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Abstract: To realize the best performances of the distributed energy system (DES), many uncertainties
including demands, solar radiation, natural gas, and electricity prices must be addressed properly
in the planning process. This study aims to study the optimal sizing and performances of a hybrid
combined cooling, heating, and power (CCHP) system under uncertainty in consideration of the
operation parameters, including the lowest electric load ratio (LELR) and the electric cooling ratio
(ECR). In addition, the ability of the system to adapt to uncertainty is analyzed. The above works are
implemented separately under three operation strategies with multi-objectives in energy and cost
saving, as well as CO2 reducing. Results show that the system with optimized operation parameters
performs better in both the deterministic and uncertain conditions. When the ECRs in the summer
and in mid-season as well as the LELR are set at 50.00%, 50.00%, and 20.00% respectively, the system
operating in the strategy of following the electric load has the best ability to adapt to uncertainty.
In addition, among all the uncertainties, the single uncertain natural gas price and the single uncertain
heating demand have the smallest and largest effects on the optimal design respectively.

Keywords: CCHP system; stochastic programming; operation parameters; uncertainty

1. Introduction

In recent years, the energy system is on its way to be transformed to meet the requirements of
energy saving and environment protection. In this way, many distributed energy systems (DESs)
including the CHP (combined heating and power) system, the CCHP (combined cooling heating and
power) system, and other hybrid systems can be planned for commercial buildings, residential districts,
and industry parks because of their efficient, economic, and environmental performances. At the
design stage of a DES for a building, some parameters, such as the estimated energy demands, natural
resources, and energy prices, are regarded as the fixed values. Nevertheless, at the operation stage in
the real application, all these parameters fluctuate with different uncertain characteristics, which can
cause a worse performance than the expected one. Therefore, the uncertainty must be handled in both
the planning and operation [1].

Many authors have implemented works on tackling the uncertainty in DES planning with different
methods, including fuzzy programming [2], robust optimization [3], and stochastic programming [4].
In the fuzzy approach, Moradi et al. [5] used fuzzy programming to deal with the uncertain electrical
and thermal demands as well as the natural gas and electrical power prices in a CHP system.
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Considering the uncertainty in load demand and fuel cost, Mavrotas et al. [6,7] proposed a fuzzy
mathematical framework to plan an energy system. Zhou et al. [8] employed a fuzzy interval
possibilistic model to handle the CO2 emission factor uncertainty in a sustainable electrical power
system. Lu et al. [9] addressed the uncertainties of energy price and CO2 emission factors in the energy
system with an interval-fuzzy possibilistic programming model. Based on a life cycle assessment,
Li et al. [10] employed a fuzzy rough set to deal with the uncertainties existing in natural resources to
evaluate the environmental impact for a distributed renewable energy system. In the robust approach,
Majewski et al. [11] addressed the uncertain data of energy demands and the prices in a CCHP system
based on a proposed robust model. Luo et al. [12] carried out robust design work for a CCHP system
accounting for uncertain demands and photovoltaic output power. Niu et al. [13] planned a renewable
cooling resource in a robust way considering demands and renewable energy uncertainties. Based on
the minimax regret criterion, Yokoyama et al. [14] carried out robust optimal design works for a gas
turbine co-generation system in consideration of uncertain energy demands. Roberts et al. [15] carried
out a robust sizing for an energy system in a probabilistic scenario-based way, accounting for uncertain
demands and natural resources. In the stochastic approach, Mavromatidis et al. [16] employed the
stochastic model in planning for a distributed energy system while considering uncertain energy prices,
emission factors, demands, and solar radiation. Incorporating long term uncertainties of loads and
prices, Onishi et al. [17] used a stochastic model to get the optimal design for a tri-generation system.
Afzali et al. [18] employed a stochastic method to deal with uncertain demands and energy prices
when planning an energy system for an urban community. Yang et al. [19] accounted for uncertainties
of demands, solar radiation, wind speed, and energy prices in the planning work for CCHP systems.
Vaderobli et al. [20] addressed the uncertainties of weather and cost in a renewable energy system with
stochastic optimization.

