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Abstract: A modified particle swarm optimization and incorporated chaotic search to solve economic
dispatch problems for smooth and non-smooth cost functions, considering prohibited operating zones
and valve-point effects is proposed in this paper. An inertia weight modification of particle swarm
optimization is introduced to enhance algorithm performance and generate optimal solutions with
stable solution accuracy and offers faster convergence characteristic. Moreover, an incorporation of
chaotic search, called logistic map, is used to increase the global searching capability. To demonstrate
the effectiveness and feasibility of the proposed algorithm compared to the several existing methods
in the literature, five systems with different criteria are verified. The results show the excellent
performance of the proposed method to solve economic dispatch problems.
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1. Introduction

In electric power systems, an economic dispatch (ED) problem is a basic optimization problem,
with the main aim to reduce the total cost of the power generation operation. Basically, all solutions to
solving ED problems in [1–6] can be split into: (1) traditional optimization methods and (2) evolutionary
computation-based optimization techniques. ED problems can be solved by several mathematical
programming methods, such as lambda iteration, base point, and participation factor method [1], interior
point method [2], and with evolutionary computation-based optimization techniques, such as artificial
neural networks [3]. The ED problems, with smooth and non-smooth functions, were performed in
previous years by taking into consideration generation constraints, such as valve-point effects (VPE),
multiple fuel options, ramp rates, and prohibited operating zones (POZ), and transmission network
losses. Traditionally, the thermal generator cost function is known as a quadratic function. In reality,
there has been multi-fuel options on the large steam generators, and some of the ripples appear on the
cost function while the steam is recognized through the valve, which is called the VPE [4]. Problems
that have non-smooth, non-continuous, or non-linear solution spaces are not capable of being efficiently
solved by most of the traditional techniques [5,6]. However, evolutionary computation has developed
rapidly, until now, and many modern meta-heuristic algorithms using different modifications were
successfully used to solve such problems [7–15]. Generally, it can be divided into three types based on
their characteristics. The first is evolutionary algorithms [10,11], the second is simulated ecosystem
algorithms [12,13], and the third is swarm intelligence algorithms [14,15]. To effectively address this
issue, many varieties of computational intelligence approach are employed, such as genetic algorithms
(GA) [16–18], improved evolutionary programming (IEP) [19], classical evolutionary programming
(CEP) [20], differential evolution (DE) [21,22], fast convergence evolutionary programming (FCEP),
and particle swarm optimization [23–25], respectively.

Energies 2020, 13, 3721; doi:10.3390/en13143721 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-5285-8752
http://www.mdpi.com/1996-1073/13/14/3721?type=check_update&version=1
http://dx.doi.org/10.3390/en13143721
http://www.mdpi.com/journal/energies


Energies 2020, 13, 3721 2 of 16

Particularly for the particle swarm optimization (PSO), numerous researchers applied it in power
systems to solve ED problems [26–33]. PSO has become a popular optimization algorithm; it is
widely used in practical problem solving because it has a simple concept and is effective. Recently,
researchers have been studying theoretical studies and modifying the PSO algorithm [34–39] to get
better performance improvement. The performance improvements of PSO have been published,
including parameter studies, a combination with auxiliary operations, and topological structures.
Several studies show that even though some methods can get optimal results, some of that does not
satisfy the constraints. Meanwhile, a proper selection of inertia weight gives a balance both of the global
and local exploration to obtain a sufficiently optimal solution with less iterations [40–42]. To overcome
this deficiency, a new, modified inertia weight of particle swarm optimization algorithm (MIW-PSO) is
proposed in this paper. In the MIW-PSO, the constriction factor and inertia weight approaches are
used together where a new modification of inertia weight is introduced with a combination of chaotic
behavior strategy. In addition, cognitive and social learning factors are incorporated. The cognitive
learning factor reflects characteristics of a particle performance toward the individual performance
and the social learning factor reflects the performance of a particle affected by the environment toward
best position of the warm. Therefore, the adjustment in the cognitive and social learning factors is
used to turn the system strain. The feasibility of the proposed method is applied on five case studies,
and some methods from previous literature are used to compare the results.

The significant contributions of this study are:

1. this study demonstrates a modification of the PSO algorithm with incorporated chaotic search to
get optimal scheduling of the operation of generators with an economical advantage, such as
optimal total cost;

2. this study shows extraordinary performance among other method approaches, which can generate
optimal solutions with stable solution accuracy, offer faster convergence characteristics, and satisfy
the constraints.

