parameters of the trade, namely: amount of power/energy, price per
unit and form of economic compensation. Furthermore, in a global context, the emergence of the
shared economy concept [3] has revolutionised other sectors such as passenger transport or tourist
accommodation. It seems therefore logical to envisage a future in which heterogeneous end users
(households, factories, work-centres, electric vehicles, etc.) pertaining to the same microgrid can
exchange energy peer-to-peer (eP2P) according to their production and consumption profiles [4].

Peer-to-peer energy trading has raised considerable interest within the scientific community
in recent years. Different approaches and techniques has been proposed to incorporate P2P trade
into the energy system [5], including game theory [6], distributed trading algorithms [7] (including
consensus [8]), evolutionary algorithms (including Particle Swarm Optimization [9] and Genetic
algorithms [10]) and market-driven trading [11,12], which is the one used in this study. The interested
reader is referred also to [13] for a comprehensive survey on architectures, power routing and security
and privacy issues. A large body of literature is devoted to applications in which a series of peers under
the same point of common coupling (PCC), or alternatively within the same microgrid, aggregate
their generation and their consumption so that they interface the grid to import/export only the net of
what they need/exceed as a community. The costs and incentives are then shared out by prorating the
contribution of each peer to the total consumption and total supply (energy produced that does not
need to be imported from the network) [14–16].

Regarding explicitly market-driven P2P energy trading, the traditional approach is to negotiate
energy packages (EP) of fixed or arbitrary size, ahead of time. In other words, the agreement between
buyer and seller occurs in a time period prior to that of the actual consumption of the transacted
energy [17]. Depending on whether buyer and/or seller have the corresponding ESS to store the energy
before its consumption, the physical transfer of the energy between them can occur immediately after
the trade or at a later instant, exactly when the consumption is supposed be done. When no one has an
ESS, the seller negotiates the transfer of an energy package that has not yet been physically generated,
and the buyer negotiates the purchase of an energy package that is expected to be consumed. In either
case, any divergence between the forecasts and the actual values (of generation and/or consumption)
would cause a breach of the agreed transaction, with the corresponding power imbalance for the grid.

Only a few works have addressed the inherent uncertainty in residential eP2P trading due to
the stochastic nature of renewable generation and electricity consumption. Liu et al. [18] propose an
intraday hour-ahead P2P market (as an additional alternative to demand side management) to trade
the imbalances of the day-ahead peer-to-grid market. Another solution, proposed by Zhang et al. [19],
consists on trading energy and uncertainty jointly, so that PV owners sell electricity to consumers
and consumers with flexible loads sell regulating capacity to PV owners. Both previous approaches
mitigate but do not eliminate the effect of uncertainties, as they might still affect the smaller EP traded
in intraday markets, or the flexibility used as adjustable capacity. An alternative form, presented by
the authors of this paper in [20], is to commercialise power quotas (PQ) either for supply or demand,
that are negotiated (and adapted) in real time. In this way, only real surpluses and deficits are traded
at any given time, and uncertainties do not affect market operations. However, real-time markets
are often characterized by greater price volatility than time-ahead markets, precisely because of their
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uncertainty. Furthermore, the existence of ESS on the seller’s and buyer’s side allows the transfer
of energy ahead of consumption, extending market time, monetisation possibilities and the rate of
renewable energy used.

Therefore, this paper proposes the coexistence of two parallel markets for residential eP2P trading.
In the first one, already stored energy packages are matched with available storage capacity ahead of
time, so that transfer breaches can not occur. In the second one, power quotas are negotiated in real
time, tackling uncertainty through real time adaptation of transferred power. Those agents who do not
have an ESS can still benefit from the time-ahead market and use the real-time market as a regulation
mechanism in case of imbalances.

The remaining of the paper is organised as follows. The structures of the two markets are
introduced in (Section 2). An energy management system (EMS) allowing simultaneous participation
in both markets is presented in (Sections 3 and 5). Section 4 derives two control formulations that
simultaneously optimize participation in each market, one being stochastic and the other deterministic.
The two control structures are simulated on an example case (Section 6) to analyze their different effect
on the operating result of the peers, which are discussed in Section 7.

2. Integrated Energy Packages and Power Quotas Markets

A double auction (DA) based market [21] is a trading institution in which both buyers and sellers
can raise and modify their respective offers to buy (bids) and offers to sell (asks). In a discrete-time
double auction (DDA), the change in allocation of goods or market clearing occurs at one or more
fixed time instants between the start of the auction and the end of the trading period. Traders must
place their bids and asks before each clearing instant, and both set of offers are used to determine the
supply and demand staircases for commodities. The equilibrium point sets the (uniform) trading price,
and thus the surpluses, for all the trades within that trading period.

In a continuous double auction (CDA), in contrast, buyers and sellers can individually choose to
accept a bid or ask at any particular price (discriminatory price) at any point in time, and then update
their allocation immediately.

In general, various forms of energy trading can coexist, associated with both continuous and
discrete double auction structures. In our specific case, we propose the coexistence of a market for the
trading of energy packages, based on a DDA, with another market for the trading of power quotas,
based on a CDA.

The discrete market acts as a futures market. According to the Investopedia, a futures market is
an auction market in which participants buy and sell commodity and futures contracts for delivery on
a specified future date. Futures are exchange-traded derivatives contracts that lock in future delivery
of a commodity or security at a price set at present time. Those agents who expect to have more
consumption than generation, try to balance this expected deficit through the purchase of energy
packages of adequate size in advance. Those agents who have a certain amount of stored energy,
and who expect to have more generation than consumption, try to make the surplus profitable through
the sale of energy packages. The EMS uses the power quota market as an alternative for continuous
time compensation for possible errors in operational predictions. Even if energy packages have been
purchased in advance to compensate for an expected deficit, an agent may find itself in an energy
deficit situation if predictions fail (i.e., if its actual consumption is higher than expected, or if actual
generation is lower than expected). Alternatively, those agents who did not expect to have a surplus
can effectively experience it if their consumption is lower than expected or their production is higher
than expected. In these cases, they can choose to store the surplus in their ESS, or sell it on the
continuous market. In any case, it is assumed that all agents are individually rational (IR): deficit
agents only buy in the P2P continuous market if the purchase price is lower than that offered by the
energy retailer company; surplus agents only sell in the P2P continuous market if the sale price is
higher than the utility they expect to obtain for the consumption of that energy in the future.
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3. An EMS for Simultaneous Participation in Both Markets

The architecture of the proposed EMS is depicted in Figure 1. To enable simultaneous participation
in both markets, while performing optimal power dispatch, the EMS needs to track the state of the
entity. At any given time t, the entity’s state, x(t) = {SOC(t) , BC(t) , SC(t)}, is defined by the state
of charge of its ESS, SOC(t), and the buy commitment, BC(t), and sell commitment SC(t), previously
acquired and not yet completely satisfied. An agent’s state implicitly determines the amount of energy
it can bid or ask for in the market.