Most of the above works presented for a CHP or CCHP system focus only on the optimal sizing
under uncertainty while ignoring the optimization of operation parameters, such as the lowest electric
load ratio and the electric cooling ratio. In the deterministic optimization for a CCHP system [21],
the operation parameters have apparent effects on the system performance and design. In uncertain
optimization, however, it needs further research about how these operation parameters influence the
optimal design for a CCHP or CHP system and the ability of the system to adapt to uncertainty. Based
on these, the works in this study mainly lie in the following aspects: (1) the effects of multi-uncertainties
on a CCHP system planning is researched; (2) the effects of operation parameters on the ability of the
system to adapt to uncertainty is investigated; and (3) the effects of a single uncertainty in generated
scenarios on system planning is analyzed. This study is composed of six sections. Section 2 presents
a system description about the system structure, the operation strategies, and system performances.
Section 3 shows the optimization under uncertainty, including the stochastic programming method,
the proposed model, and algorithm. Section 4 provides the information about the hotel and case set.
Section 5 implements the results from the analysis, and Section 6 concludes the paper.

2. System Description

2.1. System Configuration

The planned hybrid CCHP system in this study is shown in Figure 1. The technical and economic
parameters can be found in Appendix A.1. In the system, the energy balances are as follows:

(1) Cooling energy balance:
QC = QEC + QAC (1)

(2) Heating energy balance:

QH = (QHRS + QGB + QSHC −QHSTin + QHSTout −QACin) · ηHE (2)



Energies 2020, 13, 3588 3 of 17

(3) Electric energy balance:
E = EGT + EPV + Egrid − EEC (3)
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Figure 1. The hybrid combined cooling, heating, and power (CCHP) system configuration. 

2.2. Operation Strategy 

Following the thermal load (FTL) [22], following the electric load (FEL) [23], and following the 

hybrid electric-thermal load (FHL) [24] are the three basic operating strategies for a CCHP system. 

When the CCHP system operates in FTL, the gas turbine (GT) gives priority to meet the heating 

demand. When the system operates in FEL, the gas turbine (GT) gives priority to meet the electric 

demand. In both of these two strategies, the unmet heating and electric demands are covered by a 

gas boiler (GB) and a state grid, respectively. When the system operates in FHL, if the heat-to-electric 

ratio of the GT is in part B of Figure 2, the system operates in FEL, or else it operates in FHL. The 

specific logic of the strategies is defined in Appendix A.1.2. 
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Figure 2. Heating and electric output in the gas turbine. 
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Figure 1. The hybrid combined cooling, heating, and power (CCHP) system configuration.

2.2. Operation Strategy

Following the thermal load (FTL) [22], following the electric load (FEL) [23], and following the
hybrid electric-thermal load (FHL) [24] are the three basic operating strategies for a CCHP system.
When the CCHP system operates in FTL, the gas turbine (GT) gives priority to meet the heating
demand. When the system operates in FEL, the gas turbine (GT) gives priority to meet the electric
demand. In both of these two strategies, the unmet heating and electric demands are covered by a gas
boiler (GB) and a state grid, respectively. When the system operates in FHL, if the heat-to-electric ratio
of the GT is in part B of Figure 2, the system operates in FEL, or else it operates in FHL. The specific
logic of the strategies is defined in Appendix A.2.
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2.3. System Performance

The integrated performance (IP), which is composed of the annual total cost saving (ATCS),
the primary energy saving (PES), and the carbon dioxide emission reduction (CDER), is used as an
objective in the presented study, which is expressed by [25,26]:

IP = ω1 ·ATCS +ω2 · PES +ω3 ·CO2ER, (4)

where ATCS, PES, and CO2ER are denoted by f1, f2, and f3 respectively, and then the integrated
performance is described as:
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IP = ω1 · f1 +ω2 · f2 +ω3 · f3, (5)

where ωi =
1
3 (i = 1, 2, 3) are the weights of each criterion. The specific formulations of ATCS, PES,

and CDER are shown in Appendix A.3.