The remainder of this paper is structured as follows. Section 2 shows the ED problem formulation.
Section 3 presents the proposed method. Section 4 verified the results of the simulation from case
studies. Section 5 presents the advantages of the study. Finally, Section 6 concludes the study.

2. Economic Dispatch Problem Formulation

The ED problem is essentially an optimization problem to obtain an optimal fuel cost by
scheduling an appropriate combination of the power output from each generating unit and satisfy the
constraints [38]. To minimize the total cost, the formulation is stated in the following formula [9]:

Minimize TC =

NG∑
i=1

CGi(PGi) (1)

where CGi(PGi) represents the cost function of unit generator ith ($/hr), PGi represents the output
power of the unit generator ith (MW) . and NG represents the total of the generators. The unit generator
cost function is stated as follows [10]:

CGi(PGi) = αi + βi PGi + γi P2
Gi (2)

where αi, βi, and γi represents the unit generator cost coefficients.
In fact, the ED problem have non-differentiable points due to the valve-point loadings and multiple

fuels in the objective function. Hence, the objective function should consist of some of the non-smooth
cost functions [11]. In case a cost function considers the VPE problem, the objective function is usually
explained as a superposition of sinusoidal and quadratic functions. In other words, the generator with
multi-valve steam turbines has a contrast input-output characteristic compared to the smooth cost
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function. The VPE should be included in the cost model to consider the precise cost curve of each
generating unit. The ED problem, considering VPE, is mathematically stated as follows [16]:

CGi(PGi) = αi + βi PGi + γi P2
Gi +

∣∣∣gi Sin(hi(PGi min − PGi))
∣∣∣ (3)

where gi and hi are the generator cost coefficients reflecting the VPE.
In this paper, the ED problem is described as an optimization process with taking into account the

following constraints. First, in terms of power balance constraint, the total power of all generators
should be balanced to total demand of the system, as shown in the following formula:

NG∑
i=1

Pi = PD (4)

where PD is the total demand (MW) and Pi is power output of generator ith (MW).
Second, in terms of power output constraint, as shown in the following:

Pi min ≤ Pi ≤ Pi max (5)

where Pi min and Pi max are the minimum and maximum power output (MW).
Third, in terms of POZ, a generator has discontinuous fuel-cost characteristics. Therefore, POZ is

described as a thermal unit, which has a steam valve, while operation, or in another case a vibration in
a shaft bearing, which may result in interference and suspend the performance of the input–output
curve. Constraints of the POZ are written as (6):

PGi


Pmin

i ≤ Pi ≤ Plower
i, j

Pupper
i, j−1 ≤ Pi ≤ Plower

i, j

PUpper
i,PZi

≤ Pi ≤ Pmax
i

, j = 2, 3, . . . , PZi (6)

where Plower
i, j and PUpper

i,PZi
are the lower boundaries and the upper boundaries of POZ of generator ith in

(MW), respectively. PZi is the number of POZ of generator ith.

3. Proposed Method

Basically, the velocity and each particle position of PSO are updated as (7) and (8), respectively [43]:

Vt+1
i = Vt

i + C1 rand1
(
Pbestt

i −Xt
i

)
+ C2rand2

(
Gbestt

−Xt
i

)
(7)

Xt+1
i = Xt

i + Vt+1
i (8)

where Vt+1
i is the individual ith velocity modification at iteration tth, Vt

i is the individual ith velocity
at iteration tth, C1 and C2 are the cognitive and social learning factors, Pbestt

i is the individual particle
ith best position at iteration tth, Gbestt is the best position of the global particle ith at iteration tth, Xt

i is
the position of individual ith at iteration tth, and Xt+1

i is the modified position of individual.
In 1999, Maurice Clerc introduced that the use of a constriction factor, K, may be significant to

ensure PSO convergence. The constriction factor approach (CFA) is written as (9):

Vt+1
i = K

(
Vt

i + C1 rand1
(
Pbestt

i −Xt
i

)
+ C2rand2

(
Gbestt

−Xt
i

))
(9)

and K is defined as (10):