Integrator
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EP Mkt Model

Constructor EP Mkt Model

Strategy Advisor~ P2P

EP Mkt

P2P

PQ Mkt

x[k+]= {SOC[k+],

SC[k+],
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Figure 1. Structure of the proposed EMS, allowing the energy entity to participate simultaneously in
two eP2P markets, one discrete in which packages are exchanged and another continuous in which
power quotas are negotiated.

The EMS might or not include an Strategy Advisor (SA), explained in Section 4, that
performs optimisation at each topt = τk = k · ∆TDDA immediately prior to each discrete market
session. Before such session opens for offers submission, the agent’s EMS is assumed to have the
following information:

• The following N opening instants of the discrete market, {τk+1, . . . , τk+N}, which are assumed
to be evenly spaced over time according to a certain period of time, ∆TDDA = τi+1 − τi, i ∈ Z+,
where N is the length of the prediction horizon, measured in number of intervals of the discrete
market. In the case of agents whose permanence in the market is dynamic this implies that they
know therefore the number of remaining sessions they have to negotiate, and the corresponding
time period they would have to effectively inject/absorb the energy they manage to trade.

• The market history up to a certain past horizon Nh. This includes, for each past trading period
k− i, i ∈ Z+, 1 ≤ i ≤ Nh, the set of all individual bids and asks, Ω(τk−i) = {ϕ(τk−i) , ϑ(τk−i}
(each offer Ω is defined by a bid/asked quantity ϕ at a price ϑ) and their market result,M(τk−i) =

{q(τk−i) , p(τk−i)} (being q the quantity actually traded and p the price actually paid/received).
• Forecasts of consumption profile (P̃load(t)) and generation profile (P̃gen(t)) along certain forecasting

horizon (t ∈ Z : τk ≤ t ≤ τk + N f ). Generally, N f ≥ Nh, i.e., the EMS uses a wider time range
for calculating the foreseeable energy balance than the time range it uses to optimize its future
actions in the markets.

• The time profile of the price offered by the utility company (ϑutil(t)) along the prediction horizon
(t ∈ Z : τk ≤ t ≤ τk + N · ∆TDDA ).
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3.1. Energy Balance Forecasting

Since the time resolution of the consumption and generation forecasts is generally greater than
the length of the interval between sessions, the EMS is in charge of carrying out the time aggregation to
calculate the interval-wise energy gross result vector GR = {gr[i]}, where (please note that parentheses
are used to refer to continuous time variables, while brackets denote discrete variables):

gr[i|τk] =

τk+i∆TDDA∫
t=τk+(i−1)∆TDDA

(
P̃gen(τ)− P̃load(τ)

)
dτ, for 1 ≤ i ≤ N (1)

Obviously, it must hold that N f ≥ N · ∆TDDA . The cumulative gross result, GRc, vector shows the
same dimensions as GR, its elements being given by:

grc[i|τk] =
i

∑
j=k

gr[j|τk], for 1 ≤ i ≤ N (2)

Three additional forecast variables can be calculated using the cumulative gross result:

PD[τk] =

⌊
BC(τk) +

N

∑
i=1

gr[i|τk]

⌋
−

(3)

PS[τk] =

⌈
(Br(τk)− Bmin) +

N

∑
i=1

gr[i|τk]− SC(τk)

⌉+
(4)

ES[τk] =
dPS[τk]− (Bmax − Bmin)e+

PS[τk]
) (5)

where d·e+ denotes max{0, ·} and b·c− denotes min{0, ·}. PD[τk] ∈ (−∞, 0] is the predicted deficit,
which equals zero unless the sum of the buy commitments not yet received, (BC(τk)), plus the
aggregation of the gross result over the prediction horizon is negative. PS[τk] ∈ [0, ∞) is the predicted
surplus, which equals zero unless the sum of the current level of energy stock, (Br(τk)− Bmin), plus
the aggregation of the gross result over the prediction horizon, minus the sell commitments not yet
satisfied, (SC(τk)), is positive. Finally, ES[τk] ∈ [0, 1) is the excess surplus which represents the portion
of the expected surplus that exceeds the maximum energy stock storage capacity, (Bmax − Bmin),
and which therefore cannot be stored and would be unused if not sold.

Private Valuation

The trading agents of all entities have the same way of valuing power in the PQ-Market and
energy in the EP-Market. However, the valuation is different for each of the two possible roles (buyer
or seller). For the PQ-Market, the private valuation of the buyers is equivalent to the instantaneous
price at which the distributor is pricing the energy at each moment, i.e., λb

p(t) = ϑ(t). This implies
that (rational) buyers never buy P2P power above the distributor’s price. On the other hand, sellers
value power at 35% of the value offered by the distributor (this is an arbitrarily chosen percentage and
can be replaced by any other. Different percentages could even be selected for each of the traders).
This implies that the unit price of the sellers is, at most, 65% lower than the instantaneous price offered
by the distributor.
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For the EP-Market, each trader values the energy as the average cost of its future energy needs,
predicted over a future horizon of duration Np.