3. Optimization under Uncertainty

3.1. Two-Stage Stochastic Programming

The two-stage stochastic programming problem [4] is used to handle the uncertainty in the
planning process. Its basic mathematical model is shown as follows:

Stage 1:
min
x∈X
{g(x) := cTx + E[Q(x, ξ)]}, (6)

Stage 2:
min

y
qT y,

s.t. Tx + Wy ≤ h,
(7)

where x ∈ Rn is the decision variable or the here-and-now variable in the first stage, while y ∈ Rn is the
process variable or the wait-and-see variable in the second stage, and ξ = (q, T, W, h) denotes the
uncertain factors in the second stage.

After sampling, the above problem can be solved. Monte Carlo sampling is one of the sampling
techniques used to simulate the future situation of uncertain factors. Based on the given probability
distribution, N samples of uncertainty are generated, which is ξ = (ξ1, ξ2, . . . , ξn). Combining with
the sample average approximation (SAA) method, the expectation function q(x) = E[Q(x, ξ)] in
Equation (1) transforms into:

qN(x) =
1
N

N∑
j=1

Q(x, ξ j), (8)

which then turns the two-stage problem into:

min
x∈X
{g(x) := cTx +

1
N

N∑
j=1

Q(x, ξ j)}. (9)

3.2. Stochastic Programming Model for the CCHP System

To divide the optimization problem into two stages, the integrated performance is transformed
as follows:

IP = ω1 · f1 +ω2 · f2 +ω3 · f3 = ω1 · (1 + C · f11 + C · f12) +ω2 · f2 +ω3 · f3, (10)

where C is the constant, while f11 and f12 are the investment cost and operation cost of the CCHP
system, respectively.

According to the transformed integrated performance and the basic process of optimization,
the two-stage stochastic programming model is created as follows:

Stage 1:
max

d
1
3 {1 + C · f11(d) + E[C · f12(d, ξ) + f2(d, ξ) + f3(d, ξ)]},

s.t.ϕd(d) = 0,
ψd(d) ≤ 0,

(11)
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Stage 2:
max

o
[ f12(d, ξ, o) + f2(d, ξ, o) + f3(d, ξ, o)],

s.t.ϕo(d, ξ, o) = 0,
ψo(d, ξ, o) ≤ 0.

(12)

where d is the design variable, including the optimal capacity of each equipment and operation
parameters; o is the operation variable, including the gas consumption and electricity consumption;
ξ is the uncertainty, including uncertain demands, energies prices, and solar radiation; ϕd and ψd are
equality and inequality constraints for the design variables, respectively; and ϕo and ψo are the equality
and inequality constraints for the operation variables, respectively. In addition, the uncertainties of
demands, solar radiation, and the natural gas and grid electricity prices are addressed in the model;
their probability distributions are shown in Appendix A.4.

3.3. Optimization Algorithm

To solve the nonlinear problem, the artificial bee colony (ABC) algorithm [27] is employed in this
study. The basic process to realize stochastic programming optimization by the ABC is depicted in
Figure 3 while the process of the ABC is presented in Algorithm 1.
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Algorithm 1: ABC algorithm optimization process.

Input: Economic and technical parameters, scenarios of demands, solar radiation, and energy prices

Step 1: Generate all food sources and variables randomly.

Step 2: Evaluate the fitness of all foods according to the fitness function, given by Equation (4).
Repeat

Step 3: Employ bee search:

Compute the objectives of all scenarios and update the food source according to the best IP.

Step 4: Onlooker bee search:

Compute the objectives of all scenarios and update the food source according to the best IP.

Step 5: If trail number > limit, then go to step 6. Otherwise, go to step 7.

Step 6: Scout bee search:

Generate a new food source and replace the old one if the new one is better.