K =
2∣∣∣2−∅− √∅2 − 4∅

∣∣∣ (10)

where ∅ is a function of C1 and C2, ∅ = C1 + C2, and ∅ > 4.0.
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The system convergence can be controlled by ∅ [44]. To guarantee stability, the ∅ value must
be greater than 4.0. The K will be decreased if the value of ∅ increases and gives a slower response.
Therefore, it has been observed that the ∅ value is 4.1. This value makes the algorithm stability
guaranteed (and fast response). Research shows that set the ∅ to 4.1≤ ∅ ≤4.2 gives a better result.
In [45], it introduces the turbulence factor, which explained that the perturbation for each particle
ith is equivalent to the range itself and randomly selected particle ith. The CFA assists the algorithm
for optimal convergence compared to the turbulence factor because of: (1) in the beginning stages
of the process, both the turbulence factor and distance between particles should be large to avoid
premature convergence, and (2) at the end of the stages of the process, the turbulence factor should be
smaller due to the distance between particles becoming smaller, so the swarm enables to converge in
the global optimum.

Furthermore, inertia weight, w, is known as importance parameters on the PSO algorithm. The w
was proposed to control exploration and exploitation balancing of PSO. Typically, particles will incline
to trapped in the local optima if the value of the w is small. However, the particles will incline to do the
global search if the w is within the range, which is 0.8 to 1.2 [46]. A proper value of the w makes the
exploration of global and local balance to get an optimal solution with less iterations [47]. PSO with
inertia weight approach is stated as:

Vt+1
i = w Vt

i + C1 rand1
(
Pbestt

i −Xt
i

)
+ C2rand2

(
Gbestt

−Xt
i

)
(11)

w is defined as shown in (12):
w = wmax −

wmax −wmin
Itermax

Iter (12)

Time-varying and adaptive parameter control strategies are two parameter control categories for
w in [30] and [47]. A large number of studies with time-varying control strategies conclude that the
form of the fitness landscape needs to know to make the algorithms perform better. However, it is
impracticable in many of the applications. Therefore, as shown in many of the strategies, even though
the assumptions can be wrong in some applications, it assumed that algorithm maximum iterations are
known by default. Moreover, most of the researchers adjust the w, use the fitness and its derivatives
when the adaptive parameter control strategy (APCS) applied for w. Therefore, the APCS is used for
completion on this paper. Different to the standard w on initial PSO, and the modification of w in [48],
in this paper, the modification of w is formulated as follows:

wm = wmin +
(wmax −wmin)(Itermax − Iter)

Itermax
(13)

where wm is the proposed modified inertia weight, wmax is the maximum inertia weight, wmin is the
minimum inertia weight, Itermax, and Iter is the maximum iteration and current iteration, respectively.

In [49] and [50], effect of chaotic sequence is observed. An iterator, namely logistic map, is a part
of the dynamic system that shows chaotic behavior. The equation is written as follows:

ft = µ ft−1 (1− ft−1 ) (14)

where ft is the chaotic parameter and µ is the control parameter with value 0 to 4.
In many fields of science, chaos phenomenon is often to occur. Combining the chaotic sequences

with the mutation factor in differential evolution can improve the solution quality. The solution shows
a rich variety of behaviors despite the simplicity of the equation. Variation of µ gives a significant
impact to (14) as representative of the behavior of the system. In this paper, the µ value is 4 [50].
In order to improve the global searching capability, and to increase the probability of escaping from
a local minimum, a new, modified inertia weight with chaotic is offer, stated as (15). Through the
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employment of chaotic sequences with inertia weight in PSO makes the global searching capability
improve by preventing premature convergence through increased diversity of the population.

wp = wm ft (15)

where wp is the proposed inertia weight modification and wm is the modified inertia weight.
The adjustment of cognitive learning factor, C1, and social learning factor, C2 are incorporated

with aims to change the system tension. In these terms, if the adjustment value is lower, it makes
the particles enable to drift away from the target zone before being pulled back. On the other hand,
the abrupt movement toward the target region will happen if the adjustment value is higher. In this
paper, the adjustment parameters of cognitive learning and social learning factors are determined as
Cp1 and Cp2, respectively. Different values can be found for the cognitive and social learning factors in
published references, such as 2.0 [24,40,50] or 2.05 [14,36]. In this study, the chosen values of Cp1 and
Cp2 are 2.05 because they lead to good solution. Finally, the MIW-PSO is formulated in (16) [51].