λi
e(t) =

Np−1

∑
k=0

q̂i(t + k) · p̂i(t + k)

Np−1

∑
k=0

q̂i(t + k)

(6)

where q̂i(t + k) is the forecast electrical consumption of the i-th prosumer during the k-th future
instant, and p̂i(t + k) is the utility electricity price for i-th prosumer during the same k-th future instant.
However, valuation here also varies depending on the role adopted by the trader. Traders which
forecast deficit (buyers) directly use the aforementioned value, which implies that a buyer will try
to buy energy packages with unitary price below its average energy unit cost within the prediction
horizon. Sellers, for their part, adjust their valuation depending on the excess surplus (5) they forecast,
considering that rather than discarding the excess of generation over consumption that exceeds the
storage capacity of the battery, it is better to lower its value to sell it albeit at a lower price:

λs
e(t) = λe(t) · (1− ES(t)) + $ · λe(t) · ES(t) (7)

where $ ∈ (0, 1) is an arbitrary ratio indicating at what percentage of the average energy cost the
surplus portion is valued.

Table 1 summarises the private valuation for both markets and both roles.

Table 1. Summary of private valuation of power (energy).

PQ-Market EP-Market

Buyer λb
p(t) = ϑ(t) λb

p(t) = λe(t)

Seller λs
p(t) = 0.35 · ϑ(t) λs

e(t) = λe(t) · (1− ES(t)) + $ · λe(t) · ES(t)

3.2. Markets Forecasting

Knowing the historical of submitted offers and their corresponding market results, the EMS can
compute the following statistical terms that constitute the model (see Figure 2) for the discrete double
auction-based energy packages market:

• The sequence of average buying and selling prices (or the average price for uniform pricing) for
each past markets session, pmkt = {p

mkt
[k− i]}, i ∈ Z : 1 ≤ i ≤ Nh. As each session corresponds

to a specific time instant t = (k− i)∆TDDA , this is equivalent to calculating the time evolution of
the average market spot price during the period covered by the previous Nh sessions.

• Liquidity vectors, for both demand, Lb = {`b[k− i]}, and supply, La = {`a[k− i]}, with i ∈ Z :
1 ≤ i ≤ Nh.

`b[k− i] = ∑ qb[k− i]
∑ϕb[k− i]

`a[k− i] = ∑ qa[k− i]
∑ϕa[k− i]
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Past offers P2P EP
Market Model

EP Mkt Model
Constructor

Figure 2. Building the probabilistic model for the discrete time energy packages market, based on the
history of offers made and their respective results in the market.

4. A Strategy Advisor Based on Model Predictive Control

The main objective of the Strategy Advisor is to meet the projected energy demand along the
prediction horizon and to do so at the lowest possible cost. To this end, taking into account the
existence and availability of the two markets, it generates an optimal dispatch plan that controls the
energy flows for each of the sources that the entity has available. The vector of controllable variables
is u = {Eutil [i] , Ech[i] , Edis[i] , ϕb[i] , ϕa[i]}, i ∈ {τk, τk+N−1}. Its components correspond to the
following energy quantities: Eutil [i] is the amount of energy to be consumed from the utility during
the i-th period; Ech[i] and Edis[i] respectively correspond to the amount of energy to be charged or
discharged from the ESS during i-th period; ϕb[i] is the amount of energy that the entity intends to buy
at the i-th period, which will be bid in the market session held in t = τi; finally, ϕa[i] is the amount of
energy that the entity attempts to sell in the i-th period, which will be asked in the market session held
in t = τi. Therefore, the function corresponding to the cost of energy operation of the entity along a
certain prediction horizon, N is:

J (x[k]), u) =
k+N−1

∑
i=k

Eutil [i] · ϑutil [i] + ϕb[i] · p̃EP [i] · (1− ˜̀b[i])

− ϕa[i] · p̃EP [i] · ˜̀
a[i]− (dgr[i]e+ − Ech[i]) · p̃PQ [i] (8)

where the tilde (˜) over a variable indicates it is a random variable. By multiplying the price p̃EP by the
buying liquidity complement (1− ˜̀b), the expected purchase prices of those market instants with low
liquidity are artificially increased. Thus, during optimisation, agents acting as buyers will be more
reluctant to plan their purchases at such market sessions. Alternatively, by multiplying the price p̃EP

by the selling liquidity ˜̀a, the expected selling prices of those market instants with low liquidity are
artificially lowered. Thus, during optimisation, agents acting as sellers will be more reluctant to plan
their sales at such market sessions.

4.1. The Expected Value Problem

The economic objective function in (8) extends over a prediction horizon. Therefore, its elements
refer to the future values of its inputs, which are the controllable variables, and to the future values
of the state of the system and its outputs, which would result from the application of those inputs.
Optimisation also depends on the forecast profiles of consumption, generation and prices for the
two existing markets. These values, as already mentioned, are stochastic and therefore subject to
uncertainty. A possible simplification consists in disregarding information on the uncertainty, taking
a nominal scenario, and optimizing actions on the nominal scenario. As the common practice for
defining a nominal scenario is to replace random variables by their expectation, the resulting problem
is called the expected value problem, the solution of which constitutes a nominal plan [22]. At the next
decision stage, the Strategy Advisor will recompute the plan by solving an updated expected value
problem on a new nominal scenario that incorporates the observations of the current stage.

In this sense, the following formulation is deterministic, as it is based on nominal consumption,
production and price profiles, without taking into account the aforementioned uncertainties.
Specifically, within the optimisation, the market-related random variables p̃EP [i] , ˜̀b[i] , ˜̀a[i] , p̃PQ [i] are
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replaced by their respective expectations, p
EP
[i] , `

b
[i] , `

a
[i] , p

PQ
[i]. Since there is no a priori statistical

information available on market uncertainty, the expectation of variables in future instants is replaced
by the average value of those variables in past isotemporal sessions (market sessions held at the same
time period of the day but in previous days).