Step 7: Record the best food source.
Until: Max iteration > ε

Output: Optimal capacities, LELRs, and ECRs



Energies 2020, 13, 3588 6 of 17

4. Case Study

4.1. Hotel Description

The U.S. Department of Energy [28] simulated demands for different types of buildings, which
include hotels, schools, and hospitals. In this study, a large hotel that is located at Ohio State University
(shown in Figure 4) is used to implement the study. The local climate is a temperate continental
climate. July is on average the warmest month, the average high and low temperatures of which are
30.0 and 17.8 ◦C, respectively; January is on average the coolest month, the average high and low
temperatures of which are 2.8 and −7.2 ◦C, respectively [29]. Some information about the hotel is
shown in Table 1. Figure 5a,b shows the demands and solar radiation, respectively. The U.S. Energy
Information Administration [30,31] provides the natural gas and grid electricity prices, which are
5.99 dollars per thousand cubic feet and 9.94 cents per kilowatt hour, respectively.
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Table 1. Hotel description.

Item Description

Building type Large hotel
Orientation Faces south
Roof area 1147.5 m2

Total area 11,345 m2

Occupancy 65%

Aspect ratio Ground floor: 3.79 (86.56 m × 22.86 m)
All other floors: 5.07 (86.56 m × 17.07 m)

Number of floors 1 basement, 6 above-ground floors
Window fraction East: 24.5%; West: 24.5%; South: 36.7%; North: 26.0%

Exterior walls Concrete blocks, wall insulation, and gypsum board

4.2. Simulation Cases

To investigate the effects of electric cooling ratios in the summer (ECR_S) and in mid-season (ECR_M)
as well as the lowest electric load ratio (LELR) on system planning, several cases were set in this paper,
which are depicted in Table 2. Cases 1–3 were implemented under the deterministic condition, in which
the operation parameters are given as 50%, 50%, and 20% [32] respectively in case 1; only the ECRs
were optimized in case 2, while the two kinds of parameters were optimized in case 3. Cases 4–6 were
carried out under an uncertain condition; the results of the cases were then compared to that of case 1 to
study the effect of operation parameters on the ability of the system to adapt uncertainty. In addition,
the parameters of the ABC algorithm of cases 1–6 are presented in Appendix A.5.
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Table 2. Simulated cases.

Case
ECRs LELR

DET UN
Given Optimized Given Optimized

1
√ √ √

2
√ √ √

3
√ √ √

4
√ √ √

5
√ √ √

6
√ √ √

5. Results and Analysis

5.1. Result of Deterministic Conditions

Tables 3 and 4 show the system performances and the optimal design of cases 1–3, respectively.
It can be seen from Table 3 that following the electric load (FEL) is the best operation strategy for
cases 1–3, and the integrated performance (IP) is 36.00%, 36.63%, and 36.67% respectively. In addition,
case 3 performs best among the three strategies on the whole with 33.29% of PES, 47.62% of CDER,
and 29.10% of ATCS because the optimal lowest electric load ratio (LELR) and the electric cooling
ratios in the summer (ECR_S) and in mid-season (ECR_M) are optimized. Table 4 shows that the LELR,
ECR_S, and ECR_M of case 3 in FEL are 5.75%, 37.74%, and 60.38% respectively. Figure 6 presents the
annual fuel consumption, the CO2 emission, and the cost of cases 1–3 when the system operates in
the best operation strategy (FEL); it can be seen that the annual values of case 3 are 1.1114 × 107 kW,
2.4732 × 109 g, and 3.6047 × 105 dollars, respectively.

Table 3. System performances of deterministic cases.

Strategy Case PES CDER ATCS IP

FTL
1 25.90% 37.38% 22.71% 28.66%
2 26.09% 38.93% 23.70% 29.57%
3 26.18% 39.02% 23.73% 29.64%

FEL
1 32.34% 46.72% 28.95% 36.00%
2 33.25% 47.54% 29.11% 36.63%
3 33.29% 47.62% 29.10% 36.67%

FHL
1 27.21% 38.46% 23.37% 29.68%
2 27.53% 40.66% 24.77% 30.99%
3 27.63% 40.73% 24.81% 31.05%
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Table 4. Optimal design of deterministic cases in FEL.