Vt+1
i = K

(
wp Vt

i + Cp1 rand1
(
Pbestt

i −Xt
i

)
+ Cp2rand2

(
Gbestt

−Xt
i

))
(16)

4. Case Study

The proposed MIW-PSO is applied to five case studies and addressed to deal with an optimal
total cost in generator scheduling. Overall, the comparison methods through published journal papers,
with different years, are used to shows the performance of the MIW-PSO. The comparison methods
used are numerical lambda-iteration method (NM), modified Hopfield neural network (MHNN), IEP,
modified PSO (MPSO), GA, evolutionary programming (EP), PSO, PSO with local random search
(PSO-LRS), new PSO with local random search (NPSO-LRS), differential evolution (DE), improved
bird swarm algorithm (IBSA), crossover operation with PSO (COPSO), combination of DE-PSO-DE
(DPD), improved fast evolutionary programming (IFEP), FCEP, improved differential evolution (IDE),
modified symbiotic organisms search (MSOS), and new PSO (NPSO). All numerical simulations in
this paper are coded in MATLAB (R2017a, MathWorks, Natick, MA, US) and executed in the Intel
i5-6500, 3.20-GHz, 32-GB RAM processor. wmax = 0.9, wmin = 0.4 and also Cp1 and Cp2 are used as
parameters for the implementation of the proposed method. The values of Cp1 and Cp2 have the same
value, which implies the same weights are given between Pbest and Gbest in the evolution processes.
All the parameters are tuned in the initialization process and also in process of velocity and position
update of the particle.

4.1. First Case Study

MIW-PSO is used to solve ED problems, considering the smooth cost function in this case
study. The obtained results are compared with NM [40,52], MHNN [40], IEP [40], and modified PSO
(MPSO) [40]. In this case study, the MIW-PSO is tested to the test power system on [52], which consists
of three generators, with total demand of 850 MW. The generating unit capacity and coefficients
used in this case study are shown in Table 1 [52]. Comparison of generator power output on the
first case study with different methods is shown in Table 2. The calculation of economic operations
in this case study is done by finding the optimal scheduling combination of each generating unit.
The input–output characteristics of each generator are used as a priority measure of the selection
of the optimal combination of power outputs to obtain the optimal fuel costs. Moreover, Table 3
shows that all methods satisfy the power balance except MHNN. Therefore, even though the total cost
obtained by MHNM is lower, it does not make it the best result. Obviously, the total cost obtained from
each method does not differ much. Nevertheless, the MIW-PSO shows the superiority among other
methods because MIW-PSO is able to obtain an optimal total cost and, in the meantime, also satisfies
the constraints given. The MIW-PSO obtains 8194.35513 $⁄h for the total cost, as seen in Table 3.



Energies 2020, 13, 3721 6 of 16

Table 1. Generator unit capacity and coefficients on the first case study.

Unit αi($) βi($/MW) γi($/MW) Pimin(MW) Pimax (MW)

1 561 7.92 0.001562 150 600
2 310 7.85 0.00194 100 400
3 78 7.97 0.00482 50 200

Table 2. Comparison of generator power output on the first case study.

Total Power Output (MW)
Method

NM
[40,52]

MHNN
[40]

IEP
[40]

MPSO
[40] MIW-PSO

Generator 1 393.17 393.80 393.18 393.17 393.03
Generator 2 334.60 333.10 334.59 334.60 334.71
Generator 3 122.23 122.30 122.23 122.23 122.26

NM: numerical lambda-iteration method; MHNN: modified Hopfield neural network; IEP: improved evolutionary
programming; MPSO: modified particle swarm optimization; MIW-PSO: modified inertia weight of PSO.

Table 3. Simulation result comparison on the first case study.

Method NM
[40,52]

MHNN
[40]

IEP
[40]

MPSO
[40] MIW-PSO

Total power
output (MW) 850.00 849.20 850.00 850.00 850.00

Total cost ($/hr) 8194.35612 8187.00000 8194.35614 8194.35612 8194.35513

4.2. Second Case Study

In the second case study, the MIW-PSO is applied, considering non-smooth cost function due to
the VPE. The obtained results are compared to GA [16,40,42], evolutionary programming (EP) [40,42],
IEP [19,40], and MPSO [40]. The system applied in this study contains three thermal units with
total demand of 850 MW, and the generating unit capacity and coefficients are shown in Table 4 [16].
Comparison of generator power output on the second case study using different methods is shown in
Table 5. Total power output of all methods satisfy the power balance constraints, which is 850 MW.
The MIW-PSO obtained optimal total cost, which is 8234.06 $⁄h. Table 6 shows the simulation results
comparison for the second case study.

Table 4. Generator unit capacity and coefficients on the second case study.