Thus, the optimisation problem to be solved in each t = τk is the cost minimisation of the energy
operation of the entity, which is defined by the formulation (9)–(23):

u∗[i|k] = arg min
Eutil [i],Ech [i],Edis [i]

ϕb [i],ϕa [i]

k+N−1

∑
i=k

Eutil [i] · ϑutil [i]

+ ϕb[i] · pb
EP
[i] · (1− `

b
[i])

− ϕa[i] · pa
EP
[i] · `a

[i]

− (dgr[i]e+ − Ech[i]) · pPQ
[i] (9)

SOC[i + 1]= SOC[i]− Edis[i]− ϕa[i] + Ech[i] + min{κe, BC[i] + ϕb[i]} (10)

SC[i + 1]= SC[i] + ϕa[i]−min{κe, SC[i] + ϕa[i]} (11)

BC[i + 1]= BC[i] + ϕb[i]−min{κe, BC[i] + ϕb[i]} (12)

Ẽload= Esc[i] + Edis[i] + Eutil [i] (13)

DODmax≤ SOC[i] ≤ 1 (14)

0≤ Edis[i] ≤ min{κe, SOC[i]− DODmax} (15)

0≤ ϕa[i] ≤ SOC[i]− DODmax (16)

0≤ ϕb[i] ≤ 1− SOC[i] (17)

0≤ Eutil [i] ≤ Ẽload[i] (18)

0≤ Ech[i] ≤ dgr[i]− Esc[i]e+ (19)

ϕa[i] · ϕb[i]= 0 (20)

SC[i] · ϕb[i]= 0 (21)

BC[i] · ϕa[i]= 0 (22)

0.4≤ SOC[k + N − 1] ≤ 0.6 (23)

where κe is the energy transfer capacity of the entity’s converters (i.e., the maximum amount of energy
that can be injected into/drained from the grid during a single period, and DODmax is the maximum
allowable depth of discharge of the ESS. Please note that all variables are normalised with respect to
the maximum storage capacity of the entity’s ESS, so that both states and control inputs are expressed
in units of batteries.

Constraints (10) and (12) determine how the system evolves over time, while constraint (13)
imposes that the expected load must be always meet, no matter which sources are used. The following
assumptions has been considered in the controller as design criteria, which affect several constraints:

A.1. Following the prudence concept, quantities sold on the market are immediately deducted from
the SOC, even though the physical transfer has not even begun. This avoids the possibility
of selling already committed energy. On the contrary, the acquired energy is not assumed as
immediately incorporated, but is added over time. This prevents the optimiser from allocating
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energy that is expected to be acquired in a future instant but will not be available until a later
future instant (constraint (10)).

A.2. Once a purchase or sale agreement has been reached, the physical transfer of the energy
associated with that transaction begins immediately and continues uninterruptedly until it is
completed (constraints (11) and (12). In other words, transfers cannot be postponed.

A.3. Own production is dedicated primarily to self-consumption. Therefore, Esc[i] =

min{Ẽgen[i] , Ẽload[i]} is not a controllable variable but a parameter computed on the basis of
the forecast generation and consumption.

A.4. Purchasing energy from the utility for later consumption is forbidden (constraint (18)). In other
words, during periods of low tariff prices, the entity cannot acquire more energy than it needs
from the utility in order to store it and consume it during periods of high tariffs.

A.5. In the same market session, each entity can only play one role, either buyer or seller
(constraint (20)). Given that transfers must be started immediately after they are settled,
an entity with unsatisfied sales commitments cannot go to the market as a buyer (constraint
(21)); conversely, as long as it has unsatisfied buy commitments, an entity cannot go to the
market as a seller (constraint (22)).

A.6. In the optimisation process, the strategic advisor assumes that future offers will be fully matched
in the market (i.e., the optimiser assumes that qa[i] = ϕa[i] and qb[i] = ϕb[i]). Immediately after
the clearing of the k-th market session, the advisor already knows the real result of the offers
shouted in that period. If the offers have not been matched, the available energy differs from
that assumed in the optimal strategy profile, so it may be necessary to re-run the optimiser to
adjust the values of Eutil [k], Ech[k] and Edis[k]. In any case, given that the optimiser is run before
the next market session (for which the results of the immediately previous session are already
available), the quantities actually offered, ϕa∗[k] and ϕb∗[k], are always the optimal ones based
on the actual state at any given time.

4.2. Multiple Scenarios SMPC Approach (MS-SMPC)

From the point of view of each agent, both P2P markets are considered stochastic systems, since
the outputs (m = (q, p)) for each one of the agent’s offers might be different for the same inputs
(ω = ϕ, ϑ)), depending on the offers made by the other participant agents, which are considered an
unknown disturbance. Scenario-based optimisation provides an intuitive way to approach the solution
to the problem of stochastic optimisation. The idea behind this approach is to compute an optimal
finite-horizon input sequence that is feasible under Ns sampled ‘scenarios’ of the uncertainty, thus
obtaining a certain level of robustness [23]. One of the advantages of this approach is that it does
not assume a prior knowledge of the statistical properties that characterise uncertainty (e.g., a certain
probability distribution function) as is generally required in stochastic optimisation. Each scenario
consists of values for some or all of the stochastic processes that affect the system. Furthermore, it has
been widely used for performing optimal power dispatch (e.g., [24]) and for optimal participation in
energy markets [25]. In our case, only the stochasticity of the P2P markets’ prices is proposed to be
addressed. Therefore, each scenario is a full horizon sample of the prices for the two markets,

ξ(j)[k]
def
= {pEP(j)

[k], . . . , pEP(j)
[k + N − 1], `b

(j)
[k], . . . , `b

(j)
[k + N − 1],

`a
(j)
[k], . . . , `a

(j)
[k], pPQ(j)

[k], . . . , pPQ(j)
[k + N − 1]} (24)

Specifically, within the optimisation, the market-related random variables p̃EP [i], ˜̀b[i], ˜̀a[i] and
p̃PQ [i] are replaced by their corresponding values for each scenario, pEP(j)

[i], `b
(j)
[i], `a

(j)
[i] and pPQ(j)

[i].