Strategy: FEL
Case

1 2 3

GT kW 1475 1490 1500
AB kW 1477 1476 1475
PV m2 1478 1315 1347

SHC m2 0 162 130
EC kW 357 267 269
AC kW 357 447 444
HE kW 1514 1514 1514

HST kW 1174 1750 1786
LELR % 20.00 20.00 5.75

ECR_S % 50.00 37.36 37.74
ECR_M % 50.00 59.57 60.38
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5.2. Result of Uncertain Conditions

5.2.1. Effect of Multi-Uncertainties to System Planning

Uncertainties of demands, solar radiation, and energy prices are handled in cases 4–6, the system
performances of which are shown in Table 5. It can be seen that the performances of uncertain cases 4–6
are similar to those of deterministic cases 1–3. Case 6 with optimized LELR and ECRs in FEL are best
while 33.17% of the primary energy, 47.48% of CO2, and 31.24% of the total cost are reduced annually.
To be specific, Figure 7 depicts that the system operating in the best operation strategy (FEL) of case 6
consumes 1.1134 × 107 kW natural gas, generates 2.4797 × 109 g CO2, and costs 3.8708 × 105 dollars
annually, and all the values are the lowest among the three uncertain cases.

Table 6 presents the optimal design of uncertain cases 4–6. To analyze the ability of the system to
adapt to uncertainty, the results of the uncertain cases 4–6 and the deterministic cases 1–3 are compared;
the cascade color table is shown in Table 7, which is based on the absolute deviation of the cases. It can
be seen that on the whole, case 4 performs best to handle uncertainty with the lowest fluctuation of
optimal design while the capacities of case 6 deviates from case 3 most significantly among the three
uncertain cases.
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Table 5. System performances of uncertain cases.

Strategy Case PES CDER TCS IP

FTL
4 25.59% 37.06% 23.89% 28.85%
5 25.66% 38.35% 25.04% 29.68%
6 25.73% 38.45% 25.11% 29.76%

FEL
4 32.21% 46.58% 31.09% 36.62%
5 33.12% 47.39% 31.23% 37.24%
6 33.17% 47.48% 31.24% 37.30%

FHL
4 27.01% 38.20% 24.56% 29.92%
5 27.09% 40.07% 26.24% 31.13%
6 27.19% 40.19% 26.32% 31.23%
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Table 6. Optimal design of uncertain cases in FEL.

Strategy: FEL
Case

4 5 6

GT kW 1491 1511 1521
AB kW 1645 1636 1632
PV m2 1477 1334 1406

SHC m2 0 144 72
EC kW 439 331 342
AC kW 439 547 536
HE kW 1637 1637 1637

HST kW 1284 1901 1943
LELR % 20.00 20.00 2.00

ECR_S % 50.00 37.70 61.28
ECR_M % 50.00 60.59 38.92

Table 7. The absolute deviation of optimal design between uncertain cases 4–6 and their deterministic
cases 1–3.

Strategy: FEL
GT AB PV SHC EC AC HE HST LELR ECR_S ECR_M

kW kW m2 m2 kW kW kW kW % % %

D4–1 16 167 0 0 82 82 123 110 0.00 0.00 0.00
D5–2 21 159 19 19 64 100 123 151 0.00 0.35 1.01
D6–3 21 156 58 58 72 92 123 157 3.75 23.54 21.46

Note: In each column of Tables 7, 10 and 11, the deeper the green is, the more effects it has while the deeper the red,
the fewer effects.
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5.2.2. Effect of a Single Uncertainty to System Planning

The previous section shows that the ability of case 6 in tackling multi-uncertainties is the worst
among the uncertain cases, but it has the best performances in efficient, environmental, and economic
factors when the system operates in FEL. Therefore, this part analyzes the effect of a single uncertainty
of case 6 in relation to the system planning in FEL.