Unit αi($) βi($/MW) γi($/MW) gi hi Pimin(MW) Pimax (MW)

1 561 7.92 0.001562 300 0.0315 100 600
2 310 7.85 0.00194 200 0.042 100 400
3 78 7.97 0.00482 150 0.063 50 200

Table 5. Comparison of generator power output on the second case study.

Total Power Output (MW)
Method

GA
[16,40,42]

IEP
[19,40]

EP
[40,42]

MPSO
[40] MIW-PSO

Generator 1 300.00 300.23 300.26 300.27 300.43
Generator 2 400.00 400.00 400.00 400.00 400.00
Generator 3 150.00 149.77 149.74 149.73 149.57

GA: genetic algorithm; IEP: improved evolutionary programming; EP: evolutionary programming; MPSO: modified
particle swarm optimization; MIW-PSO: modified inertia weight of particle swarm optimization.
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Table 6. Simulation result comparison on the second case study.

Method GA
[16,40,42]

IEP
[19,40]

EP
[40,42]

MPSO
[40] MIW-PSO

Total power
output (MW) 850.00 850.00 850.00 850.00 850.00

Total cost ($/hr) 8237.60 8234.09 8234.07 8234.07 8234.06

4.3. Third Case Study

The third case study is applied, considering the POZ constraint, and the results are compared with
GA, PSO [22,24,41], DE [22], PSO-LRS [41], NPSO-LRS [22], and IBSA [53]. In this case study, the input
data for the system with six generators are given in Table 7, with total demand of 1263 MW [38].
Comparison of generator power output on the third case study, using different methods, is shown
in Table 8. Besides GA, DE, IBSA, and MIW-PSO, there are three methods that obtain the same total
cost, which are PSO, PSO-LRS, and NPSO-LRS. However, the MIW-PSO obtains an optimal total cost
among the other methods, which is 15,448.97 $/hr. The MIW-PSO proves its superiority among the
other methods to obtain optimal generation cost. Comparison of simulation results for the third case
study is shown in Table 9. Total generation cost comparison is shown in Table 10.

Table 7. Generator unit capacity and coefficients on the third case study.

Unit αi($) βi($/MW) γi($/MW) Pimin(MW) Pimax (MW) Prohibited Zones (MW)

1 240 7.0 0.0070 100 500 [210, 240] [350, 380]
2 200 10.0 0.0095 50 200 [90, 110] [140, 160]
3 220 8.5 0.0090 80 300 [150, 170] [210, 240]
4 200 11.0 0.0090 50 150 [80, 90] [110, 120]
5 220 10.5 0.0080 50 200 [90, 110] [140, 150]
6 190 12.0 0.0075 50 120 [75, 85] [100, 105]

Table 8. Comparison of generator power output on the third case study.

Total Power
Output (MW)

Method

GA
[22,24,41]

PSO
[22,24,41]

PSO-LRS
[41]

NPSO-LRS
[22]

DE
[22]

IBSA
[53] MIW-PSO

Generator 1 474.81 447.50 447.44 446.96 448.27 447.48 448.56
Generator 2 178.64 173.32 173.34 173.39 172.96 173.30 172.34
Generator 3 262.21 263.47 263.36 262.34 263.44 263.44 265.31
Generator 4 134.28 139.06 139.13 139.51 139.30 139.05 130.54
Generator 5 151.90 165.48 165.51 164.71 165.28 165.46 173.13
Generator 6 74.18 87.13 87.17 89.02 86.68 87.12 86.15

GA: genetic algorithm; PSO: particle swarm optimization, PSO-LRS: PSO with local random search; NPSO-LRS:
new PSO with local random search; DE: differential evolution; IBSA: improved bird swarm algorithm; MIW-PSO:
modified inertia weight of PSO.

Table 9. Simulation result comparison on the third case study.

Method GA
[22,24,41]

PSO
[22,24,41]

PSO-LRS
[41]

NPSO-LRS
[22,41]

DE
[22]

IBSA
[53] MIW-PSO

Total power
output (MW) 1,276.03 1,276.01 1,275.94 1,275.94 1,275.93 1,275.88 1,276.03

Total loss (MW) 13.0217 12.9584 12.9571 12.9361 12.95 12.95 13.02
Total cost ($/hr) 15,459.00 15,450.00 15,450.00 15,450.00 15,449.58 15,448.98 15,448.97
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Table 10. Total generation cost comparison on the third case study.