The offers that determine actual market parameters depend directly on the energy result expected
by the different agents, which is given in turn by their consumption and generation forecasts.
These predictions depend fundamentally on the climatology, and therefore present a significant level
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of correlation between consecutive days, as well as between identical days of previous years, provided
that the typology of day (workable or weekend) is the same. Therefore, the approach proposed here
to build the set of scenarios is to use the set of time series representing market realisations in past
days (i.e., the evolution of the average prices and liquidities over similar periods of previous days).
The Multiple Scenarios Stochastic MPC (MS-SMPC) problem then reads as follows:

u∗[i|k] = arg min
Eutil [i],Ech [i],Edis [i]

ϕb [i],ϕa [i]

Ns

∑
j=1

k+N−1

∑
i=k

Eutil [i] · ϑutil [i]

+ ϕb[i] · pb
EP(j)

[i] · (1− `b
(j)
[i])

− ϕa[i] · pa
EP(j)

[i] · `a
(j)
[i]

− (dgr[i]e+ − Ech[i]) · pPQ(j)
[i] (25)

SOC[i + 1]= SOC[i]− Edis[i]− ϕa[i] + Ech[i] + min{κe, BC[i] + ϕb[i]} (26)

SC[i + 1]= SC[i] + ϕa[i]−min{κe, SC[i] + ϕa[i]} (27)

BC[i + 1]= BC[i] + ϕb[i]−min{κe, BC[i] + ϕb[i]} (28)

Ẽload= Esc[i] + Edis[i] + Eutil [i] (29)

DODmax≤ SOC[i] ≤ 1 (30)

0≤ Edis[i] ≤ min{κe, SOC[i]− DODmax} (31)

0≤ ϕa[i] ≤ SOC[i]− DODmax (32)

0≤ ϕb[i] ≤ 1− SOC[i] (33)

0≤ Eutil [i] ≤ Ẽload[i] (34)

0≤ Ech[i] ≤ dgr[i]− Esc[i]e+ (35)

ϕa[i] · ϕb[i]= 0 (36)

SC[i] · ϕb[i]= 0 (37)

BC[i] · ϕa[i]= 0 (38)

0.4≤ SOC[k + N − 1] ≤ 0.6 (39)

5. The Power Dispatcher

After solving the MS-SMPC formulated by Equations (25)–(39), since a receding-horizon strategy
is used, only the first member of the optimal finite-horizon policy is kept and applied to the system,
i.e., the SMPC control law is

κMSSMPC (x[k], ξ[k]) def
= u∗[1|k] (40)

5.1. Role Selection

Role Selection for the PQ-Market is performed based on the balance between generated power
(if available) and consumed power. Peers with surplus go to the PQ-Market as sellers trying to trade
that surplus whenever the SOC of their storage system is greater than a certain level SOCmin

Mkt. If the
SOC is lower than this level, the surplus is used to charge that storage. Deficit peers go to the market
as buyers trying to wipe out that deficit. As for the EP-Market, two possibilities arise, depending on
whether the trading agent of the entity’s EMS implements an SA or not:
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• A trading agent that does not have an SA, decides its role based only in its energy balance
forecast. If PD[τk] < 0 the entity will play buyer, even if it has surplus for the immediate time
slot. If PD[τk] = 0∧ PD[τk] > 0 the entity will play seller, even if it has deficit for the immediate
time slot (please remind that both PD[k] and PS[k] are variables that aggregate forecast over a
prediction horizon).

• Role selection in trading agents who have a strategic advisor is an inherent result of the
strategic optimisation itself. If ϕb∗[1|τk] > 0 the entity will play buyer in the immediate market
session. Conversely, if ϕa∗[1|τk] > 0 the entity will play seller in the immediate market session.
If ϕb[1|τk] = 0 ∧ ϕa[1|τk] = 0 the entity remains idle, reserving itself for future and more
potentially beneficial sessions. The possibility of ϕb[1|τk] > 0 ∧ ϕa[1|τk] > 0 is avoided by
the very definition of the optimiser’s constraints (20) and (36).

As mentioned before, the amounts ϕa∗[k] or ϕb∗[k] implicitly determine the role that the entity
will adopt in the imminent market session (remember that only one of them can be non-zero). If the
offers are matched, the optimal plan is still valid; otherwise, the optimiser must be run again to resolve
the MS-SMPC replacing ϕa∗[k] by qa∗[k] and ϕb∗[k] by qb∗[k].

5.2. Demand Satisfaction

In either case, the optimal control variables {E∗util [k
+], E∗ch[k

+], E∗dis[k
+]} are sent as inputs to the

power dispatcher (see Figure 1). The functions performed by this block are threefold: (i) to control
the power flows to ensure that demand is met at all times, (ii) to maintain the state of charge of the
Energy Storage System(s) within predefined safety levels, and (iii) to maximise, as far as possible,
the profits obtained through the participation in the P2P market. Furthermore, those entities with
Strategy Advisor use the continuous eP2P power quota market as a disturbance absorption mechanism,
i.e., they go to this market only when the difference between the forecast consumption and generation
profiles and the actual ones makes it impossible to operate following the optimal plan defined by the
strategic advisor. Meanwhile, those entities whose EMS does not have the Strategy Advisor go to both
the EP and the PQ Markets at any given time. In any case, the power demand satisfaction is driven at
all times by Algorithm 1.

Algorithm 1 Demand Satisfaction Algorithm with Integrated Markets for peer k

1: Inputs
2: {E∗util [k

+], E∗ch[k
+], E∗dis[k

+]}Optimal Plan
3: x(t) Current State
4: ϑutil(t) Energy Price offered by the utility
5: Data
6: SOCmax Maximum allowed ESS Level
7: SOCmin Minimum allowed ESS Level
8: κstg Maximum ESS charge/discharge power
9: Auxiliary

10: Φ(t) Gross Power Balance: Φ(t) def
= Pgen(t)− Pload(t)

11: Υ(t) Result After Rearrangement: Υ(t) def
= Pgen(t)− Pload(t) + PP2P(t)

12: Ψ(t) Net Power Balance: Ψ(t) def
= Pgen(t)− Pload(t) + PP2P(t) + Psto(t)

13: Ec
util(t) Accumulator of energy acquired from the utility during the k period

14: Ec
ch(t) Accumulator of energy injected into the ESS during the k period

15: Ec
dis(t) Accumulator of energy drained from the ESS during the k period

16: Result
17: Psto(t+)
18: Putil(t+)
19: SOC(t+)
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Algorithm 1 Cont.