Table 8 depicts the optimal design while Table 9 shows the optimal operation and cost under
the different single uncertainties of case 6. It can be seen from Table 8 that the case under the single
uncertain natural gas price has the largest LELR (6.34%), while all the other single uncertainties make
the lowest electric load ratio decline into around 2.00%.

Table 8. Optimal design under case 3 and the single uncertain cases.

Strategy: FEL
Case

3 Un_GP Un_EP Un_Solar Un_C Un_H Un_E

GT kW 1500 1499 1516 1499 1500 1502 1501
AB kW 1475 1475 1474 1475 1483 1633 1474
PV m2 1347 1346 1352 1325 1358 1379 1374

SHC m2 130 132 125 152 120 98 103
EC kW 269 269 268 266 334 273 276
AC kW 444 445 446 447 544 441 437
HE kW 1514 1514 1514 1514 1514 1637 1514

HST kW 1786 1792 1807 1778 1821 1865 1825
ECR_S % 37.74 37.67 37.50 37.29 38.06 38.22 38.70
ECR_M % 60.38 60.31 60.40 59.69 60.46 61.09 61.10
LELR % 5.75 6.34 0.00 1.96 1.94 1.78 2.12

Table 9. Operation and costs under case 3 and the single uncertain cases.

Strategy Case
Gas Electricity CO2 Emission Operation Investment

kW kW g Dollar Dollar

FEL

3 10,806,665 98,873 2,473,175,048 226,734 133,732
Un_GP 10,806,559 98,849 2,473,128,748 237,571 133,749
Un_EP 10,837,186 89,363 2,470,684,094 227,592 134,374

Un_Solar 10,811,792 97,942 2,473,401,674 226,744 141,699
Un_C 10,800,111 102,746 2,475,482,955 226,987 136,974
Un_H 10,808,245 98,475 2,473,137,795 226,726 135,394
Un_E 10,773,825 113,526 2,480,134,837 227,531 133,942

To study the degree of effects of every single uncertainty on system planning, the color cascade
tables are created, as shown in Tables 10 and 11, which are based on the absolute deviation between
the single uncertain cases and the referenced case 3. On the whole, the tables show that the single
uncertain heating demand has the largest effects on the optimal design but has the smallest effects on
the operation and costs. In addition, the single uncertain natural gas price has the smallest effects on
the optimal design, while the single uncertain electric demand has the biggest effects on the operation
and costs.

To be specific, the single uncertain natural gas price has maximal influences only on the operation
cost; the single uncertain grid electricity price has maximal influences on the capacity of GT and LELR;
the single uncertain solar radiation has maximal influences only on the investment cost; the single
uncertain cooling demand has maximal influences on the capacities of EC and AC; the single uncertain
heating demand has maximal influences on the capacities of AB, PV, SHC, HE, and HST; and the
uncertain electric demand has maximal influences on ECR_S, ECR_M, natural gas consumption,
grid electricity consumption, and CO2 emission.
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Table 10. The absolute deviation of optimal design between the single uncertain cases and case 3.

Strategy: FEL GT AB PV SHC EC AC HE HST ECR_S ECR_M ELR

Delta kW kW m2 m2 kW kW kW kW % % %

DGP-3 1 0 1 2 0 1 0 6 0.07 0.07 0.59
DEP-3 16 1 5 5 1 2 0 14 0.24 0.02 5.75

DSolar-3 1 0 22 22 3 3 0 8 0.45 0.69 3.79
DC-3 0 8 11 11 65 100 0 35 0.32 0.08 3.8
DH-3 2 157 32 32 3 3 123 79 0.48 0.71 3.97
DE-3 1 1 27 27 7 7 0 39 0.96 0.72 3.62

Table 11. The absolute deviation of optimal operation and cost between the single uncertain cases and
case 3.