Method GA
[22,41]

PSO
[22,41]

PSO-LRS
[41]

NPSO-LRS
[22,41]

DE
[22]

IBSA
[53] MIW-PSO

Minimum 15,459.00 15,450.00 15,450.00 15,450.00 15,449.58 15,448.98 15,448.97
Maximum ($/h) 15,524.00 15,492.00 15,455.00 15,455.00 15,449.65 15,449.00 15,449.47

Average 15,469.00 15,454.00 15,454.00 15,454.00 15,449.61 15,448.98 15,448.99

4.4. Fourth Case Study

The fourth case study is applied to the 40-unit system and considers the VPE. The comparison
result with other methods, such as COPSO [50], DPD [54], IDE [55], MSOS [56], NPSO-LRS, IFEP,
and FCEP [23]. In this case study, the input data have been adopted from [23], as shown in Table 11,
with total demand 10,500 MW. The MIW-PSO proves its superiority among the other methods to
obtain optimal generation cost. MIW-PSO obtains the lowest total cost among all stated methods,
which is 121,218 $/h, and the acquired results satisfy all the considered constraints. Comparison of the
simulation result for the fourth case study is shown in Table 12.

Table 11. Generator unit capacity and coefficients on fourth case study.

Unit αi($) βi($/MW) γi($/MW) gi hi Pimin(MW) Pimax (MW)

1 94.705 6.73 0.00690 100 0.084 36 114
2 94.705 6.73 0.00690 100 0.084 36 114
3 309.540 7.07 0.02028 100 0.084 60 120
4 369.030 8.18 0.00942 150 0.063 80 190
5 148.890 5.35 0.01140 120 0.077 47 97
6 222.330 8.05 0.01142 100 0.084 68 140
7 287.710 8.03 0.00357 200 0.042 110 300
8 391.98 6.99 0.00492 200 0.042 135 300
9 455.76 6.60 0.00573 200 0.042 135 300
10 722.82 12.9 0.00605 200 0.042 130 300
11 635.20 12.9 0.00515 200 0.042 94 375
12 654.69 12.8 0.00569 200 0.042 94 375
13 913.40 12.5 0.00421 300 0.035 125 500
14 1760.40 8.84 0.00752 300 0.035 125 500
15 1760.40 8.84 0.00752 300 0.035 125 500
16 1760.40 8.84 0.00752 300 0.035 125 500
17 647.85 7.97 0.00313 300 0.035 220 500
18 649.69 7.95 0.00313 300 0.035 220 500
19 647.83 7.97 0.00313 300 0.035 242 550
20 647.81 7.97 0.00313 300 0.035 242 550
21 785.96 6.63 0.00298 300 0.035 254 550
22 785.96 6.63 0.00298 300 0.035 254 550
23 794.53 6.66 0.00284 300 0.035 254 550
24 794.53 6.66 0.00284 300 0.035 254 550
25 801.32 7.10 0.00277 300 0.035 254 550
26 801.32 7.10 0.00277 300 0.035 254 550
27 1055.10 3.33 0.52124 120 0.077 10 150
28 1055.10 3.33 0.52124 120 0.077 10 150
29 1055.10 3.33 0.52124 120 0.077 10 150
30 148.89 5.35 0.01140 120 0.077 47 97
31 222.92 6.43 0.00160 150 0.063 60 190
32 222.92 6.43 0.00160 150 0.063 60 190
33 222.92 6.43 0.00160 150 0.063 60 190
34 107.87 8.95 0.00010 200 0.042 90 200
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Table 11. Cont.

Unit αi($) βi($/MW) γi($/MW) gi hi Pimin(MW) Pimax (MW)

35 116.58 8.62 0.00010 200 0.042 90 200
36 116.58 8.62 0.00010 200 0.042 90 200
37 307.45 5.88 0.01610 80 0.098 25 110
38 307.45 5.88 0.01610 80 0.098 25 110
39 307.45 5.88 0.01610 80 0.098 25 110
40 647.83 7.97 0.00313 300 0.035 242 550

Table 12. Total generation cost comparison on the fourth case study.

Method Minimum Average Maximum

Cost ($/ht)

COPSO [50] 121,411 121,499 121,751
NPSO-LRS [23] 121,664 122,209 122,981

DPD [54] 121,410 121,412 121,441
IFEP [23] 121,442 121,448 121,457
FCEP [23] 121,393 121,394 121,395
IDE [55] 121,411 121,429 121468

MSOS [56] 121,412 121,412 121,412
MIW-PSO 121,218 121,218.3 121,223

COPSO: crossover operation with PSO; NPSO-LRS: new PSO with local random search; DPD: combination of
DE-PSO-DE; IFEP: improved fast evolutionary programming; FCEP: fast convergence evolutionary programming;
IDE: improved differential evolution; MSOS: modified symbiotic organisms search; MIW-PSO: modified inertia
weight of PSO.