20: while 1 do
21: if Υ(t) > 0∧ SOC(t) < SOCmax then
22: . Psc(t) = Pload(t)
23: if E∗ch[k

+] ≥ Ec
ch(t) then

24: . The optimal value of energy injected into the ESS has not yet been reached. Charge.
25: Pch(t+)← min{Υ(t), κstg}
26: else if E∗ch[k

+] < Ec
ch(t) then

27: . The optimal value of energy injected into the ESS has already been exceeded. Try to

sell the surplus.
28: Pch(t+)← 0
29: ϕa

PQ
(t)← min{Υ(t), κstg}

30: end if
31: else if Υ(t) < 0 then
32: . Psc(t) = Pgen(t)
33: if E∗dis[k

+] ≥ Ec
dis(t) then

34: . There is still room for discharge in this period. Drain the battery.
35: Pdis(t+)← −max{Υ(t),−κstg}
36: else if E∗dis[k

+] < Ec
dis(t) then

37: . The ESS has already supplied all the energy planned for this period. Try to buy

the deficit.
38: Pdis(t+)← 0
39: ϕb

PQ
(t)← min{−Υ(t), κstg}

40: end if
41: end if
42: Go to P2P PQ Market. qb

PQ
(t) and qa

PQ
(t) affect PP2P(t)

43: Recompute Ψ(t) with the updated value PP2P(t).
44: if Ψ(t) > 0 then . Could not sell all the excess.
45: if SOC(t) < 1 then . Store the remaining surplus
46: Pch(t+)← min{Ψ(t), κstg}
47: else if SOC(t) = 1 then . Sell remaining surplus to the utility
48: Putil(t+)← −Ψ(t)
49: end if
50: else if Ψ(t) < 0 then . Could not purchase all the defitit.
51: Putil(t+)← −Ψ(t)
52: else
53: . Ψ(t) = 0 Perfect Balance
54: Putil(t+)← 0
55: end if
56: Ech(t)← min(

∫
∆t→0 Pch(τ)dτ, SOCmax − SOC(t)))

57: Edis(t)← max(
∫

∆t→0−Pdis(τ)dτ, SOC(t)− SOCmin))

58: Ec
ch(t

+)← Ec
ch(t) + Ech(t)

59: Ec
dis(t

+)← Ec
dis(t) + Edis(t)

60: Ec
util(t

+)← Ec
util(t) +

∫
∆t→0 max{0, Putil(τ)dτ}

61: SOC(t+) = SOC(t) + Ech(t) + Edis(t)
62: end while
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6. Case Study

6.1. Description

In this case example the entities are a groupH of 100 houses within the same neighbourhood in
the city of Córdoba (Spain). Some of these houses (PVpen = 45%) are supposed to have photovoltaic
(PV) generation systems. There are three possible installed PV powers, Pphv ∈ {1, 3, 5} kWp, and each
of them has an associated ESS of adequate capacity, Bmax ∈ {2.5, 5, 7} kWh respectively. Houses with
no PV-installation still have an ESS of Bmax = 10 kWh to be able to participate in the EP-Market.
Among the 100 houses, SApen = 10% (10 Houses) are randomly selected which form the control set,
Hc. These houses are replicated twice, giving rise to three sets:

• Set NoStrat, (Hc): Houses without Strategy Advisor.
• Set Strat-NonSto, (Hns): Houses with Strategy Advisor based on expected value scenario according

to optimisation problem (9).
• Set Strat-Sto, (Hs): Houses with MS-SMPC-based Strategy Advisor according to optimisation

problem (25).

TheHns andHs resulting sets (20 houses) are simulated together with the remainingH houses of
the original population, which already includeHc, giving rise to a total population of nH = 120 houses.
All houses simultaneously participate in the two different markets. The first one is a PQ-Market similar
to the one introduced in [20]. The second one is an hourly EP-Market. The main parameters of both
markets are displayed in Table 2. The EMS of all houses incorporates two trading agents, one per
each market.

Table 2. Main parameters of integrated markets.

PQ-Market EP-Market

Type CDA DDA
∆T 1 min a 60 min
qmin 0.1 (kWmin) 0.25 (kWh)
qmax 3.3 (kWmin) 1 (kWh)

a Equal to the temporal resolution of the energy operation simulation, thus mimicking a continuous market.

6.1.1. Scenario Generation

To generate the scenarios (price evolution and market liquidity profiles), a full month (30 days) of
operation of 100 houses (all without Strategy Advisor) was simulated. These simulations assumed
that each agent perfectly knows its generation and consumption profiles, obtained from [26], so that
offers (and thus prices) reflect the real energy needs/excess of the traders within the simulated days.
The results are shown in Figure 3. In a real application case, the equivalent of these scenarios obtained
by simulation would be the historical data profiles obtained either from similar days in previous years
or from the days immediately preceding the current operation day, or from a combination of both.
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Figure 3. Scenarios for the MS-SMPC are the prices and liquidity profiles for 30 simulated days of the
same month under comparison (September in this case).

6.1.2. Operation Costs and Final Stock Valuation

In this case study, the net cost of energy for the i-th house over a certain period of time (T = [ti, t f ])
can be calculated as:

Φi(T) = Φi
util(T) + Φi

c(T) + Φi
EP
(T) + Φi

PQ
(T) (41)

where

Φi
util(T) = ∑

∀t∈T
Ei

util
(t) · ϑ(t) (42)

Φi
c(T) = Ei

c (T) · ϑ (43)

Φi
EP
(T) = ∑

∀ωe∈Ωep
i

Ai
ωe(T) (44)

Φi
PQ
(T) = ∑

∀ωp∈Ωpq
i

Ai
ωp(T) (45)
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being Ai
ωe(T) the amount of money corresponding to each energy package transaction ωe in the set

Ωep
i of all eP2P transactions dealt by house i at the EP-Market within T, and Ai

ωp(T) the amount of

money corresponding to each power quota transaction ωp in the set Ωpq
i of all eP2P transactions dealt

by house i at the PQ-Market within T:
Aω = qω · pω (46)

where qω is the traded quantity and pω is the unit price of the agreed transaction.
Equation (41) is the sum of the cost of energy purchased from the utility (42), plus the revenue

of energy compensated by the utility at a price equal to the Voluntary Price for the Small Consumer
(VPSC), ϑc, (43), plus the result of trading in the EP-Market (44), plus the result of trading in the
PQ-Market (45). A Net Purchase and Sell Scheme (NPSS) is followed here to calculate the amount of
compensated energy. Under this arrangement, two uni-directional meters are installed: one records
electricity drawn from the grid, and the other records excess electricity generated and fed back into
the grid. Prosumers pay retail rate for the electricity they use, and the DSO purchases their excess
generation at its avoided cost (wholesale rate), up to the amount of consumed energy, so that prosumers
may have zero energy cost with respect to the utility, but no positive balance. By convention, costs have
a negative sign, while revenues have a positive sign. In addition, and although it is not directly part of
the operating result, a way of computing the value of the energy stored at the end of the operating
period in the ESS of each house is necessary:

Φi
B f

= Bi
r(t f ) · λi(t f ) (47)

where t f is the final instant of the period of comparison and λi(t f ) is the private valuation of energy
for house i in t = t f according to (6).