Strategy: FEL Gas Electricity CO2 Emission Operation Investment

Delta kW kW g Dollar Dollar

DGP-3 107 24 46,299 10,837 16
DEP-3 30,521 9510 2,490,953 858 642

DSolar-3 5127 931 226,627 10 7967
DC-3 6554 3874 2,307,908 254 3242
DH-3 1580 397 37,253 8 1661
DE-3 32,840 14,654 6,959,789 797 210

6. Conclusions

In this paper, the planning work of a hybrid CCHP system under uncertainty is implemented for
a large hotel. In particular, the electric cooling ratios and the lowest electric load ratio are optimized
in the proposed stochastic programming model, in which the uncertain demands (cooling, heating,
and electric), the solar radiation, and the energy prices (natural gas and grid electricity) are addressed.
All the above works aim to (1) obtain the optimal design for the CCHP system, including optimal
capacities, operation parameters, and operation strategy; (2) investigate the ability of the system to
adapt to uncertainty; and (3) study the effects of a single uncertainty on system planning. All the
processes can be applied in the fields of energy system planning, and the main conclusions obtained
are as follows:

• When the operation parameters, including the electric cooling ratios and the lowest electric
load ratio, are optimized, the hybrid CCHP system performs best in both the deterministic and
uncertain conditions.

• When multi-uncertainties are tackled, following the electric load is the best operation strategy for
the system with optimized operation parameters in which the PES, CDER, TCS, and IP are 33.17%,
47.48%, 31.24%, and 37.30% respectively.

• The hybrid CCHP system has the best ability to adapt to uncertainty with the given electric cooling
ratio (50.00%) and the lowest electric load ratio (20.00%).

• All the single uncertainties make electric cooling ratios fluctuate in varying degrees; meanwhile
except for the uncertain natural gas price, the others make the lowest electric load ratio drop into
around 2.00%.

• On the whole, the single uncertain natural gas price has minimal influences on the system optimal
design while the single uncertain heating demand has the largest effects on the optimal design but
has the smallest effects on system operation and costs.
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Abbreviations

ABC Artificial bee colony algorithm
AC Absorption chiller
ATCS Annual total cost saving
CCHP Combined cooling heating and power system
CDER Carbon dioxide emission reduction
CHP Combined heating and power system
D Absolute delta
d Design variable
DES Distributed energy system
DET Deterministic case
E Electricity
EC Electric chiller
ECR_M Electric cooling ration in mid-seasons
ECR_S Electric cooling ration in summer
LELR Lowest electric load ratio
EP Grid electricity price
F Fuel
f Part load ratio
FEL Following the electric load
FHL Following hybrid electric-thermal load
FHL Following the thermal load
GB Gas boiler
GP Natural gas price
GT Gas turbine
H Heat
HE Heat exchanger
HRS Heat recovery system
HST Heat storage tank
i Number of employed bees
IP Integrated performance
LELR Lowest electric load ratio
N Number of samples
o The operation variable
PES Primary energy saving
P V Photovoltaic
SAA Sample average approximation
SES Separated energy system
SHC Solar heat collector
SP Stochastic programming
UN Uncertain case
Greek symbols
η The efficiency
λ Electric cooling ratio
ω The weight
ψ Inequality constraints
ε Stopping criterion
ϕ Equality constraints
ξ Uncertainty sample
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Subscripts
in Input energy
out Output energy

Appendix A

This part includes the technical and economic parameters in Appendix A.1, the logic of the three operation
strategies in Appendix A.2, the specific formulation of system performances in Appendix A.3, the probability
distribution of uncertainty in Appendix A.4, and the parameters of the ABC algorithm of cases 1–6 in Appendix A.5.

Appendix A.1 Technical and Economic Parameters

Table A1. CO2 emission factor.

Natural Gas Grid Electricity Source

Value (g/kWh) 220 968 [33]

Table A2. Efficiency and unit price of the facilities in the hybrid CCHP system.