4.5. Fifth Case Study

The fifth case study is applied in the East Java 150 kV power system, which is located in East
Java, Indonesia, as shown in Figure 1. The East Java 150 kV power system consists of ten generator
units. Units 1–4 are located in the Gresik 1 electric steam power plant which in Indonesia is called
pembangkit listrik tenaga uap Gresik 1 (PLTU Gresik 1), units 5 and 6 are located in the Perak electric
steam power plant which in Indonesia is called pembangkit listrik tenaga uap Perak (PLTU Perak),
and units 7–10 are located in Gresik 2 integrated gasification combined cycle plants which in Indonesia
is called pembangkit listrik tenaga gas dan uap Gresik 2 (PLTGU Gresik 2). Single line diagram of the
East Java 150 kV is shown in Figure 2. 10 of 17 
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The input data used in the fifth case study are shown in Table 13. Moreover, MIW-PSO is applied
with total demand 616 MW. In this case study, the MIW-PSO is used to solve ED problems with smooth
cost function. Using PSO obtain total cost 95,840.57 $/h. However, MIW-PSO gets 95,835.53 $/h for
total cost, as written in Table 14.

Table 13. Generator unit capacity and coefficients on fifth case study.

Unit αi($) βi($/MW) γi ($/MW) Pimin(MW) Pimax (MW)

1 4088.5375 42.5118 0.2162 23.00 92
2 4547.8075 20.5021 0.4108 23.00 92
3 4601.9649 32.9483 0.0562 47.25 189
4 4316.1074 22.2655 0.1266 47.25 189
5 3707.7500 50.6244 0.6210 10.25 41
6 3459.6950 69.7050 0.1255 10.25 41
7 9045.7750 370.6642 3.6454 23.00 95
8 1124.9075 31.9013 0.3981 23.00 95
9 8549.5500 484.7006 2.3185 23.00 95

10 4486.6174 31.8112 0.1142 41.25 165
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Table 14. Simulation result comparison on the fifth case study.

Unit Generator
(MW) PSO MIW-PSO

1 38.63 36.34
2 38.94 46.58
3 178.00 189.00
4 142.20 139.16
5 13.43 11.06
6 13.42 10.25
7 29.00 23.00
8 26.84 29.90
9 29.00 23.00

10 106.54 107.71

Total power (MW) 616.00 616.00
Total cost ($/hr) 95,840.57 95,835.53

PSO: particle swarm optimization; MIW-PSO: modified inertia weight of PSO.

To validate accuracy of the MIW-PSO getting the optimal total cost, we computed the MIW-PSO
in 100 trials. Figure 3 shows the accuracy validation of the MIW-PSO. Figure 3a represent the accuracy
of the MIW-PSO in the first case study. MIW-PSO yields smaller generation cost deviation to obtain
the optimal total cost, which is 8194.35513 $⁄hr. A similar thing is shown in Figure 3b–e, which
represent the second to fifth case studies. Overall, through 100 trials for all case studies, it is shown
that the MIW-PSO yields smaller generation costs deviation; thus, verifying that the MIW-PSO solution
accuracy is acceptable stable.
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Figure 3. The accuracy of the MIW-PSO: (a) first case study; (b) second case study; (c) third case study;
(d) fourth case study; (e) fifth case study.

Convergence test is performed to verify the quickness of the proposed approach in terms of
iterations number. Figure 4 depicts the convergence test of MIW-PSO. Figure 4a–e shows that the
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MIW-PSO has a good convergence ability; thus, obtaining good evaluation value of iteration and low
generation cost. The MIW-PSO is consistently faster to convergence than the other algorithms, such as
NM [51] for the first case study, MPSO [40] for the second case study, GA, PSO [24], NPSO, PSO-LRS,
and NPSO-LRS [41] for the third case study, NPSO-LRS, IFEP, and FCEP [23] for the fourth case study,
and the PSO for the fifth case study. Table 15 summarizes the comparison of the convergence test in
terms of the number of iterations among different methods.
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Figure 4. The convergence of the MIW-PSO: (a) first case study; (b) second case study; (c) third case
study; (d) fourth case study; (e) fifth case study.

Table 15. Comparison of the convergence test among different methods.