6.1.3. Comparative Indicators

The comparison is then made between the energy operation results of Hc and those of Hns

and Hs. The following indicators can be computed to compare the operation performance of two
sets of houses (Ha and Hb) (Energy Result Comparator, EP-Market Result Comparator, PQ-Market
Result Comparator, Renewable Energy Use Comparator and Battery Usage Comparator) and are
defined below:

∆Φ(T) =

⌈
Φa

B f
−Φb

B f

⌉+
+ ∑
∀h∈Ha

Φh(T)⌈
Φb

B f
−Φa

B f

⌉+
+ ∑
∀h∈Hb

Φh(T)
− 1 (48)

∆RWuse(T) =
∑

∀h∈Ha

RWh(T)

∑
∀h∈H

RWh(T)
− 1 (49)

∆Buse(T) =
∑

∀h∈Ha

Bh(T)

∑
∀h∈Hb

Bh(T)
− 1 (50)

6.2. Tests and Results

Testing the effects of the MS-SMPC-based Strategy Advisor is a complicated task. First, because the
number of optimisation variables grows very fast as the length of the prediction horizon is increased.
In turn, the more optimisation variables the problem has, the number NS of different scenarios needed
to reach a certain level of confidence also increases [27].
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Additionally, since the experiments are basically agent-based simulations, it is difficult to
guarantee common conditions for entities with/without (non-)stochastic Strategy Advisor. For each
element hc ∈ Hc, two identical reproductions are created, hns ∈ Hns and hs ∈ Hs. These three
elements have exactly the same consumption and generation profiles, and in addition, the parameters
of their respective agents are also identical, including those that drive price adaptation and private
valuation determination. Therefore, the price evolution of bids and asks is the same for the three
entities. What changes between them, and in fact is the origin of the performance variability, is the
sequence of roles adopted in the market. Entities inHc adopt one or another role in an obtuse manner,
without considering the plausible evolution of the market. In contrast, the objective of the Strategy
Advisor is to steer the role selection and the temporal allocation of offered energy quantities so that
the entity takes advantage of those hourly sessions with the highest expected revenue.

Each simulation covers a whole week of energy operation during the month of September.
To check whether in the presence of uncertainty the stochastic strategy advisor is capable of obtaining
better results than the one based on the nominal scenario, it is necessary to simulate prediction
errors. For this, the agents are simulated using the real generation profile, while their forecast profile
is randomly picked among the pool of daily generation profiles corresponding to the 30 days of
September. Figure 4 shows the forecast and actual PhV power generation profiles for each week,
in which it can be seen how both accurate and imprecise forecasting are artificially simulated.
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Figure 4. Forecast vs. actual PhV power generation profiles for each week.

Tables 3–9 show the results of the simulations for each of the addends that allow to compute the
economic result derived from the energy operation (Equations (41) and (47)) of the three replicated sets.
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Table 3. Summary of energy interactions with the utility (purchased energy).

Utility Import Interactions

Eutil (kWh) Φutil (e) ϑutil (ce/ kWh)
September

Hc Hns Hs Hc Hns Hs Hc Hns Hs

Week 1 329.42 296.49 286.05 −38.9 −35.59 −34.54 −11.81 −12 −12.07
Week 2 372.57 342.33 321.58 −42.75 −39.78 −37.29 −11.47 −11.62 −11.6
Week 3 320.12 256.58 253.01 −36.16 −28.86 −28.23 −11.29 −11.25 −11.15
Week 4 355.48 325.24 322.88 −41.1 −38.18 −38.04 −11.56 −11.74 −11.78

Table 4. Summary of energy interactions with the utility (compensated energy).

Utility Export Interactions

Ec (kWh) Φc (e)
September Hc Hns Hs Hc Hns Hs

Week 1 21.97 45.79 50.17 1.10 2.29 2.51
Week 2 13.56 39.76 42.26 0.69 1.99 2.11
Week 3 22.15 34.42 30.21 1.11 1.72 1.51
Week 4 33.25 49.44 50.28 1.66 2.47 2.51

Table 5. P2P energy-package market buying interactions.

P2P EP-Market Buying Interactions

September
Eb

ep (kWh) Φb
ep (e) ϑ

b
ep (ce/kWh)

Hc Hns Hs Hc Hns Hs Hc Hns Hs

Week 1 79.45 90.25 99.59 −9.07 −10.22 −11.27 −11.42 −11.33 −11.32
Week 2 78.55 73.05 81.47 −9 −8.33 −9.3 −11.46 −11.4 −11.42
Week 3 78.65 78.7 89.56 −9.13 −9.05 −10.35 −11.61 −11.5 −11.56
Week 4 73.1 82.08 84.57 −8.05 −8.35 −8.67 −11.01 −10.18 −10.25

Table 6. P2P energy-package market selling interactions.

P2P EP-Market Selling Interactions

September
Es

ep (kWh) Φs
ep (e) ϑ

s
ep (ce/kWh)

Hc Hns Hs Hc Hns Hs Hc Hns Hs

Week 1 150.27 176.28 176.35 17.16 20.45 20.47 11.41 11.60 11.61
Week 2 127.79 152.77 148.49 14.72 17.89 17.41 11.51 11.71 11.72
Week 3 157.37 173.89 172.56 18.19 18.19 20.22 11.56 11.71 11.72
Week 4 118.34 135.33 141.59 13.05 15.01 15.69 11.03 11.09 11.08

Table 7. P2P power quota market interactions.