Facility GT HE GB AC EC PV SHC
HST

Charging Discharging

Efficiency 0.3 1 0.8 0.8 0.7 3 0.1444 2 0.615 0.9 0.9

Source [34] [35] [36]

Unit price
(Yuan/kW) 3 6800 200 300 1200 970 14,575 4006 230

Source [34] [36] [37]
1 ηGT = 0.1283 · f 3

GT − 0.6592 · f 2
GT + 0.7945 · fGT + 0.003 [38]; ηGT = 0.3 is the efficiency of GT at full load; fGT is the

part load factor of GT. 2 ηPV = −0.0237 · fPV + 0.1681 · f 0.1078
PV [35]; ηPV = 0.1444 is the efficiency of PV at full load;

fPV is the part load factor of PV. 3 7.0249 Yuan = 1 U.S. dollar.

Appendix A.2 The Logic of the Three Operation Strategies

(1) FTL

i f H_demand ≥ H_GT_max + H_SHC + H_HST
the unmet heat demand is covered by gas heater,
the unmet electric demand is covered by grid.

else i f H_SHC + H_HST ≤ H_demand < H_GT_max + H_SHC + H_HST
i f ELR_GT ≥ LELR
the unmet electric demand is covered by grid.

else
the unmet heat demand is covered by gas heater,
the unmet electric demand is covered by grid.

else i f H_SHC ≤ H_demand < H_SHC + H_HST
the unmet electric demand is covered by grid.

else
the unmet electric demand is covered by grid.

end
(2) FEL

i f E_demand ≥ E_GT_max + E_PV
the unmet electric demand is covered by grid
the unmet heating demand is covered by gas heater

else i f E_PV ≤ E_demand < E_GT_max + E_PV
i f ELR_GT ≥ LELR
the unmet heating demand is covered by gas heater.

else
the unmet electric demand is covered by grid
the unmet heating demand is covered by gas heater

else
the unmet electric demand is covered by grid
the unmet heating demand is covered bygas heater

end



Energies 2020, 13, 3588 14 of 17

(3) FHL

i f heat − to− electric ratio o f GT is at area B
GT operates in FEL

else
GT operates in FTL

end

Appendix A.3 System Performance

The specific formulation of each performance is shown as follows:

(1) Annual total cost saving (ATCS, f1)

f1 =
ATCSES −ATCCCHP

ATCSES
,

where ATCSES and ATCCCHP are the annual total cost of the separated energy system and the CCHP systems,
respectively. Moreover, the annual total cost of CCHP is composed of facility investment ( f11) and operation
cost ( f12), therefore:

f1 = 1−
f11 + f12

ATCSES
= 1−

f11

ATCSES
−

f12

ATCSES
,

denotes − 1
ATCSES

as C, then:
f1 = C · f11 + C · f12.

(2) Primary energy saving (PES, f 2)

f3 =
FSES

− FCCHP

FSES
,

where FSES and FCCHP are the energy consumption of the separated energy system and the CCHP
systems, respectively.

(3) Carbon dioxide emission reduction (CDER, f3)

f3 =
CDESES −CDECCHP

CDESES
,

where CEDSES and CDECCHP are CO2 emission from the separated energy system and the CCHP
systems, respectively.

Appendix A.4 Probability Distribution of Uncertainty

Table A3. The probability distribution of demand.

Demands Time Distribution σ Source

Cooling
00:00–23:00 N(µ, σ2) 10.2%µ [39–41]Heating

Electric

Table A4. The probability distribution of solar radiation.

Month Time Distribution σ Source

November–April 9:00–15:00

N(µ, σ2)

12%µ

[19,41,42]
16:00–8:00 25%µ

May–October 9:00–15:00 3%µ
16:00–8:00 8%µ

Table A5. The probability distribution of natural gas and electricity prices.

Price Distribution
Parameters

Source
Min Middle Max

Natural gas Triangular 0.833 × Price 1.083 × Price 1.167 × Price [19,33]
Electricity Uniform 0.882 × Price - 1.225 × Price
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Appendix A.5 Parameters in the ABC Algorithm

Table A6. Parameters of the ABC algorithm.

Variables Value Case

Colony 100

1&4
2&5 3&6

Food source 50
Max cycle 200

GT [0,2000] kW
PV area [0,1477] m2

HST [0,3000] kW

ECR_S [0,1]
ECR_M [0,1]

LELR [0,1]
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