Case Study Method Number of Iteration

1
NM [51] 17

MIW-PSO 9

2
MPSO [40] 12
MIW-PSO 10

3

GA [24] 200
PSO [24] 200

NPSO [41] 50
PSO-LRS [41] 50

NPSO-LRS [41] 50
MIW-PSO 11

4

NPSO-LRS [42]
IFEP [23]
FCEP [23]
MIW-PSO

1000
300
300
300

5
PSO 25

MIW-PSO 15

In terms of computational efficiency, the comparison of the time computation is given in Table 16.
Since some of the computation time of the other methods are not available, the comparison is just done
with MHNN in the first case study, GA in the second case study, GA, PSO, and DE in the third case
study, COPSO, NPSO, PSO-LRS, and NPSO LRS in the fourth case study, and PSO in the fifth case study.
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Besides the encoding, the computation time comparison is greatly influenced by the specifications of
the computer in use. As shown in Table 15, the MIW-PSO has better computation time.

Table 16. Comparison of computation time.

Case Study Method Time (s)

1
MHNN [19,40] 60

MIW-PSO 0.26

2
GA [42] 10

MIW-PSO 0.27

3

GA [24] 10.49
PSO [24] 3.73

DE [22,57] 3.63
MIW-PSO 1,12

4

COPSO [50] 19.2
NPSO [41] 4.71

PSO-LRS [41] 15.86
NPSO-LRS [41] 16.81

MIW-PSO 4.26

5
PSO 1.52

MIW-PSO 1.58

5. Discussion

In this study, six advantages are summarized as follow:

1. An alternative method to solve the ED problem: this study applied a modified inertia weight
on the PSO (MIW-PSO) algorithm. The MIW-PSO is proposed to solve the ED problems on
generator scheduling;

2. Perform well and considers the power generator characteristics: in order to solve the ED problems,
the MIW-PSO performs well, and considers the power generator characteristics, such as smooth
and non-smooth cost functions with prohibited operating zones and valve-point effects;

3. Obtaining an optimal solution: in this study, the MIW-PSO shows excellent performance in order
to obtain optimal solution, and at the same time, satisfy the constraints. In the first case study,
the MIW-PSO obtains the total cost 8194.35513 $/h. In the second case study, the MIW-PSO
obtains the total cost 8234.06 $/h. In third and fourth case studies, the MIW-PSO obtains the total
cost 15,448.97 $/h and 121,218 $/h, respectively. Finally, in the fifth case study, the MIW-PSO
obtains total cost 95,835.53 $/hr;

4. Performing well and considers the power generator characteristics: the MIW-PSO performs well,
and considers the power generator characteristics, such as smooth and non-smooth cost functions
with prohibited operating zones and valve-point effects, in solving the ED problems;

5. Extraordinary among other method approaches to solve ED problems: the obtained results of
MIW-PSO are compared with the other methods, such as NM, MHNN, IEP, MPSO, GA, EP, PSO,
PSO-LRS, NPSO-LRS, DE, IBSA, COPSO, DPD, IFEP, FCEP, IDE, MSOS, and NPSO. The MIW-PSO
has better performance to obtain optimal results;

6. Stable solution accuracy: through 100 trials, the MIW-PSO yields smaller generation cost deviation;
thus, verifying that the MIW-PSO solution accuracy is acceptable stable.

7. Faster to convergent: through the results of the convergence test, the MIW-PSO demonstrates the
quickness of performance in terms of the number of iterations.
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6. Conclusions

This study successfully shows the performance of a new MIW-PSO with incorporated chaotic
search to solve the problems of ED. In the MIW-PSO, the approach of the constriction factor and inertia
weight, along with the adjustment in the cognitive and social learning factors, are used together where
a modification of inertia weight is introduced with an incorporation of the chaotic search strategy.
Therefore, MIW-PSO makes ED problems effectively solved, satisfying the constraints, and makes
optimal solutions greatly improved. The MIW-PSO is addressed to obtain an optimal total cost
in solving the ED problems in optimal generator scheduling, while considering the smooth and
non-smooth cost functions. Moreover, the method can also handle ED problems, considering POZ
and VPE. The MIW-PSO has been demonstrated through five different case studies, is proven to have
significant features, such as an optimal solution with stable solution accuracy, and offers the quickness
of performance in terms of the number of iterations. The results of the five case studies show the
superiority of the MIW-PSO compared with the results of several methods that have been published in
the previous paper.
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