P2P PQ-Market Buying Interactions

September
Eb

pq (kWh) Φb
pq (e) ϑ

b
pq (ce/kWh)

Hc Hns Hs Hc Hns Hs Hc Hns Hs

Week 1 146.61 89.47 92.9 −7.26 −4.24 −4.21 −4.95 −4.74 −4.54
Week 2 135.24 87.49 98.88 −7.36 −4.10 −4.74 −5.44 −4.69 −4.79
Week 3 129.78 99.38 90.35 −6.33 −4.50 −4.03 −4.88 −4.53 −4.46
Week 4 123.74 75.14 76.72 −6.18 −3.49 −3.46 −4.99 −4.65 −4.52
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Table 8. P2P power-quota market selling interactions.

P2P PQ-Market Interactions

September
Es

pq (kWh) Φs
pq (e) ϑ

s
pq (ce/kWh)

Hc Hns Hs Hc Hns Hs Hc Hns Hs

Week 1 301.58 153.05 152.49 14.13 7.61 7.79 4.69 4.97 5.11
Week 2 264.98 114.24 112.71 12.82 6.45 6.06 4.84 5.65 5.38
Week 3 283.68 139.70 140.31 13.10 7.22 6.94 4.62 5.17 4.95
Week 4 235.54 115.71 115.59 10.49 5.57 5.91 4.45 4.81 5.11

Table 9. Valuation of final stock of stored energy.

Valuation of Final Storage

September
B f (kWh) ΦB f (e)

Hc Hns Hs Hc Hns Hs

Week 1 22.66 22.12 21.65 2.73 2.65 2.59
Week 2 31.03 25.55 26.72 3.76 3.08 3.24
Week 3 24.85 27.45 26.61 2.87 3.19 3.10
Week 4 26.77 25.37 25.15 3.10 2.96 2.94

Figures 5–8 are the radar plots [28] of Weeks 1–4, where the different components of the economic
result are displayed along with the total results, Φ(T = 1 week), themselves.
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Figure 5. Energy operation economic result for Week 1. The radar plot shows the aggregate economic
result (Φ) and its components, namely, the monetary amounts corresponding to expenses for energy
imported from the utility (Φutil), revenue obtained from compensation for energy fed into the grid
(Φc), result from trading in the EP market (ΦEP ) and in the PQ market (ΦPQ ) and the valuation of the
final battery energy content (ΦB f ).
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Figure 6. Energy operation economic result for Week 2.
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Figure 7. Energy operation economic result for Week 3.
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Figure 8. Energy operation economic result for Week 4.

Finally, Table 10 shows the comparative indicators with respect to the performance of the set of
houses without SA (Hc)) for the set of houses with Nominal MPC-based SA (Hns) and for the set of
houses with MS-SMPC-based SA (Hs).

Table 10. Comparative indicators.

September
∆Φcost(%) ∆RWuse(%) ∆Buse(%) ΓRW (%)

Hns Hs Hns Hs Hns Hs Hns Hs

Week 1 −13.46 −15.19 −3.05 −2.89 +59.89 +61.46 96.95 97.11
Week 2 −14.33 −15.22 −3.47 −3.66 +66.53 +69.36 96.53 96.34
Week 3 −33.46 −28.62 −2.76 −3.37 +64.87 +68.52 97.24 96.63
Week 4 −10.04 −12.99 −2.72 −1.71 +55.74 +57.97 97.28 98.29

7. Discussion

This article proposes the simultaneous participation of energy traders in two energy markets
which run in parallel while being executed simultaneously. The discrete EP-Market acts as a futures
market, allowing traders to purchase/sell energy packages in advance of the occurrence of a forecast
deficit. The continuous PQ-Market acts as a spot market, in which power quotas are negotiated
to balance deficits and excesses instantly. To allow this simultaneous participation, a specifically
designed EMS is required to allow the automation of the procedures for determining private valuation,
price adaptation and role selection for each of the two markets. Entities with an excess of energy
generation act as sellers, and have the option of either selling as much as they can as soon as possible
(in the immediately following market moments) or offering the aforementioned excess at certain
future market moments where the price obtained is historically more advantageous. They must
also decide on the quantities to be offered in the discrete market, taking into account that the stock
sold in the time-ahead market is no longer available for sale in the real-time market. On the other
hand, entities that foresee having an energy deficit (those whose expected consumption is greater
than their foreseen generation) have to decide whether to try to anticipating it by obtaining energy
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packages in the discrete market, which is generally more expensive but less volatile, or to risk trying
to cancel their deficit in the continuous market of power quotas, which is generally cheaper but less
liquid. In this sense, the proposed EMS can incorporate the strategy advice functionality, consisting
on the determination of the optimal energy operation profile and encompasses the storage utilisation,
the energy acquisition from the power grid and the interactions foreseen in the two eP2P markets.
This article proposes a possible implementation of this Strategy Advisor, based on MPC, including
two variants, one based on a single nominal scenario, and the other based on SMPC, which optimises
contemplating multiple scenarios. Simulations carried out on the case study show that both variants
offer an improvement in economic performance of between 10% and 30% compared to the case of
not using a SA. Furthermore, the MS-SMPC-based variant generally performs slightly better than
the nominal variant, as it contemplates more possible market price evolution profiles (derived from
different PV generation scenarios), although to state this conclusively it would be necessary to make a
deeper statistical analysis which is beyond the scope of this article. These savings are mainly achieved
by buying less energy from the grid and replacing it with cheaper energy, either previously bought
and stored or bought instantaneously; and by selling a greater portion of the surplus energy in market
sessions where the price is higher. But it’s not all advantages. This improvement is also achieved
through an intensification of the use of storage systems, which could lead to a reduction in their
lifespan. The translation of depreciation costs into the calculation of energy operating costs is an open
issue, both in terms of the selection of the usage level indicator and in terms of the monetisation of
such usage.
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The following abbreviations are used in this manuscript:

CDA Continuous Double Auction
DDA Discrete Double Auction
DER Distributed Energy Resources
DOD Depth Of Discharge
DSO Distribution System Operator
EMS Energy Management System
EP Energy Packages
ESS Energy Storage System
P2P Peer-To-Peer (alt. Prosumer-To-Prosumer)
PCC Point of Common Coupling
PQ Power-Quotas
PV Photovoltaic
SA Strategy Advisor
SMPC Stochastic Model Predictive Controller